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Abstract: The invasion of alien and invasive plants into the threatened Amathole Forest in Hogsback,
Eastern Cape Province (South Africa) is an emerging priority conservation issue. The objective of this
pilot study was to document and compare the foraging visits of two chacma baboon (Papio ursinus)
troops in their natural and human habitats and their foraging behavioural activities to understand their
potential to disperse ingested alien seeds in Hogsback. We also estimated the number of seeds per
faecal sample collected from the foraging trails of the two troops of baboons, and determined potential
dispersal distances using allometric equations. Since the focal troops used preferred sleeping and
foraging sites, we predicted that these sites would have a high concentration of propagules. We applied
the normalised difference vegetation index (NDVI) to discern possible vegetation cover changes. Overall,
the two chacma baboon troops showed a similar number of daily foraging visits, although they preferred
to forage more in human-modified than natural habitats. Their feeding and moving activities were
significantly greater than other activities recorded during the study. There were significant differences in
the numbers of seeds of six different fruiting plant species: 82.2 ± 13.3% (n = 284) for Acacia mearnsii;
78.9 ± 12.1% (n = 231) for Pinus patula, and 64.0 ± 20.0% (n = 108) for Solanum mauritianum. The two
baboon troops could transport about 445 536 seeds from the six focal fruiting plant species considered
in this study. Baboons’ seed dispersal distances were long at > 5 km per daily foraging activity. The
NVDI vegetation cover analysis (i.e., 1978–2023) shows that the dense vegetation cover expanded by
80.9 ha, while the moderate and sparse vegetation cover collectively decreased by 10.3 ha. Although
the seed dispersal pattern was neither clumped nor displayed any recognisable pattern, against our
prediction, the number of faecal samples containing alien seeds and the observed foraging movement
patterns suggest that chacma baboons disperse alien plant seeds that may establish and facilitate the
deterioration of the natural forest. Further quantitative studies investigating the diversity of the plant
species dispersed, their germination rates after ingestion by baboons, and their seasonal patterns are
required to understand the baboon seed dispersal systems in the Amathole forests of Hogsback.

Keywords: invasion; habitat fragmentation; conservation and seed predation

1. Introduction

It is estimated that more than 95% of tropical seeds are dispersed by animals [1] and
that between 30% and 50% of temperate tree species [2] are dispersed largely by birds [3–5]
and primates [6]. The role of primates in seed dispersal is well documented [6,7]. Globally,
more than 380 primate species feed on fruits and disperse seeds [8,9], and they represent
25–40% of the frugivore biomass in tropical forests [10–12]. For example, baboons are

Diversity 2024, 16, 168. https://doi.org/10.3390/d16030168 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d16030168
https://doi.org/10.3390/d16030168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-4907-9691
https://doi.org/10.3390/d16030168
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d16030168?type=check_update&version=2


Diversity 2024, 16, 168 2 of 15

omnivorous and opportunistic feeders with diverse dietary material, depending on the
nature of the prevailing environment [13,14]. They may eat large quantities of fruit, and
either defecate or spit out large numbers of viable seeds [15–20] while a certain portion
can be destroyed [21]. Owing to their mobility, baboons may contribute to long-distance
seed dispersal [22–24], and thus potentially influence local vegetation population and
community dynamics. Several studies have investigated primate frugivory and seed
dispersal in Africa [6,15,18,20,25–28], but seed dispersal by baboons in South Africa and
its ecological implications for natural vegetation (e.g., indigenous forest) dynamics have
received little attention [23,29,30]. Animal-mediated seed dispersal processes are essential
in maintaining plant communities [4,31,32] as well as the associated ecosystem goods
and services.

