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Abstract: The Mediterranean Sea, as one of the world’s most climate-sensitive regions, faces signif-
icant environmental changes due to rising temperatures. Zooplankton communities, particularly
copepods, play a vital role in marine ecosystems, yet their distribution dynamics remain poorly
understood, especially in the Ligurian Sea. Leveraging open-source software and environmental data,
this study adapted a methodology to model copepod distributions from 1985 to 1986 in the Portofino
Promontory ecosystem using the Random Forest machine learning algorithm to produce the first
abundance and distribution maps of the area. Five copepod genera were studied across different
trophic guilds, revealing habitat preferences and ecological fluctuations throughout the seasons.
The assessment of model accuracy through symmetric mean absolute percentage error (sMAPE)
highlighted the variability in copepod dynamics influenced by environmental factors. While certain
genera exhibited higher predictive accuracy during specific seasons, others posed challenges due
to ecological complexities. This study underscores the importance of species-specific responses and
environmental variability in predictive modeling. Moreover, this study represents the first attempt
to model copepod distribution in the Ligurian Sea, shedding light on their ecological niches and
historical spatial dynamics. The study adhered to FAIR principles, repurposing historical data to
generate three-dimensional predictive maps, enhancing our understanding of copepod biodiversity.
Future studies will focus on developing abundance distribution models using machine learning and
artificial intelligence to predict copepod standing crop in the Ligurian Sea with greater precision.
This integrated approach advances knowledge of copepod ecology in the Mediterranean and sets
a precedent for integrating historical data with contemporary methodologies to elucidate marine
ecosystem dynamics.

Keywords: machine learning; copepods; species distribution models (SDMs); Ligurian Sea; open
source; FAIR data

1. Introduction

Climate change stands as an escalating and pervasive worldwide threat to biodiversity
and ecosystems’ functioning [1], posing an intricate intergovernmental challenge, across
various domains, in terms of conservation, management and economical aspects [2]. Ma-
jor drivers, such as ocean warming and acidification, among others, exert a profound
influence on global biodiversity, causing significant alterations in the dynamics of marine
communities [3–9]. Intrinsic characteristics of marine organisms, such as physiological
tolerance [10–13], larval ecology [14,15], ecological plasticity and rapid adaptation to en-
vironmental variations [11,16–18], are expected to be affect in response to these drivers.
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Consequential ecological effects are also expected to vary across temporal and spatial scales
due to extrinsic factors, such as the rate of environmental change [19,20], the magnitude of
environmental variability [21] and the differences in environmental conditions between
regions and habitats [22].

The semi-enclosed marine region of Mediterranean Sea, the second largest marine
biodiversity hotspot globally [23], is projected to be highly affected by the altering climate
conditions at a faster pace than the global average [24]. Although this region represents
merely 0.32% of the total ocean volume, its distinctive geomorphological history has re-
sulted in an exceptionally rich biodiversity, encompassing 7–10% of all identified marine
species, including a significant proportion of endemic taxa [23,25]. The Mediterranean
basin has experienced a significant rise in sea surface temperature (SST) since the beginning
of satellite records in 1982, exhibiting a warming trend in the period from 1982 to 2019 at a
rate of 0.38 ◦C per decade [26]. This rate is over three times greater than the global average
of 0.11 ◦C per decade [27]. This presents specific concern and attention to the Mediterranean
Sea due to the numerous instances of heat waves [28] triggered by the constant tempera-
ture rise. Currently, the average temperature stands at 1.2 ± 0.23 ◦C (mean ± standard
deviation of absolute annual anomalies) higher than the earliest available satellite data
(corresponding to the years 1982–1986), indicating a substantial temperature increase [26].
This poses significant risks to the diverse marine life in the region, with notable impacts
on biodiversity (e.g., [26,28–30]). To efficiently tackle any of these challenges, increasing
the resolution of observational and monitoring capacities over relevant spatial, temporal
and taxonomic scales is essential. Pelagic ecosystems are the first responder to changing
conditions, exhibiting shifts in species distribution across trophic levels [31–36]. Envi-
ronmental changes, such as temperature, salinity and chlorophyll concentration, impact
marine life from plankton to mammals. In pelagic ecosystems, zooplankton, particularly
copepods, play a crucial role in connecting primary producers to higher-level consumers in
marine food webs [37]. The distribution of zooplankton is intricately regulated by various
factors, encompassing physical and chemical constraints [38,39]. Additionally, biological
interactions, including predator–prey dynamics, symbiosis, parasitism and commensalism,
further influence their distribution [40]. Due to the short generation times and fecundity of
zooplankton, their populations can rapidly respond (<1 year) to changes in the marine en-
vironment [41], of course including those of anthropogenic origin [42]. As a result, marine
zooplankton dynamics represent an optimal candidate to inform marine policy and ecosys-
tem management regarding environmental changes [43]. Despite the recognized critical
role of zooplankton, challenges persist in assessing their response to climate change, and
data accessibility remains a hurdle to gaining a comprehensive dynamic understanding.

