Temporal Variation in and Influence of Environmental Variables on a Lepidopteran Community in a Mediterranean Mid-Mountain Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate
2.3. Techniques for Data Collection
2.4. Statistical Analysis
3. Results
3.1. Species Abundance and Diversity
3.2. Seasonal Variation in the Lepidoptera Community
3.3. Statistical Results
4. Discussion
4.1. Temporal Variation Patterns in the Lepidopteran Community
4.2. Relationships between Environmental Variables and the Lepidopteran Community
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Wilcove, D.S.; Rothstein, D.; Dubow, J.; Phillips, A.; Loso, E. Quantifying Threats to Imperiled Species in the United States Assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and diseas. BioSciece 1998, 48, 607–615. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Ubach, A.; Páramo, F.; Gutiérrez, C.; Stefanescu, C. Vegetation encroachment drives changes in the composition of butterfly assemblages and species loss in Mediterranean ecosystems. Insect Conserv. Divers. 2020, 13, 151–161. [Google Scholar] [CrossRef]
- Schär, G.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzelier, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef]
- Jalili, A.; Jamzad, Z.; Thompson, K.; Araghi, M.K.; Ashrafi, S.; Hasaninejad, M.; Panahi, P.; Hooshang, N.; Azadi, R.; Tavakol, M.S.; et al. Climate change, unpredictable cold waves and possible brakes on plant migration. Glob. Ecol. Biogeogr. 2010, 19, 642–648. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Beguería, S.; Saz, M.A.; de Luis, M. Recent trends reveal decreasing intensity of daily precipitation in Spain. Int. J. Climatol. 2018, 38, 4211–4224. [Google Scholar] [CrossRef]
- Sánchez, E.; Yagüe, C.; Gaertner, M.A. Planetary boundary layer energetics simulated from a regional climate model over Europe for present climate and climate change conditions. Geophys. Res. Lett. 2007, 34, L01709. [Google Scholar] [CrossRef]
- Wilson, R.J.; Gutiérrez, D.; Gutiérrez, J.; Martínez, D.; Agudo, R.; Monserrat, V.J. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 2005, 8, 1138–1146. [Google Scholar] [CrossRef]
- Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Roy, D.B.; Sparks, T.H. Phenology of British butterflies and climate change. Glob. Chang. Biol. 2000, 6, 407–416. [Google Scholar] [CrossRef]
- Parmesan, C. Influences of species, latitudes, and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 2007, 13, 1860–1872. [Google Scholar] [CrossRef]
- Cancela, J.P.; Vasconcelos, S. Ornamental plantings of Arbutus unedo L. facilitate colonisations by Charaxes jasius (Linnaeus, 1767) in Madrid province, central Spain. Nota Lepidopterol. 2019, 42, 63–68. [Google Scholar] [CrossRef]
- Díaz-Suárez, V.; Mahecha, -J.O.; Andrade, -C.M.G.; Pyrcz, T.W. Anthropic Disturbance Affecting the Patterns of Diversity in the Mountain Satyrinae Pronophilina Reuter, 1896 in an Upper Andean Forest in Colombia (Lepidoptera: Nymphalidae). SHILAP Revta. Lepid. 2022, 50, 709–728. [Google Scholar] [CrossRef]
- Wilson, J.F.; Baker, D.; Cook, M.; Davis, G.; Freestone, R.; Gardner, D.; Grundy, D.; Lowe, N.; Orridge, S.; Young, H. Climate association with fluctuation in annual abundance of fifty widely distributed moths in England and Wales: A citizen–science study. J. Insect Conserv. 2015, 19, 935–946. [Google Scholar] [CrossRef]