Studies have revealed that fruiting invasive alien plants may out-compete indigenous
plant species for pollination and seed dispersal services [33–36]. Thus, recently introduced
fruiting plants may exploit the baboons’ dispersal services to the detriment of the indige-
nous plant species that have co-existed over long periods, thereby creating an ecological
imbalance. Much as alien fruits are important food resources for many native animals,
there is indeed evidence that invasive alien plants disrupt the animal–plant dispersal
mutualisms [34,36,37], thus negatively impacting local vegetation dynamics. However,
undisturbed continental tropical areas with the highest abundance (e.g., 80%) of fleshy
fruits [5] reportedly experience relatively lower alien plant invasion threats than extra-
tropical habitats owing to the absence of empty and colonisable niches [38,39]. For example,
it has been argued that a counter-competition by 65 native plant species bearing fleshy
fruits for vertebrate seed dispersal agents may have prevented the spread of the recognised
19 alien fleshy-fruited species in Montpellier, France [40]. Preliminary field observations
of the black wattle’s (Acacia mearnsii) invasion patterns show that the indigenous forest
fringes pose some natural resistance [38,41], which is, however, continually weakened by
anthropogenic physical disturbance that facilitates colonisation by alien plants. Indeed, the
introduction of alien invasive plants has profoundly altered the state of natural habitats
worldwide [42]. We speculate that, with the increasing number of alien species, the negative
impacts may also increase, since management efforts are also limited.

Habitat fragmentation is another major conservation threat to vertebrate dispersal
mutualisms [43]. The fragmented habitats are impoverished of natural resources and animal
movements are restricted [44]. Mucina and Rutherford [45] indicated that indigenous
forests support a large proportion of South Africa’s biodiversity, although the forest biome
is the smallest and most severely fragmented by anthropogenic developments in South
Africa, particularly in the Eastern Cape Province [46–50]. Therefore, the fragmented state
of the patches of Amathole indigenous forests in the Eastern Cape Province may increase
certain species’ vulnerability to extinction [45,51]. In addition, the invasion of alien and
invasive plant species is an emerging conservation issue, and needs urgent attention, since
invasive plants alter the structure and functionality of the habitat [52,53]. Consequently,
understanding the role of baboons in the seed dispersal of alien and invasive plants is
important for the conservation of the threatened indigenous Amathole Southern Mistbelt
forest fragments in Hogsback in the Eastern Cape Province of South Africa. For example,
alien and invasive plants will potentially pose a threat to indigenous keystone plant species
such as yellowwood (Podocarpus latifolius), white stinkwood (Celtis africana), cape chestnut
(Calodendrum capense), and forest knobwood (Zanthozylum davyi) [54].

While the main study was centred around the human–wildlife conflict phenomenon in
the Hogsback village, the foraging range of the studied chacma baboon troops also covered
human-modified habitats in Hogsback (e.g., orchards and gardens) [55], which are deemed
to be a major source of alien plant propagules [50,56–58]. We therefore predicted that
foraging by the chacma baboons in the human-modified habitat would increase the transfer
of seeds from alien and invasive plants into the natural forest, thereby compounding the
forest’s vulnerability to the reported extinction threat. The objective of this pilot study
was to document and compare the foraging visits of two baboon troops in the natural
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and human-modified habitats and to determine their foraging behavioural activities (i.e.,
feeding and moving) related to the spread of the ingested alien seeds. We also estimated the
number of intact seeds per faecal sample collected from the foraging trails of the two troops
of baboons in Hogsback, and generated seed dispersal distances using allometric equations.
Since the troops used preferred sleeping and foraging sites, we also predicted that these
sites would have a high concentration of propagules. Finally, we applied the normalised
difference vegetation index (NDVI) to discern possible vegetation cover changes owing to
the invasion of alien plants.

