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Abstract: Global warming is causing poleward expansion of species ranges. Temperate seas, in
particular, are undergoing a process known as ‘tropicalisation’, i.e., the combination of sea-water
warming and establishment of southern species. The Ligurian Sea is one of the coldest sectors of
the Mediterranean and has thus been characterized by a dearth of warm-temperate species and
a comparative abundance of cold-temperate species. This paper uses a time series of sea surface
temperature (SST) and new records of thermophilic fish species to reconsider the biogeography of the
Ligurian Sea. SST has risen by about 0.7 ◦C on average between 1948 and 2023, but two phases may
be distinguished: a cool one (ended in the mid-1980s) and a warm one (still ongoing); the latter phase
shows alternating periods of rapid warming and comparatively stationary temperature. The arrival
of thermophilic species coincided with the periods of rapid warming; some of these species were
established in the subsequent stationary periods. Heatwaves and climate-related diseases associated
with the periods of rapid warming have caused mass mortalities of autochthonous species. Our
knowledge on the biogeography of the Ligurian Sea was established during the cool phase; the
present situation, however, calls for re-defining the chorological spectrum of the Ligurian Sea biota.

Keywords: climate change; sea surface temperature; range expansion; Diplodus cervinus; Katsuwonus
pelamis; Kyphosus vaigiensis; Mycteroperca rubra; tropicalization; Mediterranean Sea

1. Introduction

One of the most easily perceived impacts of global warming on biodiversity is the
poleward range expansion of both terrestrial and marine species [1,2]. This phenomenon
is particularly obvious in the case of marine organisms, whose ranges expand at a faster
rate with respect to the terrestrial ones [3–5]. Temperate seas, where the biota is already
adapted to the large seasonal variability of temperature at mid-latitudes, provide the
best-known examples [6,7]. In particular, temperate seas are experiencing what has been
called ‘tropicalisation’ (British English) or ‘tropicalization’ (American English), a neologism
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coined to indicate temperature increase and the concurrent arrival and establishment
of (sub)tropical species, which may lead to changes in the regional marine chorological
spectrum [8,9].

Examples of tropicalization of temperate marine regions come from many parts of the
world, including North America [10], Australia [11], Europe [12], the Eastern Atlantic [13],
Macaronesia [14], and the Mediterranean Sea [15].

The Mediterranean, the largest warm-temperate sea in the world, is a semi-enclosed
basin with a small volume-to-surface area ratio, which makes it respond faster and more
strongly to warming than the global ocean [16]. It has therefore been defined as a climate
change hotspot [17,18], where seawater temperature is increasing at a rate of around
0.04 ◦C·a−1 [19].

Although it is only 0.82% by surface area and 0.32% by volume of the world ocean,
the Mediterranean Sea exhibits an astonishing biodiversity, with somewhere between 4%
and 18% of the world marine species and a number of endemics averaging more than one
quarter of the whole Mediterranean Sea biota [20]. However, this astonishing biodiversity
is presently threatened by climate change. Seawater warming favors the establishment
of exotic species of (sub)tropical origin [21–23] and drives endemic species to the brink
of extinction [24]; frequent marine heat waves (discrete periods of extreme local seawater
warming), in particular, are causing mass mortality of native species [25–27]. These threats
are even more evident in the Ligurian Sea [28], located at the north-western corner of the
Mediterranean. It is therefore comparatively colder and characterized by the presence of
some species from cold-temperate waters generally missing elsewhere in the Mediterranean
and by the scant occurrence of warm-water species [29]. This gives the Ligurian Sea a
moderate boreal affinity [30]. This scenario, however, is changing; in concomitance with
seawater warming, the occurrence of warm-water species of various origin in the Ligurian
Sea became frequent after the mid-1980s [31–36]. Temperature, however, is not the sole
factor facilitating the establishment of thermophilic species; other components of their
ecological niche, including salinity and productivity, may also be important [37,38].

The aim of this paper is twofold: (i) first, it analyses the time series of Ligurian Sea
temperature to describe its pattern of increase; (ii) second, it reports on the occurrence of
four thermophilic fish species hitherto rarely or never found in the Ligurian Sea: the zebra
seabream Diplodus cervinus (Lowe 1838), the skipjack tuna Katsuwonus pelamis (Linnaeus
1758), the brassy chub Kyphosus vaigiensis (Quoy & Gaimard 1825), and the mottled grouper
Mycteroperca rubra (Bloch 1793). The results are discussed in the frame of comparable global
changes and integrated within a short review of the current situation of the Ligurian Sea
biota, with the prospect of evaluating whether it is currently necessary to reconsider its
chorology and biogeographic setting [39].

2. Materials and Methods
2.1. Ligurian Sea Temperature

Sea surface temperature (SST) records for the period 1948 to 2023 were obtained from
the US National Oceanic and Atmospheric Administration (NOAA) satellite data [40].
Downloaded data were calibrated with the discontinuous field measurements (diving
computer) available using linear regression (y = 1.0916x + 0.6432; R² = 0.9694) [41]. Sea
temperature data before 1948 stored in hydrographical data banks, such as the Mediter-
ranean data bank at the Marine Environment Research Centre of La Spezia (Italy), which
contains records since 1909 [42], are unfortunately too inhomogeneous to reconstruct a time
series [33].

The overall trend in SST between 1948 and 2023 was illustrated by simple linear
interpolation, while smoothing the data by moving averages over seven-year periods was
employed to detect major irregularities within the known interannual variability [43].

