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Abstract: The large variation in vertebral shape and calcification observed among elasmobranch
species prevents using a single method for enhancing growth bands and reading age. Further, es-
timating age and growth parameters can be difficult or impractical when samples are incomplete
due to the bycatch of a size-selective fishery. Using a single and rapid method, age readings were
obtained on the vertebrae of four batoid species, namely 53 individuals of Dasyatis pastinaca, 51
of Raja asterias, 15 of Torpedo marmorata, and 55 specimens of Torpedo torpedo, from the local small-
scale trammel net fishery in the coastal waters (5–20 m depth) of the Central Tyrrhenian Sea during
2019–2021. Based on these data, a statistical routine was developed to obtain multiple estimates of age
and growth parameters for incomplete samples due to size-selective fishing. The acceptable agree-
ment between and within readers (intra and inter-reader disagreement < 5%) and the rate of increase
in vertebral size with body size (differently ranked across species) demonstrated the consistency
of the enhancing method. The parameters estimated by the Von Bertalanffy and Gompertz growth
models matched the data available in the Mediterranean Sea for the species studied, with D. pastinaca,
T. torpedo, and R. asterias showing the lowest (k = 0.05–0.12), intermediate (k = 0.112–0.19), and highest
(k = 0.18–0.23) growth rates, respectively, in line with the life history traits of these species. Overall,
the method proved effective both in delineating band pairs in vertebrae of different species and in
reliably estimating the age and growth parameters of problematic samples due to size-selective fish-
ing. The proposed method supports the collection of comparable demographic data from other areas
where similar multi-specific assemblages are bycatch of size-selective fisheries impacting potential
nursery areas and other essential habitats for elasmobranchs.

Keywords: aging methods; skates; rays coastal fishery; Mediterranean Sea

1. Introduction

Since 1980, several techniques and methods have been developed to read age on
the inner vertebral surface of elasmobranch species [1–6]. Most aging techniques involve
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staining procedures with expensive reagents (e.g., alizarin red, hematoxylin, xylene, crystal
violet, graphite microtopography, cobalt nitrate, ammonium sulfide, Safranin O, Alcian
blue, copper lead, iron-based salts, and silver nitrate), the operation of which depends
strictly on the species being analyzed [4,7–12]. This is particularly true in the vertebrae
of batoid species, as their vertebrae are difficult to read without histology or staining of
some sort in many species [13]. On the other hand, the vertebrae of coastal species, such as
carcharhinids and lamnids, do not require any stain techniques and can be read directly [13]
using the most advanced spectroscopy methods, from near-infrared spectroscopy to X-ray
techniques [4,8,14–16].

Vertebral morphology is critical in choosing the appropriate method, as shape and
calcification can vary widely among species such that techniques for determining age
in vertebral structures of elasmobranchs are generally species-specific [7,13,17–21]. For
example, deep-water species have deep-coned, poorly calcified vertebrae, in contrast to
the more calcified, less acute centra of coastal species [8,22,23]. While in the former case,
the use of staining techniques is almost inevitable, in the latter case direct observations
of growth increments are possible, along with the use of staining or other enhancement
methods [6,8,23]. In this context, a multispecies method that avoids the staining step and
uses portable stereoscopic equipment can be of value to speed up age readings and to
obtain demographic information that is comparable across different species.

Estimating age and growth parameters can be difficult or impractical when estimating
age in elasmobranch samples that are bycatch in a size-selective fishery [24]. On these
occasions, samples are not complete in terms of both the number of observations and the
representativeness of all expected age classes for the species under consideration [25]. There
is a large amount of literature on VBGE fitting in different sample situations [24], as well as
on the use of the increase in the size of biological structures, such as otoliths [26,27] and
the vertebra in species of elasmobranchs to perform aging studies [4]. Since age–growth
parameters are intrinsic characteristics of the sample [28], their estimation is optimal when
it can be performed simultaneously on well-sized and length-structured samples [29].
Unfortunately, samples are generally far from optimal as they usually suffer from poorly
represented size ranges and/or errors in age estimation [30], such as samples from size-
selective fisheries. The small-scale fishery is one of the most size/species-selective fisheries,
as it relies on the use of several highly selective passive fishing gears, such as fixed and drift
nets, hooks, and pots [31–35]. This type of fishing is concentrated in coastal waters [36],
sometimes very close to shore, as in the study area, as well as in other areas of the Italian
and Mediterranean seas [37–39].

The multi-specific method developed was tested on four batoid elasmobranch species
that are typical of inshore and even brackish waters on soft sandy–muddy bottoms of
the Mediterranean Sea [40]. Dasyatis pastinaca (Linnaeus, 1758), Raja asterias Delaroche,
1809, Torpedo marmorata Risso, 1810, and Torpedo torpedo (Linnaeus, 1758) are emblematic
of the bycatch of different trawling metiers in the Mediterranean Sea, such as bottom
trawl [41] and small-scale fishery [37,42]. Although these species share a similar habitat,
the biological diversity between them is notable. For instance, the common sting ray D.
pastinaca is an opportunistic feeder [38,43,44] and an aplacental viviparous species [45]
compared to the starry ray R. asterias, which is an oviparous [45] and coastal endemic
species to the Mediterranean, particularly the western sector [46]. The opportunistic feeder
starry ray [47] has some commercial importance, albeit low, in the central Tyrrhenian Sea,
particularly in the landings of the trawl fishery [48]. The common torpedo T. torpedo and the
electric marbled ray T. marmorata are sympatric species with slightly different bathymetric
distribution and biological characteristics [49]. The common torpedo inhabits shallower
depths than the electric marbled ray [50], but both species share a piscivorous feeding
strategy [41,51,52] and aplacental viviparity [53,54]. The electric marbled ray inhabits
a more heterogeneous habitat [55] and grows larger than the common torpedo, with a
common length of about 60 cm [54] and up to 100 cm maximum total length recorded [56].
Age and growth studies in the Mediterranean Sea are generally scanty and/or dated for
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the species here considered, such as works carried out for D. pastinaca in the Turkish [57],
Greek [58], and Egyptian [59] waters; for T. torpedo in Spanish waters [60] and in the
Gulf of Tunis [61]; for R. asterias in the northern Tyrrhenian Sea [62] and northwestern
Mediterranean [41]; and for T. marmorata in Sardinian waters [63]. Based on these data,
the common stingray and the starry skate exhibit the lowest and the highest growth rates,
respectively, among the species considered, with the marbled electric ray having slower
growth compared to the common torpedo.