2. Material and Methods
2.1. Study Site

The study was conducted in Hogsback (GPS location: 32.5833◦ S, 26.9500◦ E), located
in the Amathole Mountains of the Eastern Cape Province, South Africa (Figure 1). The
area comprises human-modified and natural habitats dominated by indigenous Afromon-
tane forest (i.e., Southern Mistbelt) vegetation, including the alpine grasslands of the
Maputaland–Pondoland–Albany key biodiversity conservation area [45,59], and covers a
total area of 13.78 km2 at an altitude of 1200–1300 m. Hogsback village is situated about 40
km from the town of Alice, and was established in the 19th century as a hill station for the
families of British soldiers [60]. The village has many large gardens and farms that cover
extensive areas [55]. Hogsback residents often favour woody alien plants bearing fruit
and berries, which are visited by the primates, causing the animals to be regarded as pests.
Hogsback also has relatively high levels of human disturbance, as it attracts tourists [45].
Furthermore, Hogsback has been one of the centres of the South African timber industry for
more than 100 years, and the area hosts several commercial pine plantations. Alien timber
plantations cover 1.2% of the total area of South Africa [61,62], comprising 50% pine (pine
plantations including other conifers such as Cedrus, Widdringtonia, and Cupressus species),
43% Eucalyptus (eucalypt, poplar, oak, and other hardwood plantations), and 7% wattle
(commercial plantations of Acacia mearnsii with small areas of other Acacia species) [61,63].
A serious threat is posed by alien tree plantations, where herbicides and fertilisers are used
to the detriment of indigenous species [64] and contaminate the forest ground cover [65,66].
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Ambient temperatures in Hogsback range from below freezing between June and
August to more than 30 ◦C on hot summer days in February [45]. The area receives
an average annual rainfall of 974 mm, with most of the rain falling in summer, often
accompanied by thunderstorms. Temperature and rainfall have a pervasive effect on
animals, not only directly but also indirectly by affecting food production, which, if reduced,
can lead to increased intraspecific and interspecific competition [67]. The availability of
food and water influences home range size, and thus lower levels of food resources in the
local forest mean that the wild animals must be more adventurous to meet their nutritional
needs [67].

2.2. Study Species

The Hogsback baboons have been around for a long time; long enough, according
to [68], at least to have already impacted the distribution of the plants they disperse.
Chacma baboons live in various habitats, and can survive under difficult environmental
conditions [69]. Slater [70] has described baboons as some of the most flexible, opportunistic,
and adaptable animals on earth (Figure 2). They are also among the primate taxa that
exhibit the greatest degree of spatial overlap with humans [71]. Baboons are a highly
mobile species, enhancing their value to ecosystem seed dispersal [24]. Home range, troop
size, and travel patterns are influenced mainly by the distribution of food resources, water
sources, and suitable sleeping sites [14,70,72]. The daily travel distances of chacma baboons
ranges from 1.7 to 11.7 km [73,74].
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Figure 2. Male chacma baboon on the edge of the mountain, Hogsback in Eastern Cape Province,
South Africa (picture: Ken Harvey).

2.3. Data Collection: Foraging Visits, Occurrence of Alien Plant Species, and Faecal Sampling

The two troops of Hogsback baboons were tracked on foot over six months [55]; we
monitored troop sizes, composition, and foraging behaviour, using both scan and focal
animal sampling ([75]; Figure 2). The troops were followed weekly from October 2014 to
May 2015 (i.e., the optimal growing season) from 6:30 a.m. until either the troop was settled
in its sleeping site at the end of the day or tracking was no longer possible. Data collection
was not conducted on days of heavy rain because of poor global positioning system (GPS)
functioning and low visibility. A total of 306 scans were collected for Nola’s troop and
228 scans for Evie’s troop, yielding 15 and 13 days of data, respectively, owing to human–
primates conflict. The shooting of baboons by humans made locating the troops on a daily
basis difficult. The home range sizes of the troops were determined by recording GPS
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data points at 15 min intervals using a handheld device (Garmin eTrex 10, New York, NY,
USA). The type of habitat used by each troop was also recorded (e.g., whether it occupied a
natural habitat or a human-modified habitat), and whether the baboons were feeding or
moving, among other activities. Since the foraging visits frequency of vertebrate frugivores
is proportional to fruit removal and subsequent seed dispersal [76–78], we determined the
number of visits and their distribution at each site (Figure 3).
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Figure 3. Foraging paths of the focal baboon troops. The red colour shows Nola’s troop’s range,
and the blue colour shows Evie’s troop’s range. The orange polygon shows the overlap between the
foraging home ranges of the two troops.