- Groenendijk, D.; Ellis, W.N. The state of the Dutch larger moth fauna. J. Insect Conserv. 2011, 15, 95–101. [Google Scholar] [CrossRef]
- WallisDe Vries, M.F.; Baxter, W.; Van Vliet, A.J.H. Beyond climate envelopes: Efects of weather on regional population trends in butterflies. Oecologia 2011, 167, 559–571. [Google Scholar] [CrossRef]
- Mutshinda, C.M.; O’Hara, R.B.; Woiwod, I.P. A multispecies perspective on ecological impacts of climatic forcing. J. Anim. Ecol. 2011, 80, 101–107. [Google Scholar] [CrossRef]
- Klockmann, M.; Fischer, K. Effects of temperature and drought on early life stages in three species of butterflies: Mortality of early life stages as a key determinant of vulnerability to climate change? Ecol. Evol. 2017, 7, 10871–10879. [Google Scholar] [CrossRef]
- Betzholtz, P.-E.; Forsman, A.; Franzén, M. Increased Abundance Coincides with Range Expansions and Phenology Shifts: A Long-Term Case Study of Two Noctuid Moths in Sweden. Diversity 2023, 15, 1177. [Google Scholar] [CrossRef]
- Betzholtz, P.-E.; Forsman, A.; Franzén, M. Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment. Insects 2023, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Forsman, A.; Betzholtz, P.-E.; Franzén, M. Faster poleward range shifts in moths with more variable colour patterns. Sci. Rep. 2016, 6, 36265. [Google Scholar] [CrossRef]
- Franzén, M.; Forsman, A.; Karimi, B. Anthropogenic Influence on Moth Populations: A Comparative Study in Southern Sweden. Insects 2023, 14, 702. [Google Scholar] [CrossRef] [PubMed]
- García-Barros, E.; Munguira, M.L.; Martín, J.; Romo, H.; Garcia-Pereira, P.; Maravalhas, E.S. Atlas de las Mariposas Diurnas de la Península Ibérica e Islas Baleares (Lepidoptera: Papilionoidea, Hesperioidea), 1st ed.; Monografías SEA: Zaragoza, Spain, 2004; pp. 1–228. [Google Scholar]
- Redondo, V.M.; Gastón, F.J.; Gimeno, R. Geometridae Ibericae, 1st ed.; Apollo Books: Stenstrup, Denmark, 2009; pp. 1–361. [Google Scholar]
- Bernabé-Ruiz, P.M.; Huertas-Dionisio, M. Lepidópteros identificados en el paraje Barranco de Carabaña (Cortegana–Huelva–España) Apuntes sobre sus singularidades y las de su hábitat (Insecta: Lepidoptera). Rev. Gaditana De Entomol. 2018, 9, 241–272. [Google Scholar]
- Peñuelas, J.; Filella, I.; Comas, P. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean región. Glob. Chang. Biol. 2002, 8, 531–544. [Google Scholar] [CrossRef]
- Stefanescu, C.; Peñuelas, J.; Filella, I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Chang. Biol. 2003, 9, 1494–1506. [Google Scholar] [CrossRef]
- Stefanescu, C.; Herrando, S.; Páramo, F. Butterfly species richness in the north–west Mediterranean Basin: The role of natural and human–induced factors. J. Biogeogr. 2004, 31, 905–915. [Google Scholar] [CrossRef]
- Stefanescu, C.; Torre, I.; Jubany, J.; Páramo, F. Recent trends in butterfly populations from north–east Spain and Andorra in the light of habitat and climate change. J. Insect Conserv. 2011, 5, 83–93. [Google Scholar] [CrossRef]
- Herrando, S.; Brotons, L.; Anton, M.; Páramo, F.; Villero, D.; Titeux, N.; Quesada, J.; Stefanescu, C. Assessing impacts of land abandonment on Mediterranean biodiversity using indicators based on bird and butterfly monitoring data. Environ. Conserv. 2016, 43, 69–78. [Google Scholar] [CrossRef]