The aim of this work is to provide age and growth estimates in a multi-specific
assemblage of coastal batoid elasmobranchs by a unique and rapid method for reading
and assessing age in problematic samples that are usually bycatch of size-selective coastal
fisheries. The proposed method can help obtain reliable and comparable age and growth
data for coastal elasmobranch species.

2. Materials and Methods
2.1. Sample Collection

All samples were collected through a fishery-dependent survey (on seven occasions
between October 2019 and March 2021) planned at the Montalto di Castro (Central Tyrrhe-
nian Sea, Italy) small-scale fisheries landing site in Fiora’s Port Canal (Figure 1). The species
sampled were from the bycatch of trammel nets used in coastal waters in the area (Figure 1)
in a depth range of 5 to 20 m. The net was about 2 km long, with a mesh size of 3 cm for
the inner panel and 10–15 cm for the outer panel. The trammel net was usually lowered
at sunset and hauled at dawn. Fishermen were trained to facilitate the release of live
specimens into the sea whenever possible and safe, and to collect all dead elasmobranch
samples despite their size. After collection, specimens were immediately taken to the
laboratory and stored at −20 ◦C until dissection.
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Figure 1. Map of the study area (central Tyrrhenian Sea, Italy, Mediterranean) with bathymetry,
principal river mouths, and towns. The dotted figure encloses the area where samples came from and
the dark circle indicates the local landing site chosen for sampling.

2.2. Biometrics

Specimens were identified taxonomically according to [40,64] and then measured and
weighed to the nearest mm and mg for total length (TL) and disc width (DW) and weight,
respectively. TL was not recorded for D. pastinaca because of the often-damaged tails. The
specimens were sexed and the masses of liver, stomach, uterus, and dissected ovaries were
weighed to the nearest mg. Sexual maturity was assessed on the scale developed by [65]. A
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digital scale and a metal ichthyometer (scale sensitivity of 1 mg and 1 mm, respectively)
were used to collect biometric data.

2.3. Laboratory Preparation of Vertebrae

A postcranial portion of the vertebral column approximately 5 cm long was removed
from the animals, cutting away excess organic tissue as best we could. Based on a combined
approach between vertebral preparations proposed by [5,21], several trials were performed
to test the effectiveness of the method prior to reading and age assessment. Specifically,
samples were tested to determine the bleach soak time necessary to remove organic tissue
residues without compromising the growth increment reading. Once the optimal protocol
was established, we followed the following steps:

1. The column section was immersed in NaClO (bleach) solution for between 30 and
60 min (larger sections took longer than smaller ones).

2. The column section was then rinsed with distilled water and sectioned into individ-
ual vertebrae.

3. The individual vertebrae were re-immersed in a new NaClO solution for 5–10 min
depending on size, shaking them slowly to allow the solution to penetrate and remove
residual tissue. Too short a time does not effectively remove all connective tissue, while too
long a time literally destroys the vertebra.

4. Once removed from the solution, the vertebrae were rinsed with distilled water and
allowed to dry under the laboratory fume hood.

5. For age determination, each vertebra was cut sagittally with a sharp scalpel. In this
way, two halves (two half hourglasses for short) were obtained to observe the inner concave
surface displaying the periodic increments arranged in series, from the vertebral center
toward the margin. Next, the two halves were placed on a plate and immersed in simple
glycerol to obtain synoptic observation of the symmetrical sides simultaneously. Next, the
samples were observed with the Dino-Lite digital microscope (online information 1 a, b) in
a dark room. The above transmitted LED light allowed us to observe the different contrast
growth increments best visualized when hit by the multi-beam incident light oriented
orthogonally of the sample. An external warm light lamp was used laterally to enhance the
contrast of the bands.

6. Measurements of vertebral diameter (VD) and height (VH) of individuals were
made using Dino-Lite digital microscope software on images transmitted directly to a
personal computer with an accuracy of 0.001 mm (FIgures 2 and S1).
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Figure 2. Example of the measurements (red perpendicular lines, L = size in mm; DL0 = vertebral
diameter; DL1 = vertebral height) taken on a vertebral image obtained through observation under
Dino-Lite equipment of an individual of Dasyatis pastinaca measuring 380 and 230 mm in total length
and disk width, respectively (snapshot 1, acquisition date 15 June 2020).



Diversity 2024, 16, 271 5 of 24

7. Two readers independently performed age counts twice each on images selected
in random order and without reference to specimen size for each species considered. One
opaque and one translucent band was counted as a periodic increment. A band was
considered distinct for counting when it was distinguishable from adjacent bands and
observed continuously and correspondingly between the two sides of the sagittal section
of the vertebra on its inner surface.

2.4. Statistical Methods

Intra- and inter-reader agreement on age estimates was checked by calculating the
average percent error index (IAPE, [66]) on each species separately. VD and VH, as
well as their ratio (VD/VH), were regressed on DW and TL using a linear model of
the following type:

y = a × x ± b.