To determine which alien plant species are potentially dispersed by the chacma ba-
boons in Hogback, we also recorded the fruiting alien plant species in their preferred
foraging sites for both troops, which was the area in which their home ranges overlapped.
We walked transects of varying lengths through the major foraging area, and recorded each
fruiting plant species at 10 m intervals [79]. Because of limited accessibility in the Hogs-
back landscape owing to the fencing of private properties, a limited number of transects
were sampled.

To assess seed dispersal patterns, faecal samples containing seeds were collected in
the most preferred sleeping and foraging sites [80,81]. We also followed the baboon troops’
paths to and from the foraging sites, as documented by Pamla [5]. Any faecal samples
encountered were processed on the spot (see Figure 4 below). Each faecal sample, either
fresh or dry, was carefully crushed with a wooden rod to expose the components of the
ingested material. This allowed for the separation of masticated seeds (identified by their
coats) from those that were intact. Only intact seeds were counted and recorded for each
faecal sample; the intact seed load represented a conglomerate of different plant species
consumed during foraging.

To determine potential seed dispersal distances, we used allometric (i.e., as a function
of animal body mass [BM]) mechanistic models to predict gut retention time (GRT) in hours
for ingested seeds, and movement capacity (MC) in kilometres (km) for potential dispersal
range of the chacma baboons that might influence plant recruitment processes.
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containing seeds processed during foraging.

Since the selected mammals were non-ruminant species (hindgut fermenters), we esti-
mated the GRT (in hours), using the allometric equation from Steuer et al. [82], as follows:

GRT = 31.0 {BM}0.01 (31.0 and 0.01 are allometric constants) (1)

Although the MC is not consistent because of seasonality, age and sexual dimorphism,
dietary type, body mass, and local availability of survival resources [83–85], the MC (in
km) was estimated using appropriate equations that were derived and modified from Du
Toit [86]:

MC = 0.024 {BM}0.18 (0.024 and 0.18 are allometric constants) (2)

To differentiate the land use in the habitats that the two troops targeted for their
foraging movements, we applied NDVI measurements to determine the vegetation types
and level of environmental disturbance in such patches. High-resolution images were
generated for the area of interest—the study site—over 45 years (1978–2023); the year
1978 was used as a baseline. The pre-processed satellite images—Landsat Collection 2
Level-2 imagery for Landsat 4/5 TM (1978), Landsat 7 ETM (2002), and Landsat 8–9
OLI/TIRS (2023)—of the study area (path 171/row 80) were acquired using the United
States Geological Survey (USGS) Earth Explorer (http://earthexplorer.usgs.gov). The
USGS platform provides ready-to-use surface reflectance Landsat data processed by the
Earth Resources Observation and Science (EROS) Science Processing Architecture’s (ESPA)

http://earthexplorer.usgs.gov
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on-demand interface, the Landsat Surface Reflectance Code (LaSRC) [87]. Extra care was
taken in selecting the images in the same season/month–date range (February to March,
i.e., growing season) to increase the accuracy of the research results and the vegetation
reflection data with a cloud cover of less than 10%. The shapefile was imported to ArcGIS
Pro software. To scale the data to reflectance, the data were processed using Modelbuilder
and iterators raster tools in ArcGIS Pro, and each raster image was multiplied by the scaling
factor of 0.0000275 + −0.2 using the raster calculator.

The NDVI image set was used to classify the Landsat satellite pattern and to determine
the change in the vegetation cover distribution of the study area. The NDVI remote sensing
method displays the health and greenness (relative biomass) of the vegetation and measures
the state of the plants’ health based on the plants’ reflection of light at certain frequencies.
The band combination of channels that are used to obtain coverage of the vegetation indices’
characteristics was selected. The NDVI is calculated as the ratio of the difference between
the red and near-infrared signal of the electrometric spectrum divided by the sum of both,
which refers to the spectral bands 4 and 5. The NDVI value ranges between −1.0 and
+1.0, and reflects the health of plants (greens). An NDVI value of 0.6 to 1 represents dense
vegetation cover, 0.4 to 0.6 represents moderate vegetation cover, 0.2 to 0.4 represents sparse
vegetation cover, 0.1 to 0.2 shows grass cover with bare space, and −1 to 0.1 represents no
vegetation, i.e., water cover [88].