Warm-water fish species were spotted and photographed by scuba diving or caught by
angling or spearfishing between 2016 and 2023, mostly around the Portofino Promontory
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or off Genoa, a city overlooking the northernmost stretch of the Ligurian Sea (Figure 1);
both localities are situated further north than 44◦17.50′ N.
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Figure 1. Oblique aerial view of the study area, with inset showing its position in Italy. The localities
where the warm-water fish were recorded are indicated. The rocky head in the foreground is the
Portofino Promontory.

The Portofino Promontory has been a marine protected area (MPA) since 1999 [44],
but both fishing and diving are allowed (although with restrictions) in the sites from where
the present records of warm-water fish were taken.

2.2. Fish Species Identification

Diplodus cervinus (Figure 2a), Katsuwonus pelamis (Figure 2b), and Mycteroperca rubra
(Figure 2d) were identified morphologically on the basis of specimens caught or underwa-
ter photographs (which also helped confirm additional visual records), according to the
relevant volume of the “Fauna of Italy” [45].

On the contrary, the identification of Kyphosus vaigiensis (Figure 2c), not included
in the above-mentioned volume, required further effort. Two species of Kyphosus are
known for the Mediterranean Sea [46,47]: the Bermuda chub Kyphosus sectatrix (Linnaeus
1758), sometimes erroneously named Kyphosus saltatrix (Linnaeus 1758) or Kyphosus sectator
(Linnaeus 1758), and the brassy chub Kyphosus vaigiensis (Quoy & Gaimard 1825), previously
reported under the name Kyphosus incisor (Cuvier 1831), a junior synonym [48]. On a mere
morphological basis, the specimen dealt with in the present paper was initially identified
as K. sectatrix because of the head profile with a distinct bump in front of and above the
eye, not gently convex as it is in K. vaigiensis [49]. However, the taxonomy of the genus is
problematic [46–51], and delimiting the different species by morphological traits alone may
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be deceptive; the application of genetic analyses and molecular taxonomy techniques has
therefore been recommended in literature [52,53].
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Figure 2. Four warm-water fish species recently found in the Ligurian Sea: the zebra seabream
Diplodus cervinus (Lowe 1838) (a); the skipjack tuna Katsuwonus pelamis (Linnaeus 1758) (b); the brassy
chub Kyphosus vaigiensis (Quoy & Gaimard 1825) (c); and the mottled grouper Mycteroperca rubra
(Bloch 1793) (d).

2.3. DNA Extraction, Amplification, and Sequencing for Kyphosus vaigiensis

A fresh tissue sample of the recently collected Kyphosus was analyzed genetically in
the frame of the Alien-Fish Project [54]. The sample was preserved in absolute alcohol. For
the barcoding procedure, it was first rehydrated for 10 min in 1 mL of Jaenisch solution
(10 mM Tris-HCl pH 8.5, 30 mM NaCl, and 5 mM EDTA) and then digested overnight
in a lysis solution containing 725 µL of Jaenisch solution, 15 µL of proteinase K (at a
final concentration of 200 µg·mL−1), and 15 µL of SDS 10%. The day after, proteins were
removed by the addition of 750 µL of chloroform; after 10 s of vortex followed by 10 min
of centrifugation at 14,000 rpm, the supernatant was collected in a new Eppendorf. Total
DNA was precipitated by adding an equal volume of isopropylic alcohol followed by
centrifugation at 14,000 rpm for 20 min. The pellet was then purified by adding 500 µL of
75% ethanol, dried at room temperature for 1 h, and resuspended in 50 µL of Tris-EDTA
buffer. A fragment of mt-COI was amplified with primers based on Folmer et al. [55] and
modified as in Astrin and Stüben [56]: fw: LCO1490-JJ, CHACWAAYCATAAAGATATYGG;
rev: HCO2198-JJ, AWACTTCVGGRTGVCCAAARAATCA. Polymerase chain reaction
(PCR) was conducted in a reaction volume of 30 µL containing 1X reaction buffer, 1.5 mM
MgCl2, 5% DMSO, 250 µM dNTPs, 0.5 µM of each primer, and 1 U·sample−1 of HotStarTaq
Master Mix (Qiagen). DNA was amplified as follows: 15 min of initial denaturation
(95 ◦C) followed by 10 cycles of 30 s at 94 ◦C, 45 s at 60 ◦C to 50 ◦C (lowering the annealing
temperature in each cycle by 1 ◦C), 2 min at 72 ◦C followed by 30 cycles of 30 s at 94 ◦C,
45 s at 50 ◦C, 2 min at 72 ◦C, and a final extension cycle of 15 min at 72 ◦C. A total of
5 µL of the amplification product was detected with ethidium bromide on a 3% agarose gel
electrophoresis. Both purification and sequencing were performed by an external service
(Genechron, Rome). Both strands were sequenced. The amplified COI fragment of the fish



Diversity 2024, 16, 159 5 of 19

showed 100% identity with previously published sequences belonging to the species K.
vaigiensis [46,50].

2.4. Fish Species Ranges

The guides to the fishes of the Mediterranean and Black Seas [57] and of the North-
eastern Atlantic and the Mediterranean [58] and the atlas of exotic fishes in the Mediter-
ranean Sea [59], integrated with specific publications [47,50,54,60–78], have been used to
draw species ranges and/or disjunct occurrences within the Mediterranean Sea. Records
of K. saltatrix in Italy [79] and Libya [80], later recognized to concern most probably K.
vaigiensis [46,61], were included among those of the latter.

