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Abstract: This paper presents a complete vision sensor onboard a moving vehicle which 

collects the traffic data in its local area in daytime conditions. The sensor comprises a rear 

looking and a forward looking camera. Thus, a representative description of the traffic 

conditions in the local area of the host vehicle can be computed. The proposed sensor 

detects the number of vehicles (traffic load), their relative positions and their relative 

velocities in a four-stage process: lane detection, candidates selection, vehicles 
classification and tracking. Absolute velocities (average road speed) and global positioning 

are obtained after combining the outputs provided by the vision sensor with the data 

supplied by the CAN Bus and a GPS sensor. The presented experiments are promising in 

terms of detection performance and accuracy in order to be validated for applications in the 

context of the automotive industry.  

Keywords: automotive sensor; vehicle detection; computer vision; distance accuracy 

 

1. Introduction  

 

Developing onboard vehicle detection sensors aimed at improving the safety of road users is one of 

most important topics in the context of automotive applications and it has attracted a lot of attention 

during the last decade. Vehicle detection is a very challenging task due to the high intra-class variability 
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of vehicle appearance. Vehicles may vary in shape, color and size, and their appearance is highly 

affected by pose, nearby objects and illumination conditions. Vehicle detection systems have many 

applications in the context of the automotive industry such as platooning, Adaptive Cruise Control 

(ACC), forward/rear collision avoidance and mitigation, traffic detection, Floating Car Data (FCD), etc. 

Robust and accurate vehicle detection is a crucial step in all these systems. 

The most common approach to vehicle detection has been carried out by using active sensors such as 

acoustic-based [1], radar-based [2] and laser-based [3,4]. However, passive sensors, and more 

specifically optical sensors, have attracted most of the attention of the research community as well as 

the industry, due to two main aspects: inexpensive cost and new potential applications (Lane Departure 

Warning (LDW), pedestrian detection, traffic sign recognition, etc.). We refer to [5] for general 

background concerning vehicle detection, covering both active and passive sensors.  

In this paper we present a daytime traffic data collection sensor for automotive applications which 

comprises both forward and rear facing inexpensive cameras operating in the visible spectrum. 

Compared to previous extended FCD systems [6,7] the proposed approach provides a more 

representative description of the local traffic conditions of the host vehicle, since it covers a  

nearly 360 degree field of view. The proposed sensor detects the number of vehicles (traffic load), their 

relative positions and their relative velocities in a four-stage process: lane detection, candidates 
selection, vehicles classification and tracking. Then, absolute velocities (average road speed) and 

global positioning are obtained after combining the outputs provided by the vision sensor with the data 

supplied by the CAN Bus and a GPS sensor. The sensor is mainly designed to supply data 

corresponding to both road traffic load and speed. However, the accuracy of the host-to-vehicle 

distances estimated by the proposed approach enables its use for other automotive applications (ACC, 

collision avoidance, etc.) without the need of other sensors [8]. 

The rest of the paper is organized as follows; Section 2 provides the description of the vision-based 

traffic detection sensor including the analysis of the error in the estimation of the host-to-vehicle 

distance. Section 3 is dedicated to experimental results and finally Section 4 summarizes the conclusions 

and future work. 

 

2. Vision-Based Traffic Detection Sensor 

 

2.1. Architecture description 
 

The proposed traffic collection sensor comprises two FireWire cameras: one rear looking camera and 

another forward looking one. Thus, the sensor range covers the local environment of the host vehicle 

enabling a nearly 360 degree field of view with the exception of the side blind areas (see Figure 1). A 

common hardware trigger synchronizes the image acquisition of both cameras and an onboard PC 

houses the computer vision software. 
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Figure 1. Traffic data collection sensor comprising two cameras and a GPS. 

 

 

Each individual vehicle detection system provides information about the number of detected vehicles 

and both their relative position and speed. These results are combined with the GPS measurements and 

the data provided by the CAN bus (vehicle speed) in order to provide globally referenced traffic 

information. Note that for vehicles without CAN bus interface, the vehicle speed can be computed from 

GPS measurements. This scheme is described in Figure 2. 

Figure 2. Overview of the traffic data collection sensor architecture. 