Earlier investigations into changes in the planktonic community around the Portofino
Promontory in the Ligurian Sea were conducted by Morabito et al. (2018) [44], and a
more recent work has been carried out by Vassallo et al. (2021) [45] within the Long-Term
Ecological Research (LTER Italia) framework. These studies, with a primary focus on
copepods—small crustaceans that typically constitute 70% to 90% of mesozooplankton
abundance—aimed to explore the dynamics of this vital ecological component. This study
area presents an intricate circulation pattern influenced by wind direction and intensity,
as well as the morphological features characterized by the interference of the promontory
itself and the narrow continental shelf along the Ligurian coastline.

In this work, we employ prediction-based inferences using a machine learning and
artificial intelligence (AI) methods to produce species distribution models (SDMs) [46,47]
of the grey literature data from zooplanktonic Fabiano et al. (1988) [48] marine survey of
1985–1986. The digitalization of the historic grey literature not only meets the principles of
FAIR data (findability, accessibility, interoperability and reusability) [49] but also makes
vital information available to the public. In this context, this work allows us to shift back
the zooplankton community information timeline to 20 years from first available data,
presenting an important reference baseline for comparison before the trend of increasing
temperature was first identified.
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2. Materials and Methods
2.1. Study Area

The predominant large-scale characteristic of water dynamics in the Ligurian Sea is
a cyclonic circulation that remains active throughout the year. This circulation is notably
more vigorous during the winter months compared to summer ones, and it affects both
deep and surface layers [50]. While climatic influences can lead to fluctuations in the
intensity of fluxes, the overall pattern of this circulation is considered to be relatively
constant [51]. This study focuses on the area surrounding the Portofino Promontory, a
blunt headland with an abrupt, almost square shape (Figure 1) rising from the sea with
very steep slopes. The Portofino Promontory has a very complex circulation due to both
meteo-climatic (wind direction and intensity) and hydrodynamic (dominant circulation)
forcing, as well as to the interference of the promontory itself together with the narrow
continental shelf [52–55]. Current historical series show that the current off Sestri Levante
in winter has a northwest direction (Ligurian Provençal current), consistent at all depths,
while on the other side of the promontory, it has the opposite direction (southeast) with
some variation in the vertical component. A recirculation or anticyclonic vortex near
Camogli is triggered by the prevailing southeast current, as confirmed by historical records
and numerical models [52]. Occasional current reversals off Camogli may occur due to
local winds. Finally, off the coast of Bogliasco or off 15 km downstream of the promontory,
the current again has a northwest direction and consistency at all depths, as confirmed
using numerical models [52]. Along the western cape of the Promontory, the primary
east-to-west stream can intensify and move away from the promontory under specific wind
conditions. Meanwhile, winds originating from the south-southwest have the potential
to strengthen coastal circulation within the Gulf of Tigullio. The Gulf receives inputs
from several watercourses, resulting in a pronounced state of oligotrophy. This stream
serves as a substantial source of freshwater, altering the physical, chemical and biological
dynamics of the marine environment, impacting phytoplankton dynamics. In particular,
the Entella River mouth, situated approximately 9 km to the east of the promontory,
coupled with substantial anthropogenic influences (such as beach nourishment, excessive
summer tourism, maritime activities and urban and industrial development), contributes
significantly to sediment accumulation and heightened water turbidity, particularly on the
eastern side of the promontory [56]. Since 1998, the promontory and its surroundings have
been declared a Marine Protected Area (MPA), with the intent to preserve the coastal and
marine ecosystem (the MPA’s zonation is showed in Figure 1).