3. Results
3.1. Temperature

NOAA satellite yearly means of SST between 1948 and 2023 clearly exhibited a warm-
ing trend: linear fitting would indicate an average increase of about 0.7 ◦C in the last
75 years (Figure 3). However, the trend is not linear, but it shows at least two major
phases, notwithstanding high year-to-year variability: (i) a cooling phase roughly between
1964 and 1984, when yearly average temperatures dropped from ca 18.6 ◦C to ca 17.6 ◦C,
and (ii) a warming phase since 1985 to reach the present yearly average of over 19.3 ◦C. In
turn, alternating periods of rapid warming and stationary temperatures were recognizable
within the warming phase (Figure 3). In the first period of rapid warming, between 1985
and 1992, SST rose by 0.08 ◦C·a−1 and remained comparatively stable around 18.2 ◦C until
1998. A second period of rapid warming occurred between 1999 and 2006, with the SST
increasing by 0.07 ◦C·a−1 on average; then, SST exhibited little variation around 18.7 ◦C
until 2013. The third period of rapid warming started in 2014 and is still going on, with a
rate of over 0.06 ◦C·a−1.
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Figure 3. Trend of NOAA satellite data of sea surface temperature (SST) for the Ligurian Sea between
1948 and 2023. The thin broken line illustrates the annual means, the straight line represents the linear
interpolation, and the thick, broken line depicts the moving average smoothed over seven years.

3.2. Warm-Water Fishes

An individual of Diplodus cervinus (Figures 2a and 4a) of ca 25 cm was spotted on
21 June 2020 at a 15 m depth in Portofino MPA in the diving site named Torretta. In
the same year, a larger specimen, with a total length of 32 cm, was fished off Camogli
(Supplementary Materials Figure S1) and another off the breakwater of the Port of Genoa.
Two further specimens were sighted by divers in localities east of Portofino in 2021 and
2022. A sixth record was an individual of ca 15 cm seen at 5 m at Paraggi in June 2023.
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Figure 4. Mediterranean occurrences of Diplodus cervinus (a), Katsuwonus pelamis (b), Kyphosus
vaigiensis (c), and Mycteroperca rubra (d). The thick, continuous line depicts the historical range;
diamonds are disjunct records (see text for references); and stars indicate the present records.

A small school of three individuals of Katsuwonus pelamis (Figures 2b and 4b) about
40 cm long was observed on 17 October 2020 at a 5 m depth in San Fruttuoso Creek. A
specimen of 50 cm, weighing 1.7 kg, was fished at Punta Chiappa on 14 November 2023
amid several specimens of the mackerel Euthynnus alletteratus (Rafinesque 1810).

A single specimen of Kyphosus vaigiensis (Figures 2c and 4c), of 2 kg weight, 52 cm
total length, and 47.5 cm fork length, was spearfished on 13 September 2022 at a 7 m depth
off the breakwater of the Port of Genoa (Supplementary Materials Figure S2).

Mycteroperca rubra (Figures 2d and 4d) has been frequently observed in the area of
Portofino in the last years (Supplementary Materials Figures S3–S5). It was first sighted
by scuba divers in 2016 and then regularly seen starting from 2020 to date (Table 1). Most
records concerned adults of about 40 cm in length. It was most commonly encountered
in exposed sites, such as rocky shoals (Secca Gonzatti, Isuela) and rocky points (Punta
del Faro), where it appeared fully integrated into the native fish fauna, such as the white
sea-bream Diplodus sargus (Linnaeus 1758), the two-banded sea bream Diplodus vulgaris (E.
Geoffroy Saint-Hilaire 1817), the black sea bream Spondyliosoma cantharus (Linnaeus 1758),
the painted comber Serranus scriba (Linnaeus 1758), the brown meagre Sciaena umbra (Lin-
naeus 1758), and the damselfish Chromis chromis (Linnaeus 1758), among others (Figure 5).
In the Portofino MPA, M. rubra coexists with the native and by far more abundant dusky
grouper Epinephelus marginatus (Lowe 1834), which, however, is more commonly observed
below 15 m.
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Table 1. Sightings of Mycteroperca rubra by scuba divers in Portofino MPA.

Date Site Depth (m) Number of
Individuals

3 August 2016 Secca Gonzatti 15 1
29 July 2020 Secca Gonzatti 8 1
6 June 2020 Isuela 15 1

9 September 2020 Isuela 20 1
12 June 2021 Secca Gonzatti 5 1
15 June 2021 Punta del Faro 10 1

19 June 2021 Secca Gonzatti 5 5
24 June 2021 Isuela 15 1
11 July 2021 Secca Gonzatti 5 1
21 July 2021 Secca Gonzatti 10 2
17 June 2023 Secca Gonzatti 7 1
30 July 2023 Isuela 15 1

17 September 2023 Punta del Faro 5 1
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temperatures had already been detected in a previous study that analyzed data collected 
at sea fortnightly off Villefranche-sur-Mer in the French part of the Ligurian Sea [81]. Ap-
parently, this cooling phase also occurred globally; all global temperature series highlight 
a cooler interval in the 1960s–1970s [82]. This temporary reversal of the general trend has 
been attributed to the action of sulfur aerosols, emitted by volcanic eruptions but pro-
duced in abundance in those years by the combustion of fossil fuels, burnable waste in 
automobiles, and thermal power plants; these aerosols cooled the Earth’s climate via an 
increase in the Earth’s albedo [83]. On the other hand, atmospheric chemistry generated 
sulfuric acid from these aerosols; eventually, they precipitated as acid rain, causing severe 
impacts on vegetation, soil, buildings, monuments, and water bodies, as well as on human 
health [84]. Growing public concern in the 1970s led to coordinated policy actions that 
substantially reduced sulfur emissions to decrease these impacts [85]. 