 

 

The layers of the proposed architecture of both vision modules are conceptually the same: lane 
detection, vehicle-candidates selection, vehicle recognition and tracking. The first step of each one of 

the vision systems consists of reducing the searching space in the image plane in an intelligent manner in 

order to increase the performance of the vehicle detection module. Accordingly, road lane markings are 

detected and used as the guidelines that drive the vehicle searching process. The area contained by the 

limits of the lanes is scanned in order to find vehicle candidates that are passed on to the vehicle 

recognition modules. Thus, the rate of false positives is reduced. In case that no lane markings are 

detected, a basic region of interest is used instead covering the front, rear and side parts of the vehicle. 

Finally, a tracking stage is implemented using Kalman filtering techniques. 
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2.2. Lane detection 
 
An attention mechanism is necessary in order to filter out inappropriate candidate windows based on 

the lack of distinctive features, such as horizontal edges and vertical symmetrical structures, which are 

essential characteristics of road vehicles. This has the positive effect of decreasing both the total 

computation time and the rate of false positive detections. Lane markings are detected using gradient 

information in combination with a local thresholding method which is adapted to the width of the 

projected lane markings. Then, clothoid curves are fitted to the detected markings. The algorithm scans 

up to 25 lines in the candidates searching area, from 2 meters in front of the camera position to the 

maximum range in order to find the lane marking measurements. The proposed method implements a 

non-uniform spacing search that reduces certain instabilities in the fitted curve. The final state vector is 

composed of six variables [9] for each lane on the road: 

 Tooovovhoh wxccccx ,,,,,, 11   (1) 

where c0h and c1h represent the clothoid horizontal curvature parameters, c0v and c1v stand for the 

clothoid vertical curvature parameters, while x0, θ0 and w0 are the lateral error and orientation error with 

regard to the centre of the lane and the width of the lane respectively. The clothoid curves are then 

estimated based on lane marking measurements using a Kalman filter [10] for each lane. 

Apart from the detected road lanes additional virtual lanes have been considered so as to cope with 

situations in which a vehicle is located between two lanes (for example, if it is performing a lane change 

manoeuvre). Virtual lanes provide the necessary overlap between lanes, avoiding both misdetections 

and double detections caused by the two halves of a vehicle being separately detected as two potential 

vehicles. A virtual lane is located to provide overlap between two adjoining lanes. Figure 3 provides 

some examples of lane markings detection in real outdoor scenarios. Detected lanes determine the 

vehicle searching area and help reduce false positive detections. In case no lane markings are detected 

by the system, fixed lanes are assumed instead. 

Figure 3. Vehicle searching area as a result of the lane markings analysis for forward and 

rear modules. 

 

 
2.3. Forward and rear vehicle detection 

 
Forward and rear looking vehicle detection systems share the same algorithmic core. The attention 

mechanism sequentially scans each road lane from the bottom to the maximum range looking for a set 
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of features that might represent a potential vehicle. Firstly, the vehicle contact point is searched by 

means of the top-hat transformation. This operator allows the detection of contrasted objects on  

non-uniform backgrounds [11]. There are two different types of top-hat transformations: white hat and 

black hat. The white hat transformation is defined as the residue between the original image and its 

opening. The black hat transformation is defined as the residue between the closing and the original 

image. The white and black hat transformations are analytically defined as follows: 

  ),(),( yxbffyxWHT   White Hat (2) 

  ),(),( yxfbfyxBHT   Black Hat (3) 

where   denotes the opening operator and   means for the closing operator. In our case we use the 

white hat operator [Equation (2)] since it enhances the boundary between the vehicles and the road [12]. 

Horizontal contact points are pre-selected if the number of white top-hat features is greater than a 

configurable threshold. Then, candidates are pre-selected if the entropy of Canny points is high enough 

for a region defined by means of perspective constraints and prior knowledge of target objects  

(see Figure 4).  

Figure 4. From left to right: original image; contact point detection on white top-hat image; 

candidate pre-selected with high entropy of Canny points. 

 

 

Before computing the Canny features, an adaptive thresholding method is applied. This process is 

based on an iterative algorithm that gradually increases the contrast of the image, and compares the 

number of Canny points obtained in the contrast increased image with the number of edges obtained in 

the current image. If the number of Canny features in the actual image is higher than in the contrast 

increased image the algorithm stops. Otherwise, the contrast is gradually increased and the process 

resumed. This adaptive thresholding method permits to obtain robust image edges, as depicted in the 

examples provided in Figure 5.  

