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Abstract: We address the problem of adaptive waveform design for extended target 

recognition in cognitive radar networks. A closed-loop active target recognition radar 

system is extended to the case of a centralized cognitive radar network, in which a 

generalized likelihood ratio (GLR) based sequential hypothesis testing (SHT) framework is 

employed. Using Doppler velocities measured by multiple radars, the target aspect angle 

for each radar is calculated. The joint probability of each target hypothesis is then updated 

using observations from different radar line of sights (LOS). Based on these probabilities, a 

minimum correlation algorithm is proposed to adaptively design the transmit waveform for 

each radar in an amplitude fluctuation situation. Simulation results demonstrate 

performance improvements due to the cognitive radar network and adaptive waveform 

design. Our minimum correlation algorithm outperforms the eigen-waveform solution and 

other non-cognitive waveform design approaches. 

Keywords: cognitive radar network; radar waveform design; target recognition 

 

1. Introduction 

The importance of radar target identification is widely recognized and it has become one of the 

major concerns in radar surveillance and homeland security applications [1]. Normally, radar high range 

resolution profile (HRRP) is used as an important feature in radar automatic target recognition  

(ATR) [2-5], since it contains target structure signatures, such as target size, scatterer distribution, etc. [6]. 
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In [7], a target impulse response was introduced to model target scattering behavior, and an optimal 

transmit waveform and receiver filter pair was proposed for extended target detection in additive 

Gaussian noise. By maximizing the output signal-to-noise ratio (SNR), Bell [7] derived an  

eigen-waveform solution under a total energy constraint. The eigen-waveform solution has been 

heuristically extended to tackle the multi-extended-target identification problems in [8], where the 

transmit waveform is designed to maximize the average (weighted average, generally) Euclidean 

distance or Mahalanobis distance (in additive colored noise) between different hypotheses. 

Recently, Haykin proposed the novel idea of cognitive radar [9], one of whose most important 

characteristics is closed-loop operation. With the feedback structure from the receiver to the 

transmitter, waveforms can be adaptively optimized based on prior knowledge about targets and 

environments to improve system performance and efficiency. Many prior attempts have focused on 

target recognition using waveform adaptation in cognitive radar. Haykin [9] suggested that such a 

cognitive radar system can be represented using a Bayesian formulation whereby many different 

hypotheses are given a probabilistic rating. Based on this idea, Goodman [10] proposed the integration 

of waveform design techniques [8] with a sequential-hypothesis testing (SHT) framework [11] that 

controls when hard decisions may be made with adequate confidence [12]. He also compared two 

different waveform design techniques for use with active sensors operating in a target recognition 

application. One considered by Bell [7] is based on a maximization of the mutual information between 

a random target ensemble and the echo signal, and the other is based on eigenvectors of the weighted 

autocorrelation matrix proposed by Guerci [8] and Pillai [13]. To make full use of the transmit energy 

under a maximum modulus constraint, an adaptive single-tone waveform design algorithm was 

proposed in the same situation [14]. The target hypotheses were further extended to statistical 

characterization by power spectral densities in [15] where waveforms are matched to the target class 

rather than to individual target realizations. 

However, several issues must be considered when applying impulse response to radar ATR. The 

most important of these is the well-known target-aspect sensitivity [6]. Since the impulse response 

represents the projection of the target scattering behavior onto the radar line of sight (LOS) [6], 

variation in the target aspect will lead to different impulse responses. Without a priori knowledge of 

the target aspect angle, 360-degree template matching is inevitable, which will cause significant 

degradation of recognition accuracy, especially in situations with a large number of hypotheses. In 

most surveillance applications, the target, such as an aircraft or ship, is moving and its major axis 

(heading direction) is approximately parallel to its velocity vector [16]. Therefore, the aspect angle can 

be acquired by estimating the target velocity via tracking. This approach works effectively when 

dealing with non-maneuvering (constant velocity and acceleration) targets. However, the ability to 

handle maneuvering targets is still lacking [17]. Another major issue is the amplitude sensitivity of 

returned echoes. This comes from the fact that the amplitude of a returned echo is affected by multiple 

factors such as target distance, antenna gain, receiver gain, and weather conditions [6]. Since some of 

these factors are unpredictable and unstable, the amplitude of a returned echo is usually unknown and 

variable. Therefore, the signal models [7,8,10] that assume the amplitude of returned echoes is 