Once acid rain ceased, since the 1980s, average planetary temperatures have started 
to rise again [86], and this rise is mirrored in the SST series of the Ligurian Sea. However, 
a pattern not evidenced yet in global data series—but clearly seen in Ligurian Sea SST—
is that temperature is not increasing linearly but with an alternation of rapid rises and 
comparatively stationary intervals. In global data series, the most recent stationary inter-
val (ca. 2006–2013) was hastily interpreted as a sign that global warming had ended [87], 
but measurements in the following years showed that temperatures were starting to rise 
again [88]. 

Undoubtedly, changing temperature is just one among the many factors driving spe-
cies occurrence patterns [89]. Nevertheless, records of warm-water species in the Ligurian 
Sea increased during the rapid warming periods [36,81], while in the subsequent station-
ary periods, these species have been either able or unable to persist. Of course, it is not the 
temperature, per se, that facilitates the arrival of warm-water species [90,91], but higher 
temperatures are instrumental to their establishment success [36,92,93] and play a major 

Figure 5. Mycteroperca rubra (a) swimming amid native fish species in Portofino MPA waters: Diplodus
sargus (b), D. vulgaris (c), Spondyliosoma cantharus (d), Serranus scriba (e), Sciaena umbra (f), and Chromis
chromis (g).

4. Discussion

A cooling phase between 1958 and 1980 within the warming trend of Ligurian Sea
temperatures had already been detected in a previous study that analyzed data collected
at sea fortnightly off Villefranche-sur-Mer in the French part of the Ligurian Sea [81].
Apparently, this cooling phase also occurred globally; all global temperature series highlight
a cooler interval in the 1960s–1970s [82]. This temporary reversal of the general trend
has been attributed to the action of sulfur aerosols, emitted by volcanic eruptions but
produced in abundance in those years by the combustion of fossil fuels, burnable waste in
automobiles, and thermal power plants; these aerosols cooled the Earth’s climate via an
increase in the Earth’s albedo [83]. On the other hand, atmospheric chemistry generated
sulfuric acid from these aerosols; eventually, they precipitated as acid rain, causing severe
impacts on vegetation, soil, buildings, monuments, and water bodies, as well as on human
health [84]. Growing public concern in the 1970s led to coordinated policy actions that
substantially reduced sulfur emissions to decrease these impacts [85].

Once acid rain ceased, since the 1980s, average planetary temperatures have started
to rise again [86], and this rise is mirrored in the SST series of the Ligurian Sea. However,
a pattern not evidenced yet in global data series—but clearly seen in Ligurian Sea SST—
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is that temperature is not increasing linearly but with an alternation of rapid rises and
comparatively stationary intervals. In global data series, the most recent stationary interval
(ca. 2006–2013) was hastily interpreted as a sign that global warming had ended [87],
but measurements in the following years showed that temperatures were starting to rise
again [88].

Undoubtedly, changing temperature is just one among the many factors driving species
occurrence patterns [89]. Nevertheless, records of warm-water species in the Ligurian Sea
increased during the rapid warming periods [36,81], while in the subsequent stationary
periods, these species have been either able or unable to persist. Of course, it is not the
temperature, per se, that facilitates the arrival of warm-water species [90,91], but higher
temperatures are instrumental to their establishment success [36,92,93] and play a major
role in modulating the magnitude of their ecological impact [94].

In the first period of rapid warming (1985 to 1992), the rainbow wrasse Thalassoma
pavo (Linnaeus 1758) started to be recorded regularly in the Ligurian Sea [35]; although
not as abundant as it is in the southern sectors of the Mediterranean Sea [95], it is now
established and reproduces successfully [96–98]. In the second period of rapid warming
(1999 to 2006), Diplodus cervinus came to the Ligurian Sea and was subsequently established
in localities of the western coast [36,98]; the present paper reports its first findings in
eastern coast sites, a clue to its further range expansion. Before these recent records, only
a specimen of D. cervinus was fished in 1896 in the Ligurian Sea [99,100]; roughly in
the same years, at the turn of the 19th and 20th centuries, T. pavo was also occasionally
recorded [96,100], which led to the supposition of a warm climatic phase in those years [21].
No reliable SST data, however, are available to corroborate this hypothesis [33]. The third
and most recent period of rapid warming (2014 to present) saw the arrival of Mycteroperca
rubra in the Ligurian Sea. Scuba divers reported on the recent occurrence of two other
warm-water groupers, namely the white grouper Epinephelus aeneus (Geoffroy Saint-Hilaire
1817) [101] and the dogtooth grouper Epinephelus caninus (Valenciennes 1843) [102]. Not
only fish but also warm-water algae and invertebrates, including exotic species, were seen
to conform to such temporal pattern [27,31,32,36,93]. Even the only alien seagrass to have
penetrated the Mediterranean Sea, Halophila stipulacea (Forsskål) (Ascherson 1867), showed
a similar trend [103–105]: first recorded at Rhodes, SE Aegean Sea [106], it spread only
throughout the eastern Mediterranean until the 1980s–1990s (first rapid warming period) to
eventually enter the Tyrrhenian Sea in the early 2000s (second rapid warming period) [107];
between 2018 and 2022 (third rapid warming period), it reached NE Sardinia [108], W
Corsica [109], and Cannes on the French part of the Ligurian Sea [110]. Unavoidably,
information mostly concerns conspicuous species of direct economic and/or ecological
interest, often overlooking smaller motile invertebrates [111] that spread similarly [93].