2.2. Data Elaboration and Modeling

In this study, the data employed were sourced from the grey literature, specifically
digitized from the technical report authored by Fabiano et al. in 1988 [48]. The technical
report, identified as No. 25 within the series of “Technical reports of the chair of Hydrobiol-
ogy and Fisheries”, was published by the Institute of Marine Environmental Sciences at the
University of Genoa. Following Italian legislation, four copies are deposited at the Prefec-
ture of Genoa and, therefore, readily available upon request (digitized copy is available
in Supplementary Materials File S5). Original data collection took place on the Portofino
Promontory over a year, from March 1985 to March 1986, with sampling occurring twice a
month at fortnightly intervals. Sampling involved the use of paired “Bongo” nets, each
featuring a 20 cm diameter mouth and 200 µm mesh, equipped with a General Oceanics Inc.
model 2030 flow meter positioned at the net’s center. The nets were towed to the surface
for a duration of 20 min in two different locations nominally Chiavari A (44◦15′1′′ N–
9◦13′6′′ E), located on the 200 m bathymetry, and Chiavari D (44◦18′2′′ N–9◦18′2′′ E),
located on the 30 m bathymetry. Of the two collected samples, one was preserved in
4% formalin and utilized for both qualitative and quantitative analyses of zooplanktonic
organisms. In the analysis, plankton samples were standardized to a constant volume
of 500 mL. Following a homogenization procedure, subsamples of known volume were
taken to taxonomically define no fewer than one hundred copepods, except in instances
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from August, September and October, where the count concluded at fifty copepods due
to their scarcity. The resulting copepod abundance tables, related to individual per cubic
meter (Ind/m3), from this study were digitalized and complemented with environmental
data directly extracted from the technical report, when available (e.g., temperature, salinity,
chlorophyll). The highest taxonomic resolution achieved in Fabiano et al. (1988) enables the
differentiation of organisms in the analyzed samples up to the genus level. However, the
absence of physical specimens stored in a permanent collection restricts further taxonomic
investigations at the species level and presupposes the possibility of errors associated
with misidentifications. Consequently, all analyses in this paper focused on modeling the
distribution of copepods at the genus level, considering them to be assemblages of species.
Additional proxies to increase the resolution and accuracy of the model were retrieved from
the Copernicus Marine Service (https://marine.copernicus.eu/, accessed on 23 January
2024), NASA Earth Observations (https://neo.gsfc.nasa.gov/, accessed on 23 January
2024) and General Bathymetric Chart of the Oceans (https://www.gebco.net/, accessed
on 23 January 2024) (See Supplementary Files S2–S4 for details). In our investigation, we
employed the methodology proposed in Grillo et al. (2022) [57] with modifications. We
utilized open-source software including QGIS [58], R [59] and Ocean Data View (ODV) [60]
data exploration, visualization, mapping and modeling, incorporating basemaps where
necessary. Geographic data were processed and displayed using the WGS84 EPSG:4326 pro-
jection system, facilitating latitude- and longitude-based analysis. To extract environmental
descriptor values from the Copernicus Marine Service product layers, we overlaid presence
data points onto the attribute table using the “extract multiple values in points” function
within the GIS environment. The resulting table served as the basis for modeling copepod
distribution using machine learning techniques, with subsequent representation in QGIS.
For predictive modeling, we constructed a 1 km point lattice to generate a prediction grid,
which was then evaluated using various machine learning algorithms. The environmental
descriptors employed were sourced from open-access outlets and detailed in the online
resource “Environmental descriptors” (see Appendix B). A Random Forest predictive dis-
tribution model was developed in R, drawing comparisons with similar studies such as
those by Hardy [61] for Alaska, Meissner [62] for Iceland and Huettmann and Schmid [63]
for Antarctica. For the analysis, a regression method was employed synergically with
the ‘rpart’ (4.3.2 version) (https://cran.r-project.org/web/packages/rpart/index.html,
accessed on 30 January 2024), ‘randomForest’ (4.3.2 version) (https://cran.r-project.org/
web/packages/randomForest/index.html, accessed on 30 January 2024) and ‘tidyverse’
(4.3.2 version) (https://cran.r-project.org/web/packages/tidyverse/index.html, accessed
on 30 January 2024) packages. We employed the original scripts developed by Guisan,
Thuiller and Zimmermann (2017) [64] for predictive distribution analysis, tailoring them
to accommodate the specific data matrix utilized in our study. Using the inverse distance
weighting (IDW) tool within QGIS, we generated 24 predictive surfaces illustrating the
relative abundance values (RA) of selected zooplankton genera across the entire study
area, extending beyond the lattice point locations. This process facilitated the creation
of a predictive surface grid. Subsequently, the predicted data were imported into ODV
software to derive relative predicted abundance profiles for each copepod genus from the
surface to the bottom. We focused on a specific section by selecting areas near the Portofino
Promontory. By utilizing the gridded field function and DIVA gridding, we extrapolated
values for the entire water column based on longitude. Initially, we crafted comprehensive
distribution maps for copepods across the four distinct seasons using the complete data
matrix. Our subsequent efforts were concentrated on the five most abundant genera of
copepods, each representing a distinct trophic strategy (refer to Table 1 for details): Acartia
spp., Oithona spp., Centropages spp., Temora spp. and Coryaceus spp.