A test of parallelism was used in pairwise comparisons of the slopes of the regres-
sions between species for each variable and predictor, separately. In the pairwise multiple
comparisons, the p-level for acceptance of the results was lowered by Bonferroni’s cor-
rection [67]. The normality of the size frequency distributions of the studied species was
checked by Liliefors, Komolgorov–Smirnov, and Shapiro’s tests. The difference between
the sex ratios of the species was checked through separate chi-square tests. Because of the
incomplete range of sample sizes (consisting mostly of juveniles and subadults), separate
bootstrapping procedures of random resampling with replacement of individual length
data (such as VH, VD, DW, and TL) were performed according to age in the original
samples of each species. The number of iterations was set at 1000 to ensure a stabilized
cumulative mean as close to the true sample mean as possible. The analytic geometric
method of [68,69] replicated on each generated sample was used to obtain the overall mean
asymptotic lengths provided with error (std. err, 95% conf. limits) over 1000 iterations. In
this task, only models with 0 < slope < 1 and intercept > 0 were used. In fact, negative slopes
equal to and greater than 1 imply a lack of fit to estimate asymptotic dimensions [68,69], as
do distant models with intercept ≤ 0. Finally, these values were entered as fixed asymptotic
parameters in the Von Bertalanffy logistic equations [70]

L (t) = L∞ × (1 − e ˆ (−k × (t − t0)),

and in the Gompertz model [71]

L (t) = L∞ × e ˆ (−e ˆ (cG − (kG × t)))

to fit the corresponding length-at-age data and calculate the parameters k, t0, kG, and cG
with their error intervals, where

k is the rate of growth in length with increasing age,
t0 is the estimated time at birth,
kG is the Gomperz rate of growth, and
cG is the Gomperz parameter.
The estimation method and loss function were the Levenberg–Marquardt algorithm

and least squares minimization for linear and nonlinear fit, respectively. Due to the limited
sample size, unbalanced sex ratio, and uneven age distribution, growth parameters were
not estimated for T. marmorata. Statistical analyses were performed with STATISTICA
7.1 [72], and Office Excel version 18.2110.13110.0 [73] was used to perform bootstrapping
on the original samples by resampling with a replacement.

3. Results
3.1. Age Reading Agreement

The agreement between the two independent readings showed an error range that can
be considered acceptable (<5%) for all studied species, both inter- and intra-reader (Table 1).
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However, the IAPE was different among the species (Table 1). T. torpedo showed the lowest
value, R. asterias and T. marmorata the intermediate values, and D. pastinaca the highest IAPE
(Table 1). The distribution of the error also differed as the age of the species considered
increased. The error occurred randomly in 12 specimens of D. pastinaca of different sizes,
with a difference of one count between readers in all cases except two counts in the largest
specimen (Figure A3a). Raja asterias showed a similar pattern (seven individuals), with a
difference of one count in all cases (Figure A2b). In T. torpedo, the error was concentrated
in the large individuals, but occurred in a few of them (3), with a difference of one count
(Figure A2d). Similarly, the error increased with size in T. marmorata, with a two-count
difference between readers in the largest specimen (Figure A2c).

Table 1. Index of Average Percent Error (IAPE) calculated between and within two readers based
on two independent age readings within each reader. Data refer to a fishery-dependent assemblage
sample of four coastal batoid species from the central Tyrrhenian Sea. Sample size by species is
also provided.

IAPE by Species Sample Size Intra-Reader 1 Intra-Reader 2 Inter-Readers

Dasyatis pastinaca 53 3.33% 2.91% 4.26%
Raja asterias 51 0.92% 1.02% 1.67%

Torpedo marmorata 15 1.48% 2.08% 2.81%
Torpedo torpedo 55 0.16% 0.59% 0.73%

3.2. Photographic Evidence

Photographic images showed that the contrast and sharpness of the bands varied
among species. Common stingrays had weaker bands (Figure 3a–c), particularly in older
specimens (5–6 counts old) (Figure 3c), compared to the other species. D. pastinaca had
poorly contrasted outer bands, with thin opaque areas and large intermediate areas that
were poorly translucent. In the case of the starry skate (Figure 3d–f), the opaque and
translucent zones had greater contrast than in the earlier species. However, in the oldest
individual (Figure 3f) of the starry skate, some degree of folding of the outer margin was
noted. Periodic increments were clear in the common torpedo, with good contrast and
sharpness (Figure 3g–i). A similar situation was observed for the marbled electric ray
(Figure 3j–l), with darker opaque bands in young and intermediate specimens (Figure 3j,k)
than in older ones. Birthmark was observed particularly in the sectioned vertebrae of T.
marmorata and R. asterias, as a change in angle of the corpus calcareum was noted in small
(Figures 3d and 3j, respectively), intermediate (Figures 3e and 3k, respectively), and large
individuals (Figures 3f and 3l, respectively) of these species.

3.3. Regression Results and Characteristics of the Samples

The goodness of fit of the linear model varied across species and variables (Table 2,
Appendix A). However, the relationships showed a general linear increase in diameter and
vertebral height with increasing DW (Figure 4a–d) and TL (Figure A1a–c) in all species,
although this increase was not significant in T. marmorata (Table 2, Appendix A). The
common torpedo showed the steepest slopes for both VD and VH along DW and TL
(Figures 4c and A1c; Table 2, Appendix A). In the other cases, regression slopes varied
according to species, vertebral size, and predictor. For example, R. asterias (Figure A1a) and
D. pastinaca (Figure 4a) showed the lowest slopes for the VD-TL and VH-DW regressions,
respectively (Table 2, Appendix A). The VD/VH ratio followed an invariant trend with
increasing size, or slightly decreasing in some species (Figures 4a–d and A1a–c). For this
ratio, explained variances were very low and slopes were never significant in all species
except D. pastinaca (Figure 4a, Table 2, Appendix A).
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Figure 3. (a–l) Sagittal sections of vertebrae of four coastal batoid elasmobranch species observed in 
glycerol immersion under incident LED light by Dino-Lite equipment with indication of rings and 
corresponding age counts. Dasyatis pastinaca (a–c), Raja asterias (d–f), Torpedo torpedo (g–i), and 
Torpedo marmorata (j–l). Bold white scale bars are reported. Juveniles (a,d,g,j), intermediate (b,e,h,k), 
and large (c,f,i,l) individuals are shown. Magnification: (a) = 79.4 x, (b) = 81.7 x, (c) = 62.3 x, (d) = 59.9 
x, (e) = 55.4 x, (f) = 55.4 x, (g) = 61.5 x, (h) = 43.5 x, (i) = 40.2 x, (j) = 62.3 x, (k) = 58.6 x, (l) = 51.9 x. 
Numbers indicate age counts. 