- Herrando, S.; Titeux, N.; Brotons, L.; Anton, M.; Ubach, A.; Villero, D.; García–Barros, E.; Munguira, M.L.; Godinho, C.; Stefanescu, C. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 2019, 9, 5680. [Google Scholar] [CrossRef]
- Stefanescu, C.; Carnicer, J.; Peñuelas, J. Determinants of species richness in generalist and specialist Mediterranean butterflies: The negative synergistic forces of climate and habitat change. Ecography 2011, 34, 353–363. [Google Scholar] [CrossRef]
- Carnicer, J.; Stefanesc, C.; Vives–Ingla, M.; López, C.; Cortizas, S.; Wheat, C.; Vila, R.; Llusiá, J.; Peñuelas, J. Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant. J. Anim. Ecol. 2019, 88, 376–391. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Sánchez, S.; Gutiérrez, D.; Wilson, R.J. Long–term change and spatial variation in butterfly communities over an elevational gradient: Driven by climate, buffered by habitat. Divers. Distrib. 2015, 21, 950–961. [Google Scholar] [CrossRef]
- Mingarro, M.; Cancela, J.P.; Burón-Ugarte, A.; García-Barros, E.; Munguira, M.L.; Romo, H.; Wilson, R.J. Butterfly communities track climatic variation over space but not time in the Iberian Peninsula. Insect Conserv. Divers. 2021, 14, 647–660. [Google Scholar] [CrossRef]
- Wilson, R.J.; Gutiérrez, D.; Gutiérrez, J.; Martínez, D.; Monserrat, V.J. An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob. Chang. Biol. 2007, 13, 1873–1887. [Google Scholar] [CrossRef]
- Romera, L.; Cifuentes, J.; Viejo, L.; Fernández, J. Los geométridos del piso supramediterráneo de la Sierra de Guadarrama: Estacionalidad y relación con las formaciones vegetales (Insecta: Lepidoptera, Geometridae). Boletín Asoc. Española Entomol. 2002, 26, 145–162. [Google Scholar]
- Yela, J.L.; Herrera, C.M. Seasonality and life cycles of woody plants–feedeng noctuid moths (Lepidoptera: Noctuidae) in Mediterranean hábitats. Ecol. Entomol. 1993, 18, 259–269. [Google Scholar] [CrossRef]
- Yela, J.L.; Holyoak, M. Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Popul. Ecol. 1997, 26, 1283–1290. [Google Scholar] [CrossRef]
- Obregón, R.; Fernández, J.; Jordano, D. Effects of climate change on three species of Cupido (Lepidoptera, Lycaenidae) with different biogeographic distribution in Andalusia, southern Spain. Anim. Biodivers. Conserv. 2016, 39, 115–128. [Google Scholar] [CrossRef]
- Tinaut, A.; Sandoval, P.J.; Aguayo, D.; Ruano, F.; Tierno, J.M. Checklist of the Arthropod Fauna of the Sierra Nevada Mountain Range (Almería and Granada, Spain). v2.7; Dataset/Checklist; Dept. of Zoology, Faculty of Science, University of Granada: Granada, Spain, 2022. [Google Scholar] [CrossRef]
- González-Megías, A.; Menéndez, R.; Tinaut, A. Cambio en los rangos altitudinales de insectos en Sierra Nevada: Evidencias del cambio climático. In La huella del Cambio Global en Sierra Nevada: Retos para la Conservación; Zamora, R., Pérez-Luque, A.J., Bonet, F.J., Barea-Azcón, J.M., Aspizua, R., Eds.; Consejería de Medio Ambiente y Ordenación del Territorio; Junta de Andalucía: Granada, Spain, 2015; pp. 118–122. Available online: https://www.miteco.gob.es/content/dam/miteco/es/parques-nacionales-oapn/red-parques-nacionales/parques-nacionales/dossierelcambioglobalsierranevada_tcm30-68957.pdf (accessed on 18 December 2023).