https://marine.copernicus.eu/
https://neo.gsfc.nasa.gov/
https://www.gebco.net/
https://cran.r-project.org/web/packages/rpart/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/tidyverse/index.html
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Table 1. Genera analyzed in the present work. In this work, we analyzed the distribution of copepods
at the genus level, considering them to be assemblages of species. AphiaID was from the World
Register of Marine Species (https://www.marinespecies.org, accessed on 21 February 2024).

Family Genus Worms Aphia ID Trophic Guilds

Acartiidae Acartia spp. Dana, 1846 104108 Filter feeder

Oithonidae Oithona spp. Baird, 1843 106485 Ambush feeder

Centropagidae Centropages spp. Krøyer, 1849 104081 Suspension feeder

Temoridae Temora spp. Baird, 1850 104241 Filter feeder/Ambush
feeder

Corycaeidae Corycaceus spp. Dana, 1845 128634 Predator

We aimed to create detailed maps for individual seasons by focusing on these five
genera. This was achieved by using the above algorithms and deriving the relative
abundance (RA) for the lattice to identify the most suitable habitats for each copepod
genus. We extracted the RA values for the analyzed points to assess how well the
predictions aligned with the independent field data across the data. The accuracy of
the selected models was assessed using the symmetric mean absolute percentage er-
ror (sMAPE), which measured the forecast accuracy based on percentage errors (see
Table 2) [65–67]. sMAPE index was obtained from the ‘Metrics’ package (4.3.2 version)
(https://cran.r-project.org/web/packages/Metrics/index.html, accessed on 30 January
2024).

https://www.marinespecies.org
https://cran.r-project.org/web/packages/Metrics/index.html
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Table 2. Genera list with sMAPE index accuracy values for each season. Red (very poor), orange
(poor), yellow (good) and green (very good). sMAPE classes were modeled based on Chicco, Warrens
and Jurman (2021).

sMAPE Index

Season Acartia spp. Centropages spp. Oithona spp. Temora spp. Coryceus spp.
Autumn 1.3698 1.0204 0.7357 1.0047 0.5111
Winter 1.0429 0.7985 0.4567 1.3779 0.8969
Spring 0.4105 0.9100 0.5558 1.8411 1.8448

Summer 0.9639 1.4982 1.0322 1.9648 0.8390

3. Results

We were able to compile, for the first time, a value-added data cube, explicit in time
and space, consisting of copepod genera and environmental predictors to be used for model
predictions of copepods for the Portofino Promontory area. Our field data consist of five
genera with sample sizes, relative sMAPEs (Table 2) and RA values (Appendix A). Most
of the sMAPEs obtained showed 70% higher accuracy in the season period investigated,
which means that the analyzed models performed well with moderate accuracy.