  

Figure 3. (a–l) Sagittal sections of vertebrae of four coastal batoid elasmobranch species observed
in glycerol immersion under incident LED light by Dino-Lite equipment with indication of rings
and corresponding age counts. Dasyatis pastinaca (a–c), Raja asterias (d–f), Torpedo torpedo (g–i),
and Torpedo marmorata (j–l). Bold white scale bars are reported. Juveniles (a,d,g,j), intermediate
(b,e,h,k), and large (c,f,i,l) individuals are shown. Magnification: (a) = 79.4 x, (b) = 81.7 x, (c) = 62.3 x,
(d) = 59.9 x, (e) = 55.4 x, (f) = 55.4 x, (g) = 61.5 x, (h) = 43.5 x, (i) = 40.2 x, (j) = 62.3 x, (k) = 58.6 x,
(l) = 51.9 x. Numbers indicate age counts.
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Table 2. Regression parameters (RP, a: slope, b: intercept, R2: explained variance, Std. err: standard
error; t (n − 2): degree of freedom of t statistic; and p: level of significance) of linear relationships
between vertebral dimensions and increasing fish size as disk width (mm) of four coastal batoid
species (DP: Dasyatis pastinaca, RA: Raja asterias, TM: Torpedo marmorata, and TT: Torpedo torpedo)
sampled in the central Tyrrhenian Sea. VD, VH, and VD/VH are vertebral diameter, height, and
their ratio, respectively. The same letter in brackets indicates a significantly different regression
slope between species with asterisks denoting its p-level of significance. ns stands for not significant
differences. * p < 0.05, ** p < 0.01, *** p < 0.001.

Species RP DP RA TM TT

VD

a 1.2 × 10−2 9.7 × 10−3 8.0 × 10−3 2.2 × 10−2

Std. err 1.1 × 10−3 8.3 × 10−4 5.6 × 10−3 1.3 × 10−3

t (n − 2) 11.0 11.6 1.4 17.4
p *** (b*) *** (a **, b *) ns *** (a **)
b −0.23 0.61 2.17 −0.38

Std. err 0.23 0.23 1.0 0.23
t (n − 2) −1.0 2.7 2.1 −1.6

p ns * ns ns
R2 0.71 0.72 0.14 0.85

VH

a 9.3 × 10−3 1.0 × 10−2 1.1 × 10−2 1.6 × 10−2

Std. err 1.1 × 10−3 9.0 × 10−4 5.8 × 10−3 9.7 × 10−4

t (n − 2) 8.7 11.0 1.8 16.1
p *** (c **, d *) *** (d *) ns *** (c **)
b −0.48 1.0 × 10−1 0.77 −0.29

Std. err 2 × 10−1 2.4 × 10−1 1.1 1.8 × 10−1

t (n − 2) −2.1 0.41 0.73 −1.6
p * ns ns *

R2 0.61 0.70 0.21 0.83

VD/VH

a −1.4 × 10−3 −2.0 × 10−4 −2.3 × 10−3 1.1 × 10−5

Std. err 5.7 × 10−4 4.1 × 10−4 2.6 × 10−3 4.3 × 10−4

t (n − 2) −2.4 −0.6 −0.9
p * ns ns ns
b 1.91 1.23 1.78 1.42

Std. err 1.2 × 10−1 1.1 × 10−1 4.8 × 10−1 2.5 × 10−2

t (n − 2) 15.7 11.1 −3.7 1.0 × 10−1

p *** *** ** ***
R2 0.11 6.0 × 10−3 5.6 × 10−2 1.2 × 10−5

The size frequency distributions (Figure 5a–d) of the studied species had differ-
ent deviances from normality. In the case of D. pastinaca (Figure 5a), distribution was
right-skewed (asymmetry: 1.30 ± 0.33 std. err.) with respect to the sample mean DW
(206.78 mm ± 6.32 std. err.) and not normal values (K-S: d = 0.25, p < 0.01; Lilliefors,
p < 0.01; W Shapiro–Wilk test, W = 0.84, p < 0.001). Three different cohorts may be argued
in this species, with observations more concentrated in the smaller compared to larger
size class (Figure 5a). Differently, the distributions for R. asterias (K-S, d = 0.13, p > 0.05;
Lilliefors, p < 0.05; Shapiro–Wilk test, W = 0.92, p < 0.01) and T. marmorata (K-S, d = 0.22,
p > 0.05; Lilliefors, p < 0.05; Shapiro–Wilk test, W = 0.86, p < 0.05) appeared closer to
normality compared to D. pastinaca. In fact, a moderate right (0.46 ± 0.33 std. err.) and left
skewed asymmetry (−1.53 ± 0.58) was found with respect to the corresponding sample
means (268.26 mm ± 6.48 std. err. and 181.27 mm ± 5.61 std. err.) in the distributions of R.
asterias and T. marmorata, respectively. Therefore, observations were more concentrated in
the larger and smaller size classes in R. asterias and T. marmorata, respectively (Figure 5b,c).
The distribution was normal in the case of T. torpedo (K-S d = 0.05, p > 0.05; Lilliefors,
p > 0.05; Shapiro–Wilk test, W = 0.96, p > 0.05), with negligible right skewness (asymmetry
0.32 ± 0.41 std. err.) with respect to the mean of the sample (179.82 mm ± 5.86 std. err.). In
this case, the observations appeared to be roughly equally distributed around the mean
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(Figure 5d). The sex ratios were balanced in D. pastinaca (F/M = 0.83, X2 = 0.49, d.f. = 1,
p > 0.05) and R. asterias (F/M = 0.96, X2 = 0.02, df = 1, p > 0.05), while males were exclusive
in T. marmorata and females prevailed over males in T. torpedo (F/M = 2.05, X2 = 6.56,
d.f. = 1, p < 0.01).
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3.4. Bootstrapping and Age and Growth Parameters Estimation