- Vives, A. Catálogo Sistemático y Sinonímico de los Lepidoptera de la Península Ibérica, de Ceuta, de Melilla y de las Islas Azores, Baleares, Canarias, Madeira y Salvajes (Insecta: Lepidoptera), 1st ed.; Improitalia: Madrid, Spain, 2014; pp. 1–1184. [Google Scholar]
- Bernabé-Ruiz, P.M.; Huertas-Dionisio, M.; Jiménez-Nieva, F.J.; Vives Moreno, A. Biodiversity of Lepidoptera in a mid-mountain site in the southwest of the Iberian Peninsula. 2017–2019 Annualities. Description of the species Agnoea corteganensis Bernabé, Huertas, Jiménez & Vives, sp. nov., from Huelva, Spain (Insecta: Lepidoptera). SHILAP Revta. Lepid. 2024, 52, 33–66. [Google Scholar] [CrossRef]
- Bernabé-Ruiz, P.M.; Huertas Dionisio, M.; Vives Moreno, A. Lourdesiella Bernabé, Huertas & Vives, new genus of the family Stathmopodidae and description of the species Lourdesiella falcatum Bernabé, Huertas & Vives, sp. nov. in the Iberian Peninsula (Lepidoptera: Gelechioidea). SHILAP Revta. Lepid. 2023, 51, 739–754. [Google Scholar] [CrossRef]
- Red de Alerta de Información Fitosanitaria. Available online: https://juntadeandalucia.es/organismos/agriculturapescaaguaydesarrollorural/servicios/sia/paginas/red-estaciones-agrometeorologicas.html (accessed on 7 October 2021).
- García, L.; García, L.F. Aportaciones al estudio climático de la Sierra de Huelva. In IV Jornadas del Patrimonio de la Sierra de Huelva; Diputación Provincial, Ayuntamiento de Jabugo, Consejería de Cultura y Medio Ambiente, Eds.; Diputación Provincial: Huelva, Spain, 1992; pp. 45–54. [Google Scholar]
- Chey, V.; Holloway, J.; Speight, M. Diversity of moths in forest plantations and natural forest in Sabah. Bull. Entomol. Res. 1997, 87, 371–385. [Google Scholar] [CrossRef]
- Pollard, E.; Yates, T.J. Monitoring Butterflies for Ecology and Conservation, 1st ed.; Chapman and Hall: London, UK, 1993; pp. 1–274. [Google Scholar]
- Robinson, G.S. The preparation of slides of Lepidoptera genitalia with special reference to the Microlepidoptera. Entomol. Gaz. 1976, 27, 127–132. [Google Scholar]
- Global Biodiversity Information Facility; Bernabé-Ruiz, P.M.; Huertas-Dionisio, M.; Jiménez-Nieva, F.J.; Vives Moreno, A. Biodiversity of Lepidoptera in a Mid-Mountain Site in the Southwest of the Iberian Peninsula. 2017–2019 Annualities. Description of the Species Agnoea corteganensis Bernabé, Huertas, Jiménez & Vives, 2024, New Species, from Huelva, Spain (Lepidoptera: Lypusidae, Gelechioidea). 2024. Available online: https://ipt.gbif.es/resource?r=uhu-lepi-biodiv-sw (accessed on 19 April 2024).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 2001, 4, 1–9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 4 December 2022).
- XLSTAT Statistical and Data Analysis Solution. New York, USA. Available online: https://www.xlstat.com/es (accessed on 4 December 2022).
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- ter Braak, C.J.F. Canonical community ordination Part I: Basic theory and linear methods. Ecoscience 1994, 1, 127–140. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Verdonschot, F.M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 1995, 57, 255–289. [Google Scholar] [CrossRef]
- Garre, M.; Rubio, R.M.; Guerrero, J.J.; Girdley, J.; Ortiz, A.S. Preliminary catalogue of the family Geometridae from the Almerian sector of the Sierra Nevada Nature Area (Almeria, Spain) (Insecta: Lepidoptera). SHILAP Revta. Lepid. 2024, 52, 159–179. [Google Scholar] [CrossRef]