deterministic and accurately known are not suitable for practical applications. 
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In this paper, we address the problem of extended target recognition in cognitive radar networks 

whose constitution was described by Haykin [18]. A cognitive radar network system should 

incorporate several radars working together in a cooperative manner with the goal of realizing a 

remote-sensing capability far in excess of what the radar components are capable of achieving 

individually [18]. In our extended target recognition application, the radar network can provide more 

robust detection performance [19,20], more accurate position estimation [21], and the most 

importantly, more reliable target aspect angle for each radar. Since the velocity of the target can be 

directly estimated using the Doppler frequencies measured by the individual radars, the issue of target-

aspect sensitivity can be solved even for maneuvering targets. Also, because the radar stations are 

located across a large area, the sensor network is able to obtain returned echoes from multiple aspects 

at the same time, which leads to a significant improvement in the efficiency and robustness of the 

recognition. 

The main contribution of this paper is to extend the above mentioned closed-loop active target 

recognition radar system [10] to the case of a centralized cognitive radar network. Once all radars have 

performed their observations, the target aspect angle for each radar is calculated. The joint probability 

of each target hypothesis is then updated using all the observations from different radars based on their 

aspect angles. The next transmit waveform for each radar is designed according to the joint 

probabilities of the target hypotheses. Such interrogation repeats until hard decisions can be made with 

adequate confidence. We also contribute by considering the amplitude uncertainty of the returned 

echoes. The ideal echo signal, which is the convolution of the transmit waveform with the target 

impulse response, is multiplied by a random complex coefficient in our signal model. A generalized 

likelihood ratio (GLR) based SHT framework in which the unknown parameters are replaced with their 

maximum likelihood estimates (MLE) is employed to update the joint probabilities of target 

hypotheses instead of the likelihood ratio based approach in [10]. Although the GLR test is not 

optimal, it appears to work quite well in practice. Finally, the adaptive waveform design algorithm 

described in [8,10] is applied to the cognitive radar network. Because the eigen-waveform 

solution [7,8,10] is no longer suitable for the amplitude fluctuation situation, a minimum correlation 

algorithm is proposed and compared with the algorithm based on average Euclidean distance. 

In the next section, we define the problem and system model. The GLR based SHT framework and 

the centralized Bayesian update equations are presented in Section 3. In Section 4, the improved 

adaptive waveform design algorithm is detailed. Simulation results are shown in Section 5, and finally, 

Section 6 concludes the paper. 

2. Problem Description and Modeling 

We consider the target recognition problem in which one of M possible targets is known to be 

present. The position and velocity of the target are assumed to be known by the radars. Our objective is 

to identify the target accurately and quickly. In this section, we first describe the centralized cognitive 

radar network framework for solving the issue of target-aspect sensitivity. Then, a parametric 

measurement model is developed by considering the amplitude uncertainty of the echo. 
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2.1. System Model 

In most radar surveillance applications, targets are far from the radar station and move horizontally, 

make it reasonable to assume that the targets and the radar station are located in the same horizontal 

plane [1-6]. A two-dimensional target model is used in our analysis. 

As shown in Figure 1, each target hypothesis jH  is characterized by a set of impulse responses 

 , jHg t
 measured offline from every aspect angle  . The aspect angle   is defined as the angle 

between the major axis of the target (heading direction) and the radar LOS. For most of the targets, the 

major axis has approximately the same direction as its velocity vector [16]. The aspect angle can be 

acquired by estimating the target velocity vector and the position relative to the radar. 

Figure 1. Definition of target aspect angle. 
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A cognitive radar network with N  radars is introduced to solve the issue of target-aspect sensitivity. 

As shown in Figure 2, the radar stations are located in the same two-dimensional space in which the 

target moves. The position of the thi  radar station is denoted as ˆ ˆ
i ix iyR R x R y 


, where x̂  and ŷ  are 

the axis unit vectors and 
ixR  and iyR  are the axis weights. The position of the target is denoted as R


. 