The four warm-water fish species dealt with in the present paper tell different stories.
Katsuwonus pelamis is a vagrant circumtropical species, occasionally recorded in the Italian
seas [70,112]; like other coastal pelagic species, it is capable of undergoing rapid yet variable
poleward range shifts [113]. This fish, important from an economical point of view, occurs
above the 15 ◦C winter isotherm worldwide and has been found as far north as 55◦ in
the eastern Atlantic and as far south as 45◦ in the western Indian Ocean [114]. Similar
considerations can be noted about another coastal pelagic warm-water fish, the blue runner
Caranx crysos (Mitchill 1815), recently recorded in the Ligurian Sea [115,116]. This carangid
is another relevant fishery resource widely distributed across the Atlantic Ocean, from
Brazil to Canada in the western part and from Angola to Great Britain in the eastern part,
Mediterranean Sea included [117].

Kyphosus vaigiensis was not known in the Mediterranean before 1998 [58,67] but is now
spreading rapidly throughout the whole basin [50–62,68,69,74,76]. It has been considered
an exotic [59] or possibly cryptogenic species [78], since both autonomous spread and
human-mediated introduction are possible, members of the family Kyphosidae being
known to actively follow vessels [118]; research is pending to clarify its status in the region.
The species was initially thought to be restricted to the Indo-Pacific region but was later
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recognized to be of circumtropical distribution [48]. The present single record off Genoa
was preceded by the record of two specimens off Camogli in 2009 [64], but it cannot be said
at present whether the species is getting established in the Ligurian Sea. K. vaigiensis adds
to the already rich list of non-native fish species that have recently colonized the Ligurian
Sea [119,120]; such a list also includes the blue-spotted cornetfish Fistularia commersonii
(Rüppell, 1838), a Red Sea migrant that possibly reproduces in the Ligurian Sea [36]. After
the end of the rapid warming period that promotes their arrival, exotic species may either
persist indefinitely, even if with highly variable numbers (natural fluctuation model), or
abruptly reduce to virtually disappear (boom and bust model) [121]; the latter possibility
might be chiefly expectable if the species does not reproduce sexually in the newly colonized
area [122]. Should K. vaigiensis become established, the addition of another herbivorous
fish species could severely impact the already impoverished macroalgal vegetation of the
Ligurian Sea [123–125].

The main candidates to become stable components of the Ligurian Sea fish fauna are
the two southerners, Diplodus cervinus and Mycteroperca rubra. The former is regularly
seen in sites of the western Ligurian Sea and is apparently further expanding its range
north-eastward; the latter seems already fully established [98]. D. cervinus is distributed in
the eastern Atlantic coast, from the Bay of Biscay to the Cape Verde Islands, Madeira, and
Canary Islands and from Angola to South Africa; it is also present in the warmer areas of
the Mediterranean Sea [126]. Mycteroperca rubra is distributed along the eastern coast of the
Atlantic Ocean, from Portugal to Angola and in the southern Mediterranean Sea. However,
its abundance is not uniform in the space within its distribution range (i.e., it is recorded as
common in Senegal but considered rare along the North Africa coast [127].

The ongoing modifications of the marine biota will not halt if Ligurian Sea tempera-
tures keep on rising. Seawater warming is a global issue that cannot be addressed at a local
scale but requires international actions. Agreements on climate change date back to the
Kyoto Protocol in 1997, yet little substantial emission abatement has taken place [128,129].
The Paris Agreement in 2015 has been widely hailed as a breakthrough in global climate
cooperation, but its goal of keeping global warming well below 2 ◦C, above preindustrial
levels, is at risk of failure [130,131]. Little public support [132] and opposing economic
interests [133] work against climate policies. Most economic evaluations only consider the
global emission abatement cost but ignore the potential benefits of avoiding the climate
damage [134]. The climate change mitigation policies implemented by some of the major
world economies have proven successful [135], but actions that are not supported by all
countries cannot be very effective [136]. It is imperative to adopt globally sustainable
energy policies, which involve a substantial increase in the use of renewable energy sources
coupled with the implementation of eco-friendly industrial practices. Investing in research
and innovation for low-carbon technologies will play a crucial role in mitigating global
warming [137] and consequent species range shifts.

According to the reports and predictive models of the IPCC (Intergovernmental Panel
on Climate Change), even with a fourfold reduction in carbon dioxide emissions from
current levels, the temperature would continue to rise, with irreversible consequences
for ecosystems [138]. The climate change and biodiversity crises are typically addressed
independently, but they are fundamentally connected [139]. Mediterranean native com-
munities do not seem capable of keeping up with the ongoing pace of warming [140].
Genetic adaptive responses of marine species would probably be slower than the rate at
which sea temperatures are currently rising [141,142]. Rather, human activities, including
fisheries [143], should adapt to warming and the consequent spread of warm-water species.

Local anthropogenic pressure may exacerbate the effects of rising ocean tempera-
tures [144] and non-native species arrival [145]. Regional management practices may help
reduce local threats, thus indirectly making ecosystems more resilient to global change [144].