- Dennis, R.L.H.; Schmitt, T. Faunal structures, phylogeography and historical inference. In Ecology of Butterflies in Europe; Settele, J., Shreeve, T., Konvicka, M., Van Dyck, H., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 250–280. [Google Scholar]
- Powell, J.A.; Logan, J.A. Insect seasonality: Circle map analysis of temperature–driven life cycles. Theor. Popul. Biol. 2005, 67, 161–179. [Google Scholar] [CrossRef]
- Mutshinda, C.M.; O’Hara, R.B.; Woiwod, I.P. What drives community dynamics. Proc. R. Soc. Lond. Ser. B 2009, 276, 2923–2929. [Google Scholar] [CrossRef]
- Mingarro, M.; Aguilera-Benavente, F.; Lobo, J.M. A methodology to assess the future connectivity of protected areas by combining climatic representativeness and land–cover change simulations: The case of the Guadarrama National Park (Madrid, Spain). J. Environ. Plan. Manag. 2020, 64, 734–753. [Google Scholar] [CrossRef]
- García–Barros, E.; Cancela, J.P.; Lobo, J.M.; Munguira, M.L.; Romo, H. Forecasts of butterfy future richness change in the southwest Mediterranean. The role of sampling efort and non-climatic variables. J. Insect Conserv. 2022, 26, 639–650. [Google Scholar] [CrossRef]
- Huertas-Dionisio, M.; Bernabé-Ruiz, P.M. Immature Stages of Lepidoptera (LIX). Nemapogon nevadella (Caradja, 1920) in Huelva, Spain (Lepidoptera: Tineidae, Nemapogoninae). SHILAP Revta. Lepid. 2020, 48, 299–305. [Google Scholar] [CrossRef]
- Bernabé-Ruiz, P.M. First record of Bucculatrix alaternella Constant, 1890, in the Sierra de Aracena y Picos de Aroche Natural Park and in Huelva province (Spain). Notes on its biology and the description of the female genitalia (Lepidoptera: Bucculatricidae). SHILAP Revta. Lepid. 2023, 51, 89–93. [Google Scholar] [CrossRef]
- Trapero, A.; Sánchez, M.E.; Sánchez, J.E. Principales enfermedades del castaño en Andalucía. In El Castaño en Andalucía. Manuales de Restauración Forestal nº 3, 1st ed.; Junta de Andalucía, Consejería de Medio Ambiente, Eds.; Imprenta Kadmos: Sevilla, Spain; pp. 105–116.
- Obregón, R.; Sánchez, J.M.; Benavente, A. Atlas de las Mariposas Diurnas de las Sierras de Cazorla, Segura y Las Villas, 1st ed.; Blanca Impresores: Jaén, Spain, 2023; pp. 1–320. [Google Scholar]
- Ries, L.; Debinski, D.M.; Wieland, M.L. Conservation Value of Roadside Prairie Restoration to Butterfly Communities. Conserv. Biol. 2001, 15, 401–411. [Google Scholar] [CrossRef]
- Fang, S.-Q.; Li, Y.-P.; Pan, Y.; Wang, C.-Y.; Peng, M.-C.; Hu, S.-J. Butterfly Diversity in a Rapidly Developing Urban Area: A Case Study on a University Campus. Diversity 2024, 16, 4. [Google Scholar] [CrossRef]
- Boggs, C.L.; Dau, B. Resource Specialization in Puddling Lepidoptera. Environ. Entomol. 2004, 33, 1020–1024. [Google Scholar] [CrossRef]
- Xiao, K.; Shen, K.; Zhong, J.-F.; Li, G.-Q. Effects of dietary sodium on performance, flight and compensation strategies in the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Front. Zool. 2010, 7, 11. [Google Scholar] [CrossRef]
- Ministerio para la Transición Ecológica y el Reto Demográfico. Informe Mensual de Seguimiento de la Situación de Sequía y Escasez Octubre de 2023. Available online: https://www.miteco.gob.es/es/agua/temas/observatorio-nacional-de-la-sequia/informes-mapas-seguimiento.html (accessed on 8 November 2023).