The relative position of the target with respect to the thi  radar is then given by i ir R R 
 

. According 

to our definition, for a target with velocity vector v


, the aspect angle of the thi  radar 
i  is expressed 

as    arg argi ir v  
 

, where the function arg()  returns the angle of a vector in the x-y coordinate 

system. With the observations from multiple radars located in different places, the radar network can 

provide a more robust detection performance [19,20] and more accurate position estimation [21]. More 

importantly, the velocity of the target can be directly estimated based on the Doppler frequencies 

measured from different angles [21]. Therefore, the estimated aspect angle can be calculated by: 

    ˆ ˆˆ arg argi ir v  
 

 (1) 

where r̂


 and v̂


 are the estimated relative position and velocity. 
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Figure 2. Top view of the cognitive radar network in an x-y coordinate system. 
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2.2. Measurement Model 

Only backscattering is considered in our network, and interference among the radars is ignored. This 

makes the network easy to implement since each radar station can operate using a different frequency 

band. For the thi  radar in the network, when jH  is present, the echo signal  is t  is determined by the 

aspect angle 
i  and the transmitted waveform  iu t . It is given by: 

        
2

,
i

i j

j f t

i i H i is t a e g t u t n t


   
 

 (2) 

where  ,i jHg t  is the target impulse response for the thj  hypothesis at aspect angle 
i , *  denotes the 

convolution operator, 
i

f  is the target Doppler frequency at aspect angle 
i , 

ia  is a random complex 

coefficient representing the amplitude and initial phase uncertainties of the echo signal, and  in t  is 

additive white complex Gaussian noise at the receiver. The Doppler frequency 
i

f  is given by 

 2 cos
i c if f v c  


, where cf  is the carrier frequency and c  is the speed of light. 

Because most of the radar systems are digitized, and for the convenience of simulation, we use a 

discrete-time formulation to replace the model in Equation (2). The estimated Doppler speed v̂


 and the 

estimated aspect angle ˆ
i  are used to eliminate the Doppler phase shift inside the echo signal by 

multiplying the inverse phase sequence with frequency  ˆ ˆ ˆ2 cos
i c if f v c 


. Although the estimated 

Doppler frequency ˆ
i

f  is different from the real value 
i

f , the slight difference can be ignored. After 

phase compensation, the echo signal is then given by: 

 ,i ji i H i i  s g u n  (3) 

where all the continuous-time signals are sampled using the same sampling interval sT , i  is the 

digitized random coefficient given by i s iT a  , iu  is an 1uL   complex vector representing the 

transmit waveform, ,i jHg  is an 1gL   normalized complex vector representing the impulse response of 
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jH  at aspect angle 
i , 

in  is an 1sL   ( 1s u gL L L   ) complex vector representing the circularly 

symmetric zero-mean complex Gaussian noise with known variance 2

i , and 
is  is an 1sL   complex 

vector representing the received signal of the thi  radar. The convolution operation in Equation (3) can 

be replaced with matrix multiplication by defining the convolution matrix: 

 

 
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 

   

 (4) 

where ,i jHG  is an 
s uL L  complex matrix. Equation (3) can therefore be written as: 

 ,i ji i H i i s G u n  (5) 

The transmit waveform 
iu  is restricted by the total energy constraint, which is given by: 

 H

i i iEu u  (6) 

where 
iE  is the normalized transmit energy of the thi  radar. 

3. GLR Based Sequential Hypothesis Testing 

One of the three major characteristics of cognitive radar is the preservation of the information 

content of radar returns [9]. Haykin [9] suggests that this can be realized using a Bayesian approach. 

Based on this idea, Goodman [10] proposed the integration of waveform design techniques [8] with a 

SHT framework [11]. The test is based on sequential observations and updates running in a  

closed-loop. It updates the probabilistic understanding of all the hypotheses after each illumination and 

then makes a decision on the next transmit signal. In this section, we extend the SHT framework to the 

case of centralized cognitive radar networks. In addition, since we lack knowledge of the parameter i , 

a GLR based SHT framework is used instead of the one based on likelihood ratio. 

3.1. Amplitude Factor and GLR 

In our signal model Equation (5), the variance of additive noise can be measured offline for each 

radar, but we still lack the knowledge of the parameter i . The likelihood ratio test cannot be applied 

to this problem. Instead, we use the GLR test in which the unknown parameter i  is replaced with its 

MLE. Although the GLR test is not optimal, it appears to work quite well in practice [22]. 
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When the aspect angle 
i  is known for Equation (5), the MLE of parameter 

i  under jH  is [23]: 

    
1

| , , ,
ˆ

j i j i j i j

H H

i H H i H i H i i  


 
  

G u G u G u s  (7) 

and the generalized likelihood function under jH  is given by: 

  
 

   | | , | ,22

1 1
ˆ ˆ ˆ; , | exp

j j i j j i js

H

i i i H i j i i H H i i i H H iL

ii

p H     


 
    

 
s s G u s G u  (8) 

The likelihood function is used to update the probability of each target hypothesis until a decision 

has been made. In practice, we use the estimated ˆ
i  from Equation (1) to replace the unknown 

i . 