Out of a total of 1000 iterations performed for all species and variables, the cumula-
tive sample averages reached stability after a different number of cumulative iterations,
depending on the species and variable involved (Appendices D and E). For example, the
number of iterations needed to stabilize the sample mean of T. torpedo was generally higher
for all variables than for the other species (Appendices D and E). In contrast, the cumulative
sample averages of VD and VH in T. marmorata remained unstable around and beyond the
maximum number of iterations performed, respectively (Figure A3d).

The number of appropriate Ford–Walford fits (0 < slope < 1 and intercept > 0) to
compute the mean asymptotic lengths differed depending on the species and variable in
question, but with no apparent ordering along variables and/or species (Table 3). In terms
of the error of the mean asymptotic estimates, it was acceptably narrow in all species for
all variables except in D. pastinaca for VH∞ and DW∞. Torpedo marmorata showed lower
errors along all variables than the other species (Table 4). Nevertheless, the estimates of
asymptotic lengths were not realistic for this species (Table 3). Therefore, we excluded T.
marmorata from further analysis.
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On the basis of the results of both VBGE and Gompertz models, the mean explained
variance of fits was generally lower when vertebral lengths were used as fixed asymptotic
parameters rather than body lengths (Table 4). This was observed in all species except T.
torpedo, which showed high R2 despite the model and variable used (Table 4). In general,
the Gompertz model produced better (negative) estimates of t0 than the VBGE models for
all species and variables (Figures 6 and 7a–d; Table 4). In fact, VBGE models produced
positive t0 estimates when vertebral measures VH and VD were used as asymptotic lengths
in the models of R. asterias and T. torpedo (Figure 6a) and T. torpedo (Figure 6b), respectively
(Table 4). The growth rates of species (kG) were higher in the Gompertz model compared
to the VBGE models (k) across all variables (Figures 6 and 7a–d; Table 4). In general, the
range of growth rates estimated had the highest values in R. asterias (k and kG = 0.18 and
0.23, respectively), the intermediate ones in T. torpedo (0.12–0.19), and the lowest in D.
pastinaca (0.05–0.12), comparing all variables and models across species (Figures 6 and 7a–d,
respectively; Table 4).
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Table 3. Errors (standard error and 95% upper and lower confidence limits) of mean estimated
asymptotic lengths expressed as vertebral height (VH), diameter (VD), total body length (TL), and
disk width (DW) and estimated through Ford–Walford fits over 1000 bootstrapping iterations (NISCM:
approximate Number of Iterations needed to Stabilize Cumulated Mean length; NFWF: Number of
Ford–Walford fits used to calculate mean asymptotic length) on original data of four coastal batoid
elasmobranchs from the central Tyrrhenian Sea.

Mean Asymptotic
Length (mm) D. pastinaca T. torpedo R. asterias T. marmorata

VH∞

Est 9.09 5.08 3.43 3.27
Std. err ±3.50 ±0.01 ±0.06 ±0.05

C. lim. −95% 2.21 4.71 3.31 3.18
C. lim. +95% 15.47 5.46 3.56 3.36

NISCM 700 900 450 >1000
NFWF 474 606 561 338

VD∞

Est 12.86 10.35 7.86 3.88
Std. err ±0.01 ±0.38 ±0.24 ±0.03

C. lim. −95% 10.50 9.60 7.39 3.83
C. lim. +95% 15.21 11.11 8.32 3.94

NISCM 800 900 850 ≈1000
NFWF 152 491 542 279

TL∞

Est

na

671.90 699.66 342.00
Std. err ±26.23 ±21.26 ±11.15

C. lim. −95% 620.36 657.25 320.12
C. lim. +95% 723.43 742.07 363.89

NISCM 850 600 900
NFWF 551 367 749

DW∞

Est 1056.65 439.87 427.92 206.15
Std. err ±372.81 ±13.85 ±34.76 ±1.25

C. lim. −95% 307.46 412.67 359.33 203.70
C. lim. +95% 1805.85 467.07 496.52 208.61

NISCM 450 950 800 950
NFWF 50 638 177 767

Table 4. Errors (±Std. err.), estimated growth parameters (k and t0: VBGE rate of growth and time at
size 0, respectively; kG and cG: Gompertz rate of growth and parameter, respectively), and statistics
(R2 and tn − 2: explained variance and t statistic for n − 2 degrees of freedom with n as sample size,
respectively) of VBGE and Gompertz models calculated by imposing mean bootstrapped asymptotic
lengths (values right to numbers in superscript brackets indicating correspondence with species)
as vertebral height (VH∞), diameter (VD∞), total length (TL∞), and disk width (DW∞) for three
species of coastal batoid elasmobranchs from the central Tyrrhenian Sea. * p < 0.05, ** p < 0.01,
*** p < 0.001. Borderline p-levels are in brackets. ns: not significant.