In a second step, vertical edges (Sv), horizontal edges (Sh) and grey level (Sg) symmetries are 

obtained, so that, candidates will only pass to the next stage if their symmetries values are greater than a 

threshold. The vertical and horizontal edges symmetries are computed as listed in Figure 6. The grey 

level symmetry computation procedure is shown in Figure 7. Some examples of the three types of 

symmetries are depicted in Figure 8. 
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Figure 5. Canny images after adaptive thresholding. 

 

Figure 6. Vertical and/or horizontal edges symmetries computation procedure. 

 

Figure 7. Gray level symmetry computation procedure. 

 

Figure 8. Upper row: gray level symmetry; Middle row: vertical edges symmetry; Lower 

row: horizontal edges symmetry. 

 

1. Initialize 0,...,0 
WIDTHROIAcc  

2. For HEIGHTROIi ,...,0  

3. For each pair of vertical/horizontal edge pixels ),( 1 ix  and ),( 2 ix  compute  2/)( 21 xxAcc  

4. )/max(arg ,,, MAXhvi
i

hv SAccS   

 

 

1. For each possible symmetry axis ix initializes 0iS  
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3. For 2/,...,0 W IDTHROIk   

4.   If          kxjkxj ii
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i
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Sensors 2010, 10              

 

 

866 

Symmetry axes are linearly combined to obtain the final position of the candidate. Finally, a weighted 

variable is defined as a function of the entropy of Canny points, the three symmetry values and the 

distance to the host vehicle. We use this variable to apply a non-maximum suppression process per lane 

which removes overlapped candidates. An example of this process is shown in Figure 9. 

Figure 9. Left: overlapped candidates. Right: non-maximum suppression results. 

 

 

The selected candidates are classified by means of a linear Support Vector Machine (SVM)  

classifier [13], in combination with Histograms of Oriented Gradients features [14]. We have developed 

and tested two different classifiers depending on the module (forward and rear classifiers). All 

candidates are resized to a fixed size of 64 × 64 pixels to facilitate the features extraction process. The 

rear-SVM classifier is trained with 2,000 samples and tested with 1,000 samples (1/1 positive/negative 

ratio) whereas the forward-SVM classifier is trained with 3,000 samples and tested with 2,000 samples 

(1/1 positive/negative ratio). Figures 10 and 11 depict some positive and negative samples of the 

forward and rear training and test data sets respectively. Figure 12 shows a couple of examples of 

vehicle detection after linear SVM classification with HOG features.  

Figure 10. Forward data set. Upper row: positive samples (vehicles); Lower row:  

negative samples. 
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Figure 11. Rear data set. Upper row: positive samples (vehicles); Lower row:  

negative samples. 

 

Figure 12. Linear SVM with HOG features single-frame classification examples:  

non-vehicles are depicted with red boxes whereas vehicles are depicted with green ones. 

 

 

After detecting consecutively an object classified as vehicle a predefined number of times (empirically 

set to 3 in this work), data association and tracking stages are triggered. The data association problem is 

addressed by using feature matching techniques. Harris features are detected and matched between two 

consecutive frames, as depicted in Figure 13. 

Figure 13. Data association by features matching. Upper row: Harris features on image t. 
Lower row: matched Harris features on image t + 1. 
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Tracking is implemented using Kalman filtering techniques [10]. For this purpose, a dynamic state 

model and a measurement model must be defined. The proposed dynamic state model is simple. Let us 

consider the state vector xn, defined as follows: 

 Tn hwvuhwvux  ,,,,,,,  (4) 

In the state vector x and y are the respective horizontal and vertical image coordinates for the top left 

corner of every object, and w and h are the respective width and height in the image plane. A dynamical 

model equation can be written like this: 
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In the model, t  is the simple time, A represents the system dynamics matrix and n  is the noise 

associated to the model. Although the definition of A is simple, it proves to be highly effective in 

practice since the real time operation of the system permits to assure that there will not be great 

differences in distance for the same vehicle between consecutive frames. The model noise has been 

modelled as a function of distance and camera resolution. The state model equation is used for 

prediction in the first step of the Kalman filter. The next step is to define the measurement model. The 

measurement vector is defined as  Tn hwvuz ,,, . Then, the measurement model equation is established 

as follows: 
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In last equation H represents the measurement matrix and vn is the noise associated to the 

measurement process. The purpose of the Kalman filtering is to obtain a more stable position of the 

detected vehicles. Besides, oscillations in vehicles position due to the unevenness of the road makes v 

coordinate of the detected vehicles change several pixels up or down. This effect makes the distance 

detection unstable, so a Kalman filter is necessary for minimizing these kinds of oscillations. 
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2.4. Error analysis 
 