Marine protected areas (MPAs) are universally considered the most important tool to
manage and conserve marine ecosystems [146]. According to the International Union for
Conservation of Nature (IUCN), MPAs are “clearly defined geographical spaces in the sea,
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recognized, dedicated, and managed, through legal or other effective means, to achieve
the long-term conservation of nature, with associated ecosystem services and cultural
values, and to protect habitats and species from anthropogenic threats, allowing for the
sustainable use of marine resources within their boundaries” [147]. MPAs are typically
designed to manage habitat use and fisheries [148], not to address all the pressures placed
on marine habitats [149]; this notwithstanding, they have proven to be an effective tool
to restore ecosystems [150,151] and to enhance their resilience to climate impacts [152]
and other disturbances [153]. However, the examples in the Ligurian Sea illustrate that
species distribution is changing as a result of climate change, potentially compromising
the efficacy of MPAs as biodiversity conservation tools [154,155]; consequently, many
studies worldwide suggest that MPAs alone cannot buffer the consequences of ocean
warming [156–160]. MPAs are traditionally created under the assumption that the biodiver-
sity they protect is static, which is not the case under a changing climate; as a matter of fact,
climate change is inadequately considered in MPA management plans [161]. Precautionary
anticipation of the future impacts of climate change on marine biodiversity should inform
MPA zoning and regulation [162]. Context-specific management measures should consider
pressures that may be both endogenic (caused within the MPA) and exogenic (with causes
from outside the MPA, such as climate change and non-native species) [163].

The Ligurian Sea hosts the International Whale Sanctuary, created to protect the pelagic
environment, and a number of coastal MPAs established by France, Monaco, and Italy [119].
However, there is little or no coordination among them, and many are small and/or not
adequately enforced [164,165]. Large MPAs and well-coordinated MPA networks may
allow the incorporation of spatial refugia against climate impacts and offer insurance
against local losses [159,161,166,167]. Efficient communication and public participation,
two important side products of MPA management [168], would help grow ocean literacy
and foster environmental awareness within the local community and among tourists.

5. Conclusions

This study illustrated the pattern of seawater warming in the Ligurian Sea, providing
suggestive evidence that such a local pattern mirrors the global one. Linking global to
regional trends is a basic step for understanding the ecological impacts of marine climate
change [169]. In particular, two climatic phases were distinguished: a cool one, ending in
the mid-1980s, and a warm one that is still ongoing.

The biota of the Ligurian Sea has been the object of studies since the second half of the
XVIII century [170–173], but the bulk of the research that led to outlining its biogeography
was carried out in the cool phase [30,174,175]; the main distinguishing characteristics of
the Ligurian Sea were said to be the dearth of thermophilic species and the comparative
abundance of cold-temperate boreal species [29].

In the warm phase, which roughly started in 1985, an ever-growing number of ther-
mophilic species (either exotic or native to the southern sectors of the Mediterranean)
arrived (and are still arriving) in the Ligurian Sea, specifically during the periods of rapid
warming. Some of them were established in the subsequent periods of comparatively
stationary temperatures. Establishment of warm-water species is abruptly wiping out the
first of the two main distinguishing characteristics of the Ligurian Sea biota.

If southern, warm-water species (of whatever origin) settle in the Ligurian Sea, what
happens to the native cool-water species thriving there? Are they at risk of extinction [21]?
Proving that a species no longer exists in a given area is difficult, especially in the ma-
rine environment [176]. Frequent and intense heatwaves associated with the periods
of rapid warming have caused mass mortalities of many Ligurian Sea autochthonous
species [26,177,178], some of which, however, survive in deeper waters [28,179,180]. Pri-
mary productivity alteration [181], together with other dysfunctions [182] and distur-
bances [183], have heavily impacted the Ligurian Sea biota [28]. Climate-related microbial
diseases [184], in particular, have possibly led the iconic fan mussel Pinna nobilis (Lin-
naeus 1758) to extinction [185,186]; the warm-water congeneric Pinna rudis (Linnaeus 1758),
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hitherto never recorded in the Ligurian Sea, is apparently taking its place [187]. There is
evidence that southerners can drive native species to extinction [188]. In the western part
of the Ligurian Sea, warm-water crustacean species have replaced their cold-water coun-
terparts [189,190], while in the Portofino MPA, alien species have depressed β-diversity
through biotic homogenization [191]. Mortalities, rarefactions, replacements, and reduced
diversity are possibly also wiping out the second main distinguishing characteristic of the
Ligurian Sea biota.

Thus, the modifications undergone in recent decades are making the Ligurian Sea
lose its biogeographic peculiarities and acquire a different configuration, partly shaped
by the unprecedented abundance and ubiquity of exotic species [21,36]. While the species
range shifts and biological invasions driven by ocean warming and their ecological impacts
on recipient ecosystems have been amply documented [192–194], the consequences on
the world marine biogeographical regionalization have been little explored. This review
represents an example on a regional sea that might be a model for a global phenomenon. It
is time to reconsider the chorological spectrum of the Ligurian Sea biota. Besides continuing
the surveillance of thermophilic invasive species, future research should assess, in particular,
the status of the populations of endemic and boreal species in the once-cool Ligurian Sea.
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www.mdpi.com/article/10.3390/d16030159/s1, Figure S1: Diplodus cervinus, of 32 cm total length,
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the northeastern Mediterranean, İskenderun Bay, Turkey. Turk. J. Zool. 2019, 43, 644–649.

61. Goren, M.; Galil, B.S.; Gevili, R.; Stern, N. First record of the brassy chub Kyphosus vaigiensis (Quoy & Gaimard, 1825) in the
Eastern Mediterranean (Osteichthyes: Perciformes: Kyphosidae). Zool. Middle East 2016, 62, 319–322.

62. Vella, N.; Vella, A.; Agius Darmanin, S. The first record of the lowfin chub Kyphosus vaigiensis (Quoy & Gaimard, 1825) from Malta.
J. Black Sea/Medit. Environ. 2016, 22, 175–181.

63. Glamuzina, B.; Tutman, P.; Kozul, V.; Glavic, N.; Skaramuca, B. The first recorded occurrence of the mottled grouper, Mycteroperca
rubra (Serranidae), in the southeastern Adriatic Sea. Cybium 2002, 26, 156–158.