(1) D. pastinaca (2) T. torpedo (3) R. asterias

VBGE GOMPERTZ VBGE GOMPERTZ VBGE GOMPERTZ

k t0 kG cG k t0 kG cG k t0 kG cG

VH∞
(1) 9.09
(2) 5.08
(3) 3.43

Est 0.05 −0.15 0.14 −1.08 0.18 0.77 0.27 −0.88 0.38 0.20 0.43 −0.44
±Std. err. 0.01 0.60 0.08 0.02 0.02 0.30 0.02 0.10 0.09 0.93 0.11 0.43

tn − 2 −5.85 0.25 12.92 6.05 11.46 2.54 11.84 8.61 4.06 0.22 4.07 1.02
p *** ns *** *** *** * *** *** *** ns *** ns
R2 0.42 0.42 0.77 0.78 0.40 0.41

VD∞
(1) 12.86
(2) 10.35
(3) 7.86

Est 0.05 −0.77 0.13 −0.98 0.09 0.09 0.16 −0.83 0.06 −3.49 0.10 −0.37
St.d err 0.01 0.59 0.02 0.06 0.01 0.36 0.01 0.06 0.01 1.10 0.01 0.06

tn − 2 7.05 −1.30 16.13 7.56 12.24 0.25 12.60 13.10 7.36 −3.16 7.64 5.76
p *** ns *** *** *** ns *** *** *** ** *** ***
R2 0.51 0.53 0.76 0.77 0.54 0.55
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Table 4. Cont.

(1) D. pastinaca (2) T. torpedo (3) R. asterias

VBGE GOMPERTZ VBGE GOMPERTZ VBGE GOMPERTZ

TL∞
(2) 671.9
(3) 699.7

Est

na

0.11 −0.26 0.18 −0.68 0.12 −2.19 0.17 −0.19
St.d err 0.01 0.39 0.01 0.07 0.01 0.81 0.02 0.09

tn − 2 12.05 −0.67 12.27 9.90 8.23 −2.70 8.49 2.11
p *** ns *** *** *** ** *** *
R2 0.76 0.77 0.63 0.64

DW∞
(1)

1056.6
(2) 439

(3) 427.9

Est 0.05 −1.23 0.12 −0.90 0.10 −0.57 0.16 −0.64 0.17 −1.09 0.22 −0.27
St.d err 0.004 0.44 0.01 0.04 0.01 0.44 0.01 0.07 0.02 0.78 0.03 0.14

tn − 2 10.36 .2.77 11.46 22.63 11.40 −1.29 11.60 9.62 7.00 −1.40 7.12 1.91
p *** ** *** *** *** ns *** *** *** ns *** (0.06)
R2 0.70 0.72 0.74 0.74 0.57 0.58Diversity 2024, 16, 271 13 of 25 
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4. Discussion

The study of demographic status and population trajectory of species under fishing
pressure requires reliable age determination techniques [8], preferably rapid and inex-
pensive, as well as being multi-specific compared to those available. The method here
presented allowed rapid and reliable reading of the vertebral age rings in four coastal
batoid elasmobranchs. The use of an inexpensive and handy stereomicroscope using LED
lights enhanced the action of multiple beams striking the specimen orthogonally. This
enhanced the contrast of growth increments on vertebral sections simply immersed in
glycerol as the only reagent. Another equally important achievement is the effectiveness of
the statistical method developed to calculate age and growth parameters on size-selective
and multi-specific fishery samples. Overall, the use of this method can be a great advantage,
both in terms of cost-effectiveness and time taken to read age rings in different species
and in terms of feasibility in experimental field settings, above all to provide comparable
demographic information.

Verification of the method came from the consistency of the data we found at three
different levels.

First, the good general agreement among observers demonstrated the internal consis-
tency of age readings within and between them, i.e., the measurements can be considered
repeatable [66]. However, different errors have occurred among species, which were gener-
ally concentrated in large individuals. This is expected in aging studies because of error
propagation with increasing age [4] and morphological differences between the vertebrae
of elasmobranch species [74,75]. The latter is the case of D. pastinaca, which showed the
greatest error in age counting on its poorly calcified vertebrae, as well as more acute in
shape than the other species, as indicated by the VD/VH ratio. Like the deep-coned ver-
tebrae of deep-sea shark species [21], more concave, poorly calcified vertebrae are more
difficult to read than the less acute ones [8,19–21,75] due to the concealing effect of growth
bands and the folding of the outer vertebral margin [4]. The latter, which can occur also
in batoid species, can add a significant age-count bias in the oldest specimens such that
histological staining preparations are required in these samples [13].

Second, it was found that as body size, and therefore age, increased, vertebral size
(height and diameter) increased in all species as well, as recommended for data verification
in aging studies [75]. On the one hand, high age–growth rates did not correspond to high
vertebral growth rates with increasing body size in the species studied. Indeed, the starry
skate showed an intermediate to low rate of increase in vertebral size with increasing body
size compared to the common torpedo. This may indicate different allometric growth of
body parts between different species [13]. For example, skates have a wider “non-vertebral”
portion of the body than torpedoes, as the former has a developed rostrum, which is absent
in the second group [74]. Dasyatis pastinaca, on the other hand, showed very slow growth,
both in body size with increasing age, and in the height of the vertebrae with increasing
body size. In this species, the growth rate of all body parts is severely constrained by the
low general metabolic rate observed in the longer-lived species that generally spend a
high-energy investment in reproductive strategy [45,76,77]. It is worth noting the invariant
trend of the vertebral diameter–height ratio, which highlighted a general isometry in the
vertebral growth of the species studied as their body size increased. Isometric vertebral
growth may be a common trait for batoid species [74], due to their typical dorso-ventrally
depressed body shape with pectoral fins enlarged to varying degrees [13,19]. Despite
some slight differences found between species (in the case of the common stingray, as
discussed above), the incomplete sample size range (juveniles and subadults, with few
adult individuals) prevented stronger evidence to support this contention.