Accurate detection of the wheel-to-road contact point of the preceding vehicle is essential for 

assuring maximum precision of the host-to-vehicle estimated distance. Thus, the error committed in 

estimating the host-to-vehicle distance Zerr due to a vehicle detection error of n pixels in the image plane 

is given by: 

nZhf
nZZ

nv
hfZZZ

CAMv

CAMv
nerr









2

 (7) 

where v is the vertical coordinate of the wheel-to-road contact point in the image plane, Z is the 

estimated host-to-vehicle distance, fv is the vertical focal length in pixels and hCAM represents the 

elevation of the camera above the ground. Considering an error of one pixel n = 1 and nZhf CAMv  , 

Zerr becomes: 

CAMv
err hf

nZZ
2

  (8) 

For example, for a 320 × 240 image, a focal length fv = 370 px, and a camera height hCAM = 1.2m, an 

error of 1 pixel (n = 1) becomes a relative 5% error at a distance: 

0.05 370 1.2 22.2err
v CAM

ZZ f h m
Z

      (9) 

On the other hand, the error at 44.4 m is 10%. In Figure 14 we can see the depth accuracy due to 

quantization for different images resolutions. As can be seen, the larger the images resolution the better 

the accuracy. Unfortunately, a trade off must be reached between the accuracy of the depth 

measurements and the computational costs. In our case the size of the images is 320 × 240 pixels which 

provides accuracy more than enough for automotive applications. 

Figure 14. Accuracy of the host-to-vehicle distance obtained by using different  

images resolution. 
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The distance measurements are used to obtain the relative host-to-vehicle velocity. Relative velocity 

vH2V is computed using the following equation: 

t
Zv VH



2  (10) 

Based on the scale change s of detected objects in the image plane, the optimal value of Δt that 

minimizes the estimation noise can be calculated. Let W denote the width (in meters) of the preceding 

vehicle, w and w' the width of the preceding vehicle in the image plane when it is located at distances Z 

and Z', respectively, with regard to the host vehicle. The scale change s  can be defined as: 

'

'


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s  (11) 

Then, the estimated relative velocity can be computed as follows: 

t
Zs

t

Z

t
Zv VH












 '

'

2





 
(12) 

As demonstrated in [15], the value of t  that minimizes the error in the estimated relative velocity is 

given by: 

Waf
sZ

t
v

err
22

  (13) 

where a represents the acceleration of the host vehicle, and errs  is the error committed in the estimation 

of scale change. Building on this result, the optimal value of Δt for zero acceleration is infinite. In 

practice, it has been limited to ∆t = 1.0 s, which matches with both the GPS and the CAN bus sample 

time (1 Hz). 

 

2.5. Traffic load and road speed 
 

As depicted in Figure 2, the Traffic Data Collection module uses three sources of data: the 

measurements provided by the GPS, the data supplied by the CAN bus (vehicle speed) and the outputs 

obtained from both vision-based vehicle detection systems. Whereas the GPS and the CAN bus sample 

frequency is 1 Hz, the vision-based system operates in real-time at 25 frames per second (25 Hz). In 

order to obtain measurements from GPS and CAN bus at 25 Hz we apply a linear interpolation between 

two consecutive samples.  

The outputs of the forward and rear vehicle detection systems at frame i are the number of detected 

vehicles Ni and their corresponding distances to the host vehicle )(k
id . These outputs are combined to 

cover the local environment of the vehicle. The traffic load at frame i is given by next equation: 

MAXii NNL /)1(   (14) 

where NMAX is the maximum number of vehicles in range that can be detected by both systems (in our 

case NMAX is defined as 8 or 12 for two lanes and three lanes roads respectively). The average road 

speed at frame i is computed as follows: 
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where )(k
id and )(

1

k
id  represent the distance between the host vehicle and vehicle k at frames i and i – 1 

respectively, ∆t corresponds to the sample time (which is limited to 1.0 s as described in Section 2.4), 
h
iv  is the host vehicle speed provided by the CAN bus, and iN is the number of detected vehicles. Note 

that the distance values correspond to filtered measurements since they are obtained from the first two 

elements of the Kalman filter state vector (u and v) using known camera geometry and  

ground-plane constraints.  