Year | Tma (°C) | Tme (°C) | Tmi (°C) | Pre (mm) | Hra (%) | Hrm (%) | Hri (%) | Ras (Mj/m2) |
---|---|---|---|---|---|---|---|---|
2017 | 25.0 | 16.8 | 10.0 | 557 | 79.3 | 56.2 | 32.7 | 15.9 |
2018 | 23.1 | 15.2 | 9.0 | 1343 | 88.5 | 66.6 | 40.9 | 14.8 |
2019 | 22.4 | 16.1 | 9.9 | 772 | 76.6 | 57.7 | 37.1 | 16.1 |
Season | Abundance | Species Richness | Dominant Species | Number of Individuals |
---|---|---|---|---|
Winter, 2017 | 85 | 18 | Eudonia angustea (Curtis, 1827) | 33 |
Winter, 2018 | 137 | 27 | Eudonia angustea (Curtis, 1827) | 35 |
Winter, 2019 | 116 | 41 | Cerastis faceta (Treitschke, 1835) | 22 |
Spring, 2017 | 313 | 81 | Eilema caniola (Hübner, [1808] 1796) | 27 |
Spring, 2018 | 500 | 101 | Eudonia delunella (Stainton, 1849) | 50 |
Spring, 2019 | 496 | 124 | Eilema caniola (Hübner, [1808] 1796) | 30 |
Summer, 2017 | 375 | 123 | Cydia triangulella (Goeze, 1783) | 15 |
Summer, 2018 | 476 | 126 | Eilema caniola (Hübner, [1808] 1796) | 38 |
Summer, 2019 | 595 | 140 | Eudonia delunella (Stainton, 1849) | 96 |
Autumn,2017 | 109 | 41 | Aporophyla nigra (Haworth, 1809) | 12 |
Autumn, 2018 | 144 | 43 | Eudonia angustea (Curtis, 1827) | 41 |
Autumn, 2019 | 182 | 67 | Eilema caniola (Hübner, [1808] 1796) | 22 |
CCA | F | p | Axis | Eigen-Value | Cumulative Variance (%) | Standard Coordinates | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tme | Tmi | Tma | Ras | Hrm | Hri | Hra | Pre | ||||||
373 species | 1.316 | <0.0001 | 1 | 0.68 | 25.08 | 0.95 | 0.94 | 0.92 | 0.91 | −0.83 | −0.85 | −0.71 | −0.55 |
2 | 0.45 | 41.68 | −0.26 | −0.29 | −0.26 | 0.37 | 0.20 | 0.20 | 0.25 | 0.15 | |||
283 species | 1.490 | <0.0001 | 1 | 0.66 | 28.32 | 0.95 | 0.94 | 0.92 | 0.91 | −0.83 | −0.86 | −0.71 | −0.56 |
2 | 0.40 | 45.32 | 0.26 | 0.29 | 0.26 | −0.36 | −0.20 | −0.21 | −0.25 | −0.18 |
CCA | F | p | Axis | Eigenvalue | Inertia % | C. Variance (%) |
---|---|---|---|---|---|---|
V1-144 species | 2.177 | <0.0001 | 1 | 0.83 | 49.77 | 49.77 |
2 | 0.61 | 36.64 | 86.42 | |||
V2-97 species | 1.928 | <0.0001 | 1 | 0.56 | 52.63 | 52.63 |
2 | 0.29 | 27.21 | 79.84 | |||
V3-42 species | 1.698 | 0.053 | 1 | 0.40 | 55.41 | 55.41 |
2 | 0.23 | 31.71 | 87.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernabé-Ruiz, P.M.; Jiménez-Nieva, F.J.; Pérez-Quintero, J.C. Temporal Variation in and Influence of Environmental Variables on a Lepidopteran Community in a Mediterranean Mid-Mountain Area. Diversity 2024, 16, 408. https://doi.org/10.3390/d16070408
Bernabé-Ruiz PM, Jiménez-Nieva FJ, Pérez-Quintero JC. Temporal Variation in and Influence of Environmental Variables on a Lepidopteran Community in a Mediterranean Mid-Mountain Area. Diversity. 2024; 16(7):408. https://doi.org/10.3390/d16070408
Chicago/Turabian StyleBernabé-Ruiz, Pedro M., Francisco J. Jiménez-Nieva, and Juan C. Pérez-Quintero. 2024. "Temporal Variation in and Influence of Environmental Variables on a Lepidopteran Community in a Mediterranean Mid-Mountain Area" Diversity 16, no. 7: 408. https://doi.org/10.3390/d16070408
APA StyleBernabé-Ruiz, P. M., Jiménez-Nieva, F. J., & Pérez-Quintero, J. C. (2024). Temporal Variation in and Influence of Environmental Variables on a Lepidopteran Community in a Mediterranean Mid-Mountain Area. Diversity, 16(7), 408. https://doi.org/10.3390/d16070408