3. Statistical Analysis

We derived the numbers of foraging visits of the two troops from the total observations
of the troops in the field, as seen either in the natural or the human-modified habitat. A
count data statistical model, the generalised linear model (GLM) with Poisson errors, was
used to compare the overall number of foraging visits to human-modified and natural
habitats by the two baboon troops. All statistical analyses were conducted in SPSS v.
28 (IBM, New York, NY, USA). The number of foraging visits in each environment was
fitted as the response variable, while the troop names and types of habitats were the
categorical variables.

Another GLM was run to compare the frequency of observations in which the baboon
troops were seen feeding and moving. The predictor variables entailed baboon activities
(i.e., feeding and moving) while their frequencies were fitted as the response variable.
Because of high data variance, negative binomial errors were used.

For the six dominant fruiting plant species, we compared the number of intact seeds
obtained from the faecal samples using GLM. The plant species were fitted as the predictor
variables, while the numbers of seeds were the response variables.

The potential seed dispersal distances for the baboons were determined using allom-
etry equations (after [78]) in combination with the actual distances measured from the
sleeping sites of each baboon troop to the furthest location reached during foraging. The
average distance was calculated from the above two values.

The number of seeds likely to be transported by the baboons was estimated as a
product of the average seed load per faecal sample, the total number of adult baboons, and
the number of monitoring days in which the troops foraged at the site during the study.

To analyse the NDVI trends during the study period (1978–2023), different proportions
of vegetation cover class in hectares and converted to percentages were used to quantify
the potential vegetation cover change in the study site.

4. Results

The two troops of baboons showed significantly a greater foraging frequency in human-
modified than in natural habitats (Wald χ2 = 70.0; df = 1; p < 0.001), and the pattern was
similar for both of the baboon troops: Evie (Wald χ2 = 19.7; df = 1; p < 0.0001; Nola (Wald
χ2 = 49.0; df = 1; p < 0.0001). Overall, the two chacma baboon troops were not significantly
different in their number of daily foraging visits (Wald χ2 = 0.27; df = 1; p = 0.603; Figure 5).
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Figure 5. Daily mean foraging visits frequency of Evie’s and Nola’s troops in the human-modified
and natural habitats. The standard error is represented by the bars.

Both baboon troops displayed a significantly greater frequency of feeding activity
(Person χ2 = 29.6; df = 1; p < 0.0001; 330 out of 534) and moving activity than other activities
recorded during the study (Person χ2 = 287.7; df = 1; p < 0.0001; 474 out of 534).

Overall, eighteen fruiting shrubs/trees were observed in the study area. There were
significant differences in the numbers of intact seeds among the six different fruiting
plant species recorded in the areas visited by the baboon troops (Wald χ2 = 217.4; df = 5;
p < 0.0001; Table 1). They entailed five alien shrubs and one indigenous shrub species.
The estimated number of seeds of fruiting species exploited by the baboons in Hogsback
were 82.2 ± 13.3% (n = 284) for Acacia mearnsii; 78.9 ± 12.1% (n = 231) for Pinus patula, and
64.0 ± 20.0% (n = 108) for Solanum mauritianum.

Table 1. Significant differences between the number of intact seeds of fruiting alien plants prefer-
entially consumed by the chacma baboons in Hogsback shown by the generalised linear models
(GLMs). Superscript “a” represents a parameter that was selected as a reference for comparison of
the significance. *** native plant species.