 

3. Experiments 

 

The system was implemented on a PC Core 2 Duo at 3.0 GHz and tested in real daytime traffic 

conditions using CMOS cameras in the visible spectrum with low resolution images (320 × 240). After 

training and test, a trade-off point has been chosen at Detection Rate (DR) of 95% and False Positive 

Rate (FPR) of 5% for the rear-SVM classifier and at DR of 90% and FPR of 6% for the forward-SVM 

classifier. We have to note that these numbers are obtained in an off-line single-frame fashion, so that, 

they will be improved in subsequently stages. In addition, the lane detection system reduces the 

searching area and the number of false candidates passed to further stages.  

The benefits of using the proposed Kalman filter model can be seen in Figure 15, which plots the 

measured wheel-to-road contact point and the corresponding filtered value. As can be observed the use 

of a Kalman filter absorbs spurious detection problems and allows tracking the vehicle for a few frames 

once it has been lost by the detection stage.  

Figure 15. Estimated wheel-to-road contact point and the corresponding Kalman  

filter output. 

 

 

In order to evaluate the accuracy of the host-to-vehicle distances estimated by the proposed 

approach we have generated a ground truth by manually labelling the position of the vehicles in the 

images, in a frame by frame process. Thus we can compute the root mean square error (RMSE). The 

obtained results for the forward and rear modules can be observed in Figures 16a,b, respectively. Due to 
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perspective constraints and the discrete nature of the sensor, the larger the host-to-vehicle distance the 

larger the error. The largest errors take place in cases where the host vehicle is passing beneath a bridge 

due to strong illumination changes (see Figure 17). The overall RMSE is 0.47 m for the forward 

example and 0.39 m for the rear one, which are acceptable for automotive applications.  

Figure 16. Estimated host-to-vehicle distance by the proposed sensor, ground truth and 

absolute error in two examples corresponding to (a) rear and (b) forward vision modules.  

 

 

Figure 17. Examples with strong illumination changes after passing beneath a bridge. 
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Finally, in order to validate the proposed sensor for traffic collection in automotive applications we 

have recorded several video sequences in real traffic conditions and we have manually labeled the 

number of vehicles in range at every frame (a total of 800 frames). The speed of the host vehicle was 

around 90 km/h so the length of the traveled route was approximately 1 km. Both the traffic load Li and 

the average road speed vi are computed at every frame using Equations 14 and 15. Figure 18 shows the 

estimated traffic load, the ground truth and the corresponding absolute error. The overall RMSE in the 

traffic load computed by the proposed approach is 0.07 (7%). 

The average road speed vi at every frame is depicted in Figure 19. Most of the errors occur in images 

with strong illumination changes, in curves and in cases where there are strong changes in the vehicle 

pitch, roll as well as the camera height.  

Figure 18. Estimated traffic load (Li) using Equation 14 and the corresponding  

ground truth. 

 

Figure 19. Estimated average road speed (vi) using Equation 15. 

 

 

4. Conclusions 

 

This paper presented a traffic data collection system for the automotive industry which comprises 

one rear and one forward looking cameras, covering a nearly 360 degree field of view. The proposed 

sensor provides accurate host-to-vehicle distance measurements in daytime conditions in a four stage 
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process (lane detection, candidates selection, vehicles classification and tracking), with an average 

error lower than 0.5 m, which is more than enough for automotive applications such as platooning, 

ACC, collision avoidance/mitigation, traffic monitoring, etc., without the need of other sensors [8]. Due 

to both perspective constraints and the discrete nature of the sensor, the larger the host-to-vehicle 

distance the larger the error. However, the accuracy of the measurements increases in proportion to the 

collision risks, i.e., as long as the host-to-vehicle distances decrease. The sensor also computes 

measurements concerning relative host-to-vehicle velocities, traffic load and average road speed, by 

combining the outputs of the vision modules with the data supplied by the CAN bus and the GPS sensor. 

The overall error of the computed traffic load is around 7%. Compare to previous extended FCD 

systems [7] the proposed approach provides a more representative description of the local traffic 

conditions of the host vehicle, since it covers a nearly 360 degree field of view. 

Most of the errors are due to strong illumination changes and variations in the extrinsic relationship 

between the camera and the road (pitch, roll and camera height). As future work, we are planning to 

reduce these errors by including accurate estimation of the ego-motion of the vehicle relative to the 

road using input from both the CAN bus and the cameras. In addition, new experiments will be planned 

to perform traffic data collection in night time conditions by including active illumination or  

infrared cameras.  
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