The third point of support for the proposed method comes from the reliability of the
growth parameters estimated through the VBGE and Gompertz models applied, compared
with information available in the literature, although the samples suffered the consequences
of a size-selective capture [24]. Indeed, they were not completely representative of the entire
size range expected for the species considered, in addition to a limited and unbalanced
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sample size. This problem was addressed by coupling the iteration of one of the simpler
methods, the Ford–Walford method [68,69], with a bootstrap routine applied to both
vertebral and body measurements.

On the one hand, the iteration of the Ford–Walford method helped to increase the
accuracy of the asymptotic length estimation by providing a mean value with error. Indeed,
while the Ford–Walford method suits problematic datasets (limited number of observations
and lack of age groups), it provides estimates that are crude and serially correlated and
depend on the sample size of the age groups [78,79]. On the other hand, bootstrapping
helped account for whole species-specific variability, as the age classes considered (an
intermediate portion of the expected size range) inherently contain the average information
to estimate the age and growth parameters typical of the species [80,81]. Finally, the
asymptotic models with length constraints worked for the interdependence of the estimate
of the growth parameters, as recommended by [29], but not for the simultaneity of the latter.
In the case under examination, the simultaneous estimates of asymptotic lengths k and t0
would have suffered from a too-wide error range due both to the low representativeness
of the older age groups [38,82] and the lack of the youngest individuals (0+ and 1 classes),
i.e., a suboptimal situation for good adaptation [83]. In a similar situation, yet for a very
different assemblage of species, Smart et al., 2012 [84] developed a method based on the
back-calculation of length at age data to overcome the constraints of low sample sizes in
age and growth studies on rare carcharhinid and hammerhead sharks. Differently from
the present sample, large vertebral sizes and well-defined age rings observed in these
species allowed for the successful application of back-calculation techniques to increase
the accuracy in estimating their age and growth parameters. In the present study, small
centra and poorly calcified age rings of the batoid species under consideration would
have impeded a reliable application of such a statistical technique to assess the age and
growth parameters of samples having uneven and/or lacking size classes. In the present
work, this problem was overpassed by using the same samples first to calculate a set of
mean asymptotic lengths and then to estimate k, kG, t0, and cG through the asymptotic
length-constrained VBGE and Gompertz models fitting the corresponding data. Estimation
of growth parameters based on a set of mean asymptotic lengths between two model
types enabled cross-variable and cross-model comparisons. Comparisons between the
body variables and vertebral measures illustrated by the former were better than the latter
at estimating growth parameters with increasing age. In fact, the values of the rate of
increment in vertebral dimension with increasing size do not always have the same rank
across species compared to the rate of increment in body measures with increasing age, as
demonstrated in this study. Additionally, model comparisons confirmed the Gompertz
model as the best function for batoid species [85,86]. A notable exception was T. torpedo,
which showed good adaptations despite the model and/or variable used. This suggested
that different measures and logistic functions can be used for this species for age and
growth studies.

The resultant estimated growth rates k, as well as the asymptotic lengths, were gen-
erally in line with data available in the literature, and this is true for three of the species
studied. For example, age data for D. pastinaca showed growth rate and mean asymp-
totic DW very close to data from Turkish [57] and Greek [58] waters or higher and lower,
respectively, than the coastal waters of the Egyptian Mediterranean [59]. Large individ-
uals are rare [87,88] and other authors reported a maximum disc width of 150 cm for
this species [44], which is about 50 cm greater than the asymptotic DW calculated in this
study. The calculated age–growth rate for T. torpedo was consistent with other results on the
age–weight–growth rate of the species from Spanish Mediterranean waters [60] or higher
than an outdated study from the Gulf of Tunis [61]. The species is reported at the maximum
size of 40 cm TL in the southern Mediterranean [88], which is about 4 cm smaller than the
one estimated here in asymptotic TL. Age data for R. asterias showed that the actual sample
grows almost as fast as a sample from a more northern area close to where it is today [62].
On the other hand, the species appears to increase in weight and size in the northwestern



Diversity 2024, 16, 271 16 of 24

Mediterranean, although the growth rate with age is not provided [41]. Estimation of
age–growth parameters required caution for T. marmorata, due to limited sample size and
sex composition (males only). In fact, while the asymptotic estimates appeared particularly
lower in the marbled electric ray compared to the common torpedo, it is known that the
former grows larger than the latter. The marbled electric ray grows up to 60 cm TL in the
southern Mediterranean [52,88] or even up to 100 cm as the maximum recorded TL [53].
In fact, it exhibits a lower age and growth rate in Sardinian waters [63] than what was
observed for the congener in this study. Even though the bootstrap routine used in the
present experiment functioned on difficult samples, the case of the marbled electric ray
indicates that the sample size cannot be too small and/or size–sex unbalanced in order to
obtain reliable age and growth estimates by using this method.

Although data provided in this work are not validated [89], a condition that is achieved
quite rarely [4], age and growth parameters are comparable across species inhabiting the
same area. In fact, all estimates were obtained using both a single band pair enhancing
method and statistical routine on samples obtained from a local size-selective fishery.
This greatly reduced the biases connected with comparing samples with differences in
statistical treatment and/or laboratory procedures of the aging methods used for different
species. For instance, present data highlighted how the species-specific differences in the
life history traits of the species studied can influence their age and growth rates. Indeed,
the oviparous and more fecund starry skate showed the highest age and growth rate
compared to the aplacental viviparous common torpedo and, above all, to the common
stingrays, a large-sized species that even evolved intrauterine trophic connections with
its embryos [45,76,77,90]. Comparability of the data is equally important when studying
populations of elasmobranch species distributed in different areas. In this case, intraspecific
variation in the age and growth parameters from comparable data can inform on differences
between factors that actually influence the species growth rate, such as biogeographic
and bioecological conditions (trophic conditions, endemism, home range, and gene flow,
depending on the species) and in the fishing pressure exerted on populations in different
areas [91].