The symmetric mean absolute percentage error (sMAPE) values present an insightful
assessment of the predictive accuracy of copepod distribution models across different
seasons and genera within the Portofino Promontory ecosystem. Each season reveals
distinct patterns of predictive performance across the copepod genera, offering valuable
insights into the underlying ecological dynamics.

In autumn, Acartia spp. demonstrates a relatively moderate sMAPE value of 1.3698,
indicating a reasonable level of accuracy in predicting its abundance. Similarly, Centropages
spp. and Temora spp. exhibit sMAPE values of 1.0204 and 1.0047, respectively, suggesting
a comparable predictive performance. Oithona spp. follows suit with a relatively lower
sMAPE of 0.7357, reflecting a closer alignment between the predicted and observed abun-
dances. Notably, Coryceus spp. stands out with a notably low sMAPE value of 0.5111,
indicating a high level of predictive accuracy for this species in autumn.

Moving into winter, the predictive performances of the models vary across genera.
Acartia spp. and Centropages spp. display relatively lower sMAPE values of 1.0429 and
0.7985, respectively, suggesting a reasonable degree of accuracy in predicting their abun-
dance. Oithona spp. shows a lower sMAPE value of 0.4567, indicating a closer alignment
between the predicted and observed abundances compared to other genera. However,
Temora spp. and Coryceus spp. exhibit higher sMAPE values of 1.3779 and 0.8969, respec-
tively, suggesting greater discrepancies in the predictive models for these species during
winter.

Spring unveils further nuances in predictive accuracy, with Acartia spp. displaying
a notably low sMAPE value of 0.4105, indicating a high level of accuracy in predicting
its abundance during this season. Centropages spp. follows suit with a moderate sMAPE
value of 0.9100, reflecting a relatively consistent predictive performance across seasons.
Oithona spp. and Temora spp., however, exhibit higher sMAPE values of 0.5558 and 1.8411,
respectively, suggesting challenges in accurately predicting their abundance during spring.
Coryceus spp. presents the highest sMAPE value of 1.8448, indicating significant discrepan-
cies between the predicted and observed abundances.

Summer marks a period of increased complexity in copepod dynamics, as reflected
in the sMAPE values across genera. Acartia spp. and Oithona spp. display moderate
sMAPE values of 0.9639 and 1.0322, respectively, indicating relatively accurate predictions
for these species. Conversely, Centropages spp. and Temora spp. exhibit higher sMAPE
values of 1.4982 and 1.9648, respectively, suggesting challenges in accurately capturing
their abundance during summer. Coryceus spp. stands out with a relatively lower sMAPE
value of 0.8390, indicating a comparatively higher level of predictive accuracy for this
species in summer.



Diversity 2024, 16, 189 7 of 14

The following are the two predictive maps that achieved the best sMAPE values in
our work (sMAPE < 0.5).

Figure 2 displays the predictive map for Acartia spp., a filter feeder calanoid, during
spring (sMAPE = 0.4105), along with the corresponding RA values. Regarding habitat
suitability, the sMAPE index indicates high values (0.58) throughout the entire study area.
The lowest RA values (300.18 Ind/m3) are observed in the oceanic areas facing the Portofino
Promontory, while the highest RA values (588.43 Ind/m3) are found in the southeastern
region of the promontory, close to the port and in the neritic zones.
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Figure 2. Predictive map for Acartia spp., a filter feeder calanoid, during spring (sMAPE = 0.4105),
along with the corresponding RA values (expressed as Individuals/m3). Black dots are original
sampling stations from Fabiano et al. (1988) [48].

Figure 3 presents the predictive map for Oithona spp., an ambush feeder cyclopoid,
during winter (sMAPE = 0.4567), accompanied by the corresponding RA values. Gen-
erally, Oithona spp. shows high RA values in all predicted areas. In detail, the highest
RA values (80.06 Ind/m3) are concentrated near the coastal zone, with medium-high val-
ues (57.95 Ind/m3) observed in the pelagic zone. The lowest values (35.85 Ind/m3) are
sporadically found in the western zone and in proximity to the port within the study area.
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Figure 3. Predictive map for Oithona spp., an ambush feeder cyclopoid, during winter
(sMAPE = 0.4567), accompanied by the corresponding RA values (expressed as Individuals//m3).
Black dots are the original sampling stations from Fabiano et al. (1988) [48].