64. Relini Orsi, L.; Costa, M.R.; Relini, M. First record of the yellow sea chub Kyphosus incisor in the Mediterranean. Mar. Biodivers.
Rec. 2010, 3, e4. [CrossRef]

65. Cottalorda, J.M.; Dominici, J.M.; Harmelin, J.G.; Harmelin Vivien, M.; Louisy, P.; Francour, P. Étude et Synthèse des Principales
Données Disponibles sur les Espèces de «Mérous» de la Réserve Naturelle de Scandola et de Ses Environs Immédiats; Ecomers: Nice, France,
2012; pp. 1–48.

66. Psomadakis, P.N.; Giustino, S.; Vacchi, M. Mediterranean fish biodiversity: An updated inventory with focus on the Ligurian and
Tyrrhenian seas. Zootaxa 2012, 3263, 1–46. [CrossRef]

67. Azzurro, E.; Peña-Rivas, L.; Lloris, D.; Bariche, M. First documented occurrence of Kyphosus incisor in the Mediterranean Sea. Mar.
Biodivers. Rec. 2013, 6, e98. [CrossRef]

68. Peña-Rivas, L.; Azzurro, E. A new record of Kyphosus incisor for the Mediterranean Sea. Mediterr. Mar. Sci. 2013, 14, 475.
69. Michailidis, N.; Rousou, M. First record of the brassy chub Kyphosus vaigiensis (Quoy & Gaimard, 1825) from Cyprus. Mediterr.

Mar. Sci. 2017, 18, 355–384.
70. Macali, A.; Tiralongo, F. New record of the skipjack tuna, Katsuwonus pelamis (Linnaeus, 1758) in the Mediterranean Sea. Mediterr.

Mar. Sci. 2017, 18, 534–556.
71. Gwilliam, M.P.; Winkler, A.C.; Potts, W.M.; Santos, C.V.; Sauer, W.H.H.; Shaw, P.W.; McKeown, N.J. Integrated genetic and

morphological data support eco-evolutionary divergence of Angolan and South African populations of Diplodus hottentotus.
J. Fish Biol. 2018, 92, 1163–1176. [CrossRef]

72. Pollard, D.A.; Francour, P. Mycteroperca rubra, mottled grouper. In The IUCN Red List of Threatened Species; e.T14054A42691814;
International Union for the Conservation of Nature: London, UK, 2018.

73. Tiralongo, F.; Crocetta, F.; Riginella, E.; Lillo, A.O.; Tondo, E.; Macali, A.; Mancini, E.; Russo, F.; Coco, S.; Paolillo, G.; et al.
Snapshot of rare, exotic and overlooked fish species in the Italian seas: A citizen science survey. J. Sea Res. 2020, 164, 101930.
[CrossRef]

74. Groud, L.L.; Chaoui, L.; Kara, M.H. A new record of the brassy chub, Kyphosus vaigiensis (Actinopterygii: Perciformes: Kyphosi-
dae), from the Mediterranean Sea. Acta Ichthyol. Piscat. 2021, 51, 219–223. [CrossRef]

75. Desiderà, E.; Mazzoldi, C.; Navone, A.; Panzalis, P.; Gervaise, C.; Guidetti, P.; Di Iorio, L. Reproductive behaviours and potentially
associated sounds of the mottled grouper Mycteroperca rubra: Implications for conservation. Diversity 2022, 14, 318. [CrossRef]

76. Fitori, A.; El-Fituri, A.; Golani, D. First record of the brassy chub Kyphosus vaigiensis (Pisces: Kyphosidae) from the Mediterranean
coast of Libya. Acta Adriat. 2022, 63, 123–126. [CrossRef]

77. Puerto, M.A.; Saber, S.; de Urbina, J.M.O.; Gómez-Vives, M.J.; García-Barcelona, S.; Macías, D. Spawning area of the tropical
skipjack tuna, Katsuwonus pelamis (Scombridae), in the western Mediterranean Sea. Sci. Mar. 2022, 86, e051. [CrossRef]

78. Evans, J.; Arndt, E.; Schembri, P.J. Atlantic fishes in the Mediterranean: Using biological traits to assess the origin of newcomer
fishes. Mar. Ecol. Prog. Ser. 2020, 643, 133–143. [CrossRef]

79. Ligas, A.; Sartor, P.; Sbrana, M.; de Ranieri, S. A new record of Kyphosus saltatrix (Pisces: Kyphosidae) along the Italian coasts
(north-western Mediterranean). Mar. Biodivers. Rec. 2011, 4, e6. [CrossRef]

https://doi.org/10.1016/j.ympev.2016.04.037
https://doi.org/10.3989/scimar.04601.08A
https://doi.org/10.1016/j.rsma.2019.100606
https://doi.org/10.1071/IS07057
https://doi.org/10.1017/S1755267209991096
https://doi.org/10.11646/zootaxa.3263.1.1
https://doi.org/10.1017/S1755267213000717
https://doi.org/10.1111/jfb.13582
https://doi.org/10.1016/j.seares.2020.101930
https://doi.org/10.3897/aiep.51.64069
https://doi.org/10.3390/d14050318
https://doi.org/10.32582/aa.63.1.12
https://doi.org/10.3989/scimar.05292.051
https://doi.org/10.3354/meps13353
https://doi.org/10.1017/S1755267210001211