Plant Species Hypothesis Test

χ2 Df p-Value

Overall test model 217.328 5 0.000

B Std. Error

Rubus cuneifolius −0.920 0.1089 71.358 1 0.000
Cotoneaster pannosus −1.008 0.1124 80.436 1 0.000

Sersia trilobata *** −1.224 0.1220 100.808 1 0.000
Pine patula −0.041 0.0831 0.248 1 0.618

Solanum mauratianum −0.248 0.0878 7.976 1 0.005
Acacia mearnsii 0 a - - - -

Based on the total troop size and the number of observation days, it was estimated
that the two baboon troops could transport 445,536 seeds of the six focal fruiting plant
species documented during the study period.

It was also estimated that the baboons could disperse seeds over an average distance
>5 km for each daily foraging activity (Table 2).
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Table 2. Potential seed dispersal distances for chacma baboons in Hogsback: Predicted distances
were generated using allometry equations, while actual distances were measured over the foraging
trails from sleeping sites to the furthest location reached by each troop during foraging.

Troop Predicted Distance in km [78] Actual Distance (km) Average (km)

Evie 4.4 7.14 5.8
Nola 4.4 6.33 5.4

The overall NDVI shows that the change in vegetation cover is the result of bush
encroachment in the study areas between 1978 and 2023. The predominant vegetation in
the forest biome’s ‘dense vegetation cover’ has expanded by 80.9 ha over 45 years (88.8 to
97.4%; Figure 6). Conversely, the moderate vegetation and sparse vegetation covers have
collectively decreased by 10.3 ha (Figure 6).
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5. Discussion

The baboons’ foraging preference for domestic gardens creates human–wildlife conflict
and accounts for a significant decline in species that were once abundant [55]. In this study,
we show that chacma baboons also have the potential to spread the ingested seeds of
fleshy-fruited alien and invasive plant species consumed in domestic gardens, although
alien plant resources are important food supplements [76]. This may deprive indigenous
plant species of reproductive ecological services (i.e., pollination and seed dispersal [50])
that are essential for plant recruitment and the maintenance of the threatened Amathole
forest in Hogsback, Eastern Cape Province.

Because the foraging visits frequencies of vertebrates on fruit resources influence seed
dispersal effectiveness [76,77], the significantly high foraging preference of chacma baboons
towards the human-modified habitats of Hogsback supports the prediction that baboons
may transport the seeds of invasive alien plant species. The orchards and gardens are
reportedly a major source of alien plant propagules [55–57,89,90], and are indeed a major
resource for native animals where indigenous forests have been cleared [76]. In the absence
of the rare and large indigenous fruits preferred by large mammal frugivores [57,91–94], the
baboons may opt for the large fruit crops of the alien plant species in gardens [35], which
deprives the natural vegetation of seed dispersal services. This is concerning, since invasive
plant species are known to alter habitat functionality and damage biodiversity [52,53].

Primates (e.g., Papio species) are known to be effective dispersal vectors, transporting
huge seed loads in Africa [23,94–96]. Our consistent finding that the chacma baboon troops
may transport many intact seeds from the six fruiting plant species is likely a result of
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the prevalence of these species in the human-modified habitat of Hogsback and on forest
edges where they become established over time. We argue that baboons might effectively
disperse seeds from the fleshy-fruited S. mauritianum and Rubus cuneifolius in Hogsback, as
suggested by Kunz and Linsenmair [21], since they often eat the ripe and colourful fruits in
the forest [94,97,98]. Lotter et al. [99] also associated the infestation of the invasive Opuntia
stricta in Kruger National Park, South Africa with seed dispersal due to the foraging of
chacma baboons. In contrast, chacma baboons are partly seed predators that depend on
the nature of the fruits [14,25,96], and Kunz and Linsenmair [21] reported that predation
effects are suffered by dry seeds while fleshy fruits with smaller seeds can be effectively
dispersed. Since the foraging site was mainly dominated by invasive A. mernsii and P.
patula (i.e., having dry seeds), we suggest that significant proportions of their seeds were
likely to be masticated by the baboons, which could suppress their dispersal as soft-coated
seeds and their establishment, leading to the further invasion of hard-coated seeds. In
addition, the asynchronous fruiting pattern of S. mauritianum, which concurrently keeps
many unripe and immature and a few ripe fruits/berries in the infructescence for foraging
frugivores [34,58], can reduce seed dispersal effectiveness, since immature seeds will not
geminate [58,98,100]. A similar phenomenon has been previously reported for baboons
feeding on the fruits of the Baobab (Adansonia digitata) in South Africa [99].