All predictive distribution maps generated in this study, including those for other
genera and various seasons, can be found in Supplementary File S1. Supplementary File S2
presents predictions regarding the abundance of copepods, from the sea surface to the
seabed, in the areas close to the Portofino Promontory.

4. Discussion

The Mediterranean Sea, influenced by prominent climate patterns within the global
climate system, emerges as one of the region’s most susceptible to the impacts of climate
change [68]. The Mediterranean basin plays pivotal role as a heat reservoir, source of mois-
ture and support system for high marine biodiversity [25]. These environmental changes
have a significant impact on marine communities, which may react with varying response
times. Zooplanktonic communities exhibit sensitivity to environmental changes and react,
for example, with biogeographical shifts [69], thus playing crucial roles as environmental in-
dicators [38]. Copepods, among zooplankton, play a vital role in secondary production and
grazing rates [70,71]. Understanding their potential distribution is, thus, crucial, given their
ecological role as a trophic link between microzooplankton and secondary consumers [72].
However, very few works have been carried out on organisms that occupy the lowest
trophic levels of marine food networks, despite their acknowledged paramount ecological
role. To date, there is no work in the literature modeling the distribution of abundance
or presence of any copepods in the Ligurian Sea. Most studies of species distribution
models in Mediterranean or Ligurian Sea, in fact, were focused on secondary consumers,
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top predators and alien species (e.g., Azzurro et al. 2013 [73], Giannoulaki et al. 2017 [74],
Azzolin et al. 2020 [75] and Ranù et al. 2022 [76]).

In this work, we applied the methodology described in Grillo et al. (2022) [57] to the
grey literature data from Fabiano et al. (1988) [48], leveraging pre-existing scripts in the
scientific literature [64] and environmental data obtained from both the original technical
report [48] and the Copernicus Marine Service to produce distribution maps. The inclusion
of environmental descriptors sourced from open-access outlets enriched the predictive
capacity of the models, which were evaluated by using a Random Forest machine learning
algorithm approach (regression method). The focus on the five most abundant genera of
copepods across different trophic guilds allowed for the creation of detailed distribution
maps for individual seasons, shedding light on their habitat preferences and ecological
dynamics. The outcomes derived from the developed models, based on a limited number of
actual observation points, stand as a noteworthy achievement in unraveling the ecological
intricacies of the Ligurian Sea. The capability to extrapolate meaningful data from a sparse
set of observation points not only deepens our understanding of the ecosystem but also
highlights the potential of these models as powerful tools for advancing marine ecology
research and bolstering conservation initiatives.

The results obtained here by applying the above descripted approach represent a
comprehensive and meticulous effort to model copepod distribution in the Portofino
Promontory area, utilizing a combination of historical technical report and contemporary
machine learning techniques. These “legacy data” enabled obtaining, for the first time, a
3D representation (i.e., with horizontal and vertical distributions) and SDMs for the most
important genera of Ligurian Sea copepods in quantitative terms [45,77–79], i.e., Acartia,
Centropages, Oithona, Temora and Coryacaeus, that have never been studied before in terms
of habitat suitability.

The symmetric mean absolute percentage error (sMAPE) provides an assessment of
the model accuracy of copepod distribution models in the Portofino Promontory ecosystem
across different seasons. The observed variations in sMAPE values highlight the intricate
interplay between environmental factors and copepod dynamics, shaping their abundance
and distribution patterns. The relatively higher predictive accuracies of certain copepod
genera, such as Acartia spp. and Centropages spp., during specific seasons suggest a marked
seasonality in their ecological requirements and responses to environmental fluctuations.
Conversely, the higher sMAPE values associated with genera like Oithona spp. and Temora
spp. across multiple seasons indicate the challenges in accurately predicting their abun-
dance, possibly due to the influence of additional ecological factors and chaotic dynamics,
not considered here.