Diversity 2024, 16, 159 15 of 19

80. Elbaraasi, H.; Bograra, O.; Elsilini, O.; Bojwari, J. First record of the Bermuda sea chub, Kyphosus saltatrix (Actinopterygii:
Perciformes: Kyphosidae), in the coastal waters of Libya. Acta Ichthyol. Piscat. 2013, 43, 251–253. [CrossRef]

81. Parravicini, V.; Mangialajo, L.; Mousseau, L.; Peirano, A.; Morri, C.; Montefalcone, M.; Francour, P.; Kulbicki, M.; Bianchi, C.N.
Climate change and warm-water species at the northwestern boundary of the Mediterranean Sea. Mar. Ecol. 2015, 36, 897–909.
[CrossRef]

82. Mercalli, L. Il Clima Che Cambia; BUR Rizzoli: Milan, Italy, 2019; pp. 1–355.
83. Dittberner, G.J. Climatic change: Volcanoes, man-made pollution, and carbon dioxide. IEEE T. Geosci. Elect. 1978, 16, 50–61.

[CrossRef]
84. Fatima, F.; Fatima, N.; Amjad, T.; Anjum, A.; Afzal, T.; Riaz, J.; Razzaq, H. A review on acid rain: An environmental threat. Pure

Appl. Biol. 2021, 10, 301–310. [CrossRef]
85. Grennfelt, P.; Engleryd, A.; Forsius, M.; Hov, Ø.; Rodhe, H.; Cowling, E. Acid rain and air pollution: 50 years of progress in

environmental science and policy. Ambio 2020, 49, 849–864. [CrossRef]
86. Simmons, A.J.; Berrisford, P.; Dee, D.P.; Hersbach, H.; Hirahara, S.; Thépaut, J.N. A reassessment of temperature variations and

trends from global reanalyses and monthly surface climatological datasets. Q. J. R. Meteorol. Soc. 2017, 143, 101–119. [CrossRef]
87. Akasofu, S.I. On the present halting of global warming. Climate 2013, 1, 4–11. [CrossRef]
88. Sippel, S.; Meinshausen, N.; Fischer, E.M.; Székely, E.; Knutti, R. Climate change now detectable from any single day of weather

at global scale. Nat. Clim. Chang. 2020, 10, 35–41. [CrossRef]
89. McHenry, J.; Welch, H.; Lester, S.E.; Saba, V. Projecting marine species range shifts from only temperature can mask climate

vulnerability. Glob. Chang. Biol. 2019, 25, 4208–4221. [CrossRef] [PubMed]
90. Gaylord, B.; Gaines, S.D. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 2000, 155,

769–789. [CrossRef] [PubMed]
91. Wilson, L.J.; Fulton, C.J.; McC Hogg, A.; Joyce, K.E.; Radford, B.T.M.; Fraser, C.I. Climate-driven changes to ocean circulation and

their inferred impacts on marine dispersal patterns. Glob. Ecol. Biogeogr. 2016, 25, 923–939. [CrossRef]
92. Raitsos, D.E.; Beaugrand, G.; Georgopoulos, D.; Zenetos, A.; Pancucci-Papadopoulou, A.M.; Theocharis, A.; Papathanassiou,

E. Global climate change amplifies the entry of tropical species into the Eastern Mediterranean Sea. Limnol. Oceanogr. 2010, 55,
1478–1484. [CrossRef]

93. Azzola, A.; Furfaro, G.; Trainito, E.; Doneddu, M.; Montefalcone, M. Seawater warming favours the northward range expansion
of Lessepsian species in the Mediterranean Sea: The cephalaspidean Lamprohaminoea ovalis. J. Mar. Biol. Assoc. UK 2022, 102,
167–173. [CrossRef]

94. Bennett, S.; Santana-Garcon, J.; Marbà, N.; Jorda, G.; Anton, A.; Apostolaki, E.T.; Cebrian, J.; Geraldi, N.R.; Krause-Jensen, D.;
Lovelock, C.E.; et al. Climate-driven impacts of exotic species on marine ecosystems. Glob. Ecol. Biogeogr. 2021, 30, 1043–1055.
[CrossRef]

95. Guidetti, P.; Bianchi, C.N.; La Mesa, G.; Modena, M.; Morri, C.; Sara, G.; Vacchi, M. Abundance and size structure of Thalassoma
pavo (Pisces: Labridae) in the western Mediterranean Sea: Variability at different spatial scales. J. Mar. Biol. Assoc. UK 2002, 82,
495–500. [CrossRef]

96. Vacchi, M.; Sara, G.; Morri, C.; Modena, M.; La Mesa, G.; Guidetti, P.; Bianchi, C.N. Dynamics of marine populations and climate
change: Lessons from a Mediterranean fish. Porcup. Mar. Nat. Hist. Soc. Newsl. 1999, 3, 13–17.

97. Sara, G.; Bianchi, C.N.; Morri, C. Mating behaviour of the newly-established ornate wrasse Thalassoma pavo (Osteichthyes:
Labridae) in the Ligurian Sea (north-western Mediterranean). J. Mar. Biol. Assoc. UK 2005, 85, 191–196. [CrossRef]

98. Merotto, L.; Pesaro, S. Pesci Foresti: Nuovi Inquilini di un Mare Sempre Più Caldo; Tuss: Genoa, Italy, 2022; pp. 1–208.
99. Tortonese, E. Il «Sarago faraone» del Mediterraneo: Diplodus cervinus (Lowe) (Pisces, Sparidae). Doriana 1965, 4, 155.
100. Tortonese, E. I Pesci e i Cetacei del Mare Ligure; Mario Bozzi: Genoa, Italy, 1965; pp. 1–216.
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