The impact of small-scale coastal fisheries on elasmobranch-dependent coastal species
is a critical issue on a global scale [92–96], especially where the elasmobranch fauna is rich
and composed of large endangered species [97]. In fact, the IUCN Red List highlights how
conservation measures are urgently needed for all dependent coastal species [98,99], in
addition to obtaining local demographic assessments of populations under fishing pressure.
In this context, studies on aging are essential to distinguish how the threat of fisheries affects
populations, together with comparable demographic information that is critical for their
conservation [4]. This information may be useful for addressing conservation measures for
those age groups that are most affected by fishing within populations of elasmobranchs
under fishing pressure [8]. For example, restrictions on fishing in too shallow waters could
help limit the bycatch of the two to three-year-old juveniles and subadults that were the
most represented individuals in the elasmobranch bycatch of the study area, as well as in
similar areas, which are important feeding, breeding, and/or nursery areas for many coastal
elasmobranchs [95,96]. As in this study, providing comparable demographic information
for these species in an easily replicable method will help fill such an information gap and
help conserve them.
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Appendix A

Table A1. Regression parameters (Rp, a: slope, b: intercept, R2: explained variance, Std. err: standard
error, t (n − 2): t statistic for n − 2 degrees of freedom with n as sample size, and p: level of
significance) of linear relationships between vertebral dimensions and increasing fish size as total
length (mm) of three coastal batoid species (RA: Raja asterias, TM: Torpedo marmorata, and TT: Torpedo
torpedo) sampled in the central Tyrrhenian Sea. VD, VH, and VD/VH are vertebral diameter, height,
and their ratio, respectively. The same letter in brackets indicates a significantly different regression
slope between species with asterisks denoting the p-level of the significance of the difference in
slope in pairwise comparisons between species. ns stands for not significant differences. * p < 0.05,
** p < 0.01, *** p < 0.001.

Species

Variables Rp RA TM TT

VD

a 8.0 × 10−3 3.0 × 10−3 1.4 × 10−2

Std. err 5.1 × 10−4 3.4 × 10−3 5.7 × 10−4

t (n − 2) 15.7 0.9 24.7
p *** (a *) ns *** (a *)
b 2.0 × 10−6 2.79 −0.40

Std. err 2.1 × 10−1 0.96 0.16
t (n − 2) 1.0 × 10−4 2.9 2.4

p ns *** *
R2 0.83 5.6 × 10−2 0.92

VH

a 7.7 × 10−3 4.5 × 10−3 1.0 × 10−2

Std. err 6.7 × 10−4 3.6 × 10−3 4.5 × 10−4

t (n − 2) 11.3 1.3 22.0
p *** (b *) ns *** (b *)
b −0.33 1.45 −0.32

Std. err 0.29 1.0 0.13
t (n − 2) −1.2 1.4 −2.4

p ns ns *
R2 0.71 0.11 0.90
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Table A1. Cont.

Species

Variables Rp RA TM TT

VD/VH

a −4.4 × 10−5 −1.0 × 10−3 −1.0 × 10−5

Std. err 3.1 × 10−4 1.5 × 10−3 2.6 × 10−4

t (n − 2) −1.4 × 10−1 6.6 × 10−1 −4.0 × 10−2

p ns ns ns
b 1.18 1.65 1.42

Std. err 0.13 0.43 7.7 × 10−2

t (n − 2) 9.3 3.8 18.4
p *** ** ***

R2 3.9 × 10−4 3.3 × 10−2 3.0 × 10−5
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Figure A1. (a–c) Linear relationships between total length (TL) and vertebral measures (VD vertebral 
diameter, empty circles; VH vertebral height, minus; and VD/VH diameter/height ratio, dark Figure A1. (a–c) Linear relationships between total length (TL) and vertebral measures (VD vertebral
diameter, empty circles; VH vertebral height, minus; and VD/VH diameter/height ratio, dark
crosses) in three coastal batoid elasmobranch species form the central Tyrrhenian Sea. (a) Raja Asterias;
(b) Torpedo marmorata; and (c) Torpedo torpedo.
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Figure A2. (a–d) Age bias plots representing the variation in the Absolute values of Mean-
Standardized Residuals (AMSRs) between age readings (as couples of numbers placed on the right 
of the size in cm) of two independent readers with increasing body size as disk width (DW, mm) of 
four coastal batoid species sampled in the central Tyrrhenian Sea: (a) Dasyatis pastinaca; (b) Raja 
asterias; (c) Torpedo marmorata; and (d) Torpedo torpedo. 

  

Figure A2. (a–d) Age bias plots representing the variation in the Absolute values of Mean-
Standardized Residuals (AMSRs) between age readings (as couples of numbers placed on the right of
the size in cm) of two independent readers with increasing body size as disk width (DW, mm) of four
coastal batoid species sampled in the central Tyrrhenian Sea: (a) Dasyatis pastinaca; (b) Raja asterias;
(c) Torpedo marmorata; and (d) Torpedo torpedo.
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Figure A3. (a–d) A number of cumulated iterations are needed for stabilizing the cumulated sample 
mean of vertebral height (VH) orange and diameter (VD) blue in the bootstrapping procedure 
applied to (a) Dasyatis pastinaca, (b) Raja asterias, (c) Torpedo torpedo, and (d) Torpedo marmorata 
sampled in coastal waters of the central Tyrrhenian Sea. 
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waters of the central Tyrrhenian Sea.
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