Our sMAPE results underscore the complexity of copepod dynamics within the
Portofino Promontory ecosystem and highlight the need for the continued refinement
and validation of predictive models to enhance our understanding of marine ecosystem
dynamics across different seasons and copepod genera. Greater model accuracy can also be
achieved by recognizing the importance of adding an additional level of refinement, work-
ing at the species level and incorporating species-specific responses and environmental
variability into predictive models for copepod distribution. Future research efforts could
focus on refining predictive models by incorporating additional environmental variables
and fine-scale habitat features to enhance their accuracy and predictive capacity. Incorpo-
rating long-term monitoring data could provide valuable insights into the temporal trends
and interannual variability in copepod abundance, aiding the development of more robust
predictive models.

The trophic dynamics of Ligurian Sea zooplankton show a typical network of inter-
connected relationships, starting from the lower trophic levels represented by copepod
genera, which are exploited by fishes. Centropages spp., in particular, which is the most
abundant calanoid genera studied in temperate neritic zone [80] and present in all coastal
stations analyzed here, represents an important element for modeling higher tropic levels.
This genus has abundance hotspots in the functioning of seasons but generally, in neritic
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provinces and near port. Centropages spp., represents up to approx. 6% of the stomach
contents of prey [81]. This copepod genus has been found in stomach analyses conducted
on small pelagic fish such as Sardina sp. and Sardinella sp. [82], as well as in mesopelagic
fish such as Cyclothone braueri [83]. Centropages spp., as well as Acartia spp., Oithona spp.,
Temora spp. and Coryacaeus spp., are targeted by Engraulis encrasiculus (Linnaeus, 1758) [81],
the European anchovy, a very abundant pelagic Engraulidae in Mediterranean fisheries
that plays a very important role in marine food webs [84]. The prevalence of copepods in
the ecosystem influences the abundance and distribution patterns of higher trophic level
organisms, including migratory fish species and apex predators like tuna. This is reflected
by the presence of the “Tonnarella di Camogli”, a complex system of fixed nets designed
to catch tuna fishes, which has been deployed along the western side of the Portofino
Promontory (Golf of Paradise) since XVII Century [85].

This fishing structure obviously benefits from the increased abundance of copepods in
the area due to a seasonal persisting vortex. This concentration of copepods, in fact, attracts
larger fish, creating a hub of biological activity that extends throughout the food web. The
vortex’s influence on current patterns enhances the availability of food, ultimately impact-
ing the movements and feeding behaviors of migratory fish species, whose movements
also reflect the direction of the surface currents direction that arise in early spring [53]. The
Tonnarella’s exploitation of this dynamic environment capitalizes on the rich food resources
provided by copepods, contributing to its significance as a strategic fishing location [86,87]
that lasted for 400 years.

By modeling copepods’ historical distributions, we can, thus, potentially discern how
fluctuations in copepod populations influence the abundance and occurrence of higher-
trophic-level organisms, including large predators like tuna, and obtain relevant data for
sustainable fisheries management and ecosystem conservation efforts.

This process, however, is still hampered by our limited understanding of single-species
ecologies, which are also greatly differentiated as a consequence of adaptation to different
pelagic habitats.

Our data and metadata adhere to the FAIR (findability, accessibility, interoperability
and reusability) principles [49]. The generation of three-dimensional predictive maps
became feasible through the initial digitization of the “grey literature” data, which were
subsequently repurposed to create 3D distributional maps. By adhering to the FAIR prin-
ciple, distributional data extracted from these historical technical reports were effectively
repurposed and recycled. This process significantly enhanced our comprehension of pelagic
copepod biodiversity and contributed to refining the accuracy of our chosen models. These
datasets will remain searchable, accessible and reusable to the fullest extent possible, pro-
viding a lasting glimpse into the structure of copepod diversity in the Ligurian Sea during
the 1980s.

In conclusion, future advancements will focus on developing abundance distribution
models using machine learning (ML) and artificial intelligence (AI) applications to predict
the standing crop in the Ligurian Sea with greater quantitative precision. This effort aims
to enhance monitoring capabilities for this area, which holds significance for mankind
at a cultural, economic and ecological level. Overall, this approach not only advances
our understanding of copepod ecology in the Mediterranean Sea but also serves as a
template for integrating historical data with contemporary methodologies to elucidate
marine ecosystem dynamics.
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