It has been proposed that large mammal vectors are likely to produce clumped disper-
sal patterns [81] because of their constant daily foraging movement patterns in combination
with the use of permanent sleeping sites in a particular landscape [101]. We argue that an ab-
sence of clumped seed dispersal, against the study’s prediction and the report by Kunz [28],
is likely to be physiologically driven by laxative alkaloids in the foliage and the fruits of
alien plant species, especially S. mauritianum [102–104]. This finding was unexpected, since,
during the study, the baboons spent 38% of their time eating and because the fruit resources
were abundant. It seems that the baboons intermittently defecate as they traverse the
habitat. Also, we speculate that the rugged terrain of the study site allows floods to wash
away some dispersed/defecated seeds during the rainy season, and thus conceal clear
patterns, although this may provide secondary dispersal services. Nevertheless, the seeds
that are retained in the gut are likely dispersed over long distances (>5 km), and this is
known to facilitate the establishment of new alien plant populations [105]. In combination
with biophysical disturbance and the arrival of new alien plant propagules [106], there is a
high possibility of alien plant invasion occurring in the Amathole forest, and infiltration
by alien and invasive plant species may result in the deterioration of forest resilience. We
consistently observed an increase in woody vegetation cover and a decrease in sparse
vegetation spatial coverages, which supports our proposal that new-recruiting alien plant
species are likely to drive change in the forest’s integrity. In addition, the observed change
may be expedited by the local timber plantations that have transformed the native for-
est’s ecological supporting vegetation units that reportedly bolster the resilience of critical
biodiversity areas in South Africa [88,107].

In conclusion, we have shown that the foraging of chacma baboons in domestic
gardens encourages the spread of alien and invasive plants’ seeds in Hogback, and that
this is a conservation threat to the protection of the Amathole forest in South Africa. We
recommend eradicating the alien and invasive plants and rehabilitating the areas that will
be cleared to allow for the regrowth of indigenous species. Alternatively, baboons in the
African savanna and forest habitats masticate dry seeds [93,97,108,109], and the foraging of
partially ripe fruits of S. mauritianum may result in the dispersal of immature seeds that
do not germinate, which would thwart the effective seed dispersal. Since fruit resource
distribution influences foraging movement patterns [109], we suggest that the observed
foraging movement patterns of the chacma baboons during this study were skewed by the
availability of food resources in the human-modified habitat, which may greatly reduce
seed dispersal services for indigenous plants in the threatened Amathole forest. While the
contribution of the baboons to the seed dispersal of alien and invasive plants was not known
in Hogsback, we acknowledge that the prevalence of the invasive A. mernsii, P. patula, and
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S. mauritianum in the local habitat could be partly driven by the bird-mediated dispersal
of highly viable seeds (i.e., greater than 80% [110–113]). According to the South African
National Regulations for Biological Invasions (the National Environmental Management:
Biodiversity Act [NEM:BA, Act 10 of 2004] and the Alien and Invasive Species Regulation
of 2014 revised in 2020), S. mauritianum and R. cuneifolius are habitat transformers, and thus
must be controlled and, where possible, removed and destroyed; trade or planting is also
strictly prohibited. Lesica and Shelly [113] reported that the continuous removal of the
invasive Arabis fecunda improved the survival and population performance of the native
fruiting species in the northwestern USA. Further, quantitative studies investigating the
diversity of the plant species dispersed, their germination rates after ingestion by baboons,
and their seasonal patterns are required to understand the baboon seed dispersal systems
in the Amathole forests of Hogsback.
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