Since the scatterer distribution changes slowly with respect to the aspect angle (the position and 

intensity of scatterers remain approximately unchanged within ten degrees [24]), our approximation is 

reasonable. This also gives us an opportunity to reduce the number of target templates from different 

aspect angles stored in the knowledge base. A database with the template from every three degrees is 

sufficient for practical applications [25]. By replacing the unknown 
i  with the estimated ˆ

i , the 

generalized likelihood function is then given by: 

  
 

   ˆ ˆ| | |2 , ,2

1 1ˆˆ ˆ ˆ; , | exp
j j js i j i j

H

i i i H i j i i H i i i H iL H H
ii

p H
 

   


 
    

 
s s G u s G u  (9) 

3.2. Centralized Bayesian Updates and Sequential Test 

Since no interference exists among the radars in the network, the joint likelihood function under jH  

is the product of all the likelihood functions in (9) as given by: 

    1 |

1

ˆˆ, , ; , |
j

N

N j i i i H i j

i

p H p H 


s s s  (10) 

where N is the total number of radars in the network or the number of radars covering the target 

position if the detection area is not completely covered by the network. After every radar has 

performed an observation, the likelihood functions are gathered to update the probability of each target 

hypothesis Hj. If we let P
(k-1)

(Hj) represent the probability for Hj before the thk  observation, the 

posterior probability after executing the thk  observation is given by: 

 
   

          

          

1

|

1

1

|

1 1

ˆˆ; , |

ˆˆ; , |

j

j

N
k k k k

j i i i H i j
k i

j NM
k k k k

j i i i H i j

j i

P H p H

P H

P H p H

 

 







 


 
 
 



 

s

s

 (11) 

The radar network continuously interrogates the target channel and updates the probability of each 

hypothesis until the time when hard decisions can be made with adequate confidence. Let ,m n  for 

m n  be the desired probability of incorrectly selecting nH  given that mH  is true [12]. The GLR 

between mH  and nH  can be calculated as: 
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  
   
   

,

k

k m

m n k

n

P H

P H
   (12) 

The experiment terminates and jH  is selected to be true when the condition: 

 
  ,

,

,

1k j n

j n

j n






   for all n j  (13) 

is met for some j  [10]. If the condition is not met for any of the hypotheses, another illumination cycle 

commences. 

4. Adaptive Waveform Design 

Another major characteristic of cognitive radar is the feedback structure from the receiver to the 

transmitter [9]. Based on the prior probability of each hypothesis obtained from previous tests, the 

transmit waveform can be optimized to enhance system performance and efficiency. In this section, we 

provide two adaptive waveform design techniques for extended target recognition. One is the  

eigen-waveform solution proposed by Guerci [8] and Goodman [10]. The waveform is designed to 

maximize the weighted average Euclidean distance between all the target hypotheses where the 

probabilities of the hypotheses are used as the weighting coefficients. This works quite well in 

situations where the amplitude of the ideal echo is known a priori. However, the method is not suitable 

for situations with amplitude fluctuation where the parameter 
i  is unknown. To solve this problem, 

we propose a minimum correlation algorithm for waveform design. 

4.1. Eigen-waveform Solution 

In situations with no amplitude fluctuation ( 1i  ), a provably optimal transmit waveform for the 

2M   case is derived by Guerci [8]. The transmit signal should maximize the Euclidean distance 

between the mean values of the likelihood functions given by: 

    
1 2 1 2

2

, , , ,i i i i

H
H

i iH H H H
d

   
  u G G G G u     (14) 

The unknown parameter i  is set to 1 in Equation (14), which indicates that the amplitude of the 

ideal echo is known a priori. The predicted target aspect angle with respect to the thi  radar at the time 

of upcoming transmission is denoted by i
 . Prediction is required when the target is moving at high 

speed. Otherwise, it can be replaced with the latest estimated ˆ
i . The optimal waveform under energy 

constraint Equation (6) which maximizes Equation (14) is the eigenvector corresponding to the 

maximum eigenvalue of the target autocorrelation matrix defined as: 

    
1 2 1 2, , , ,i i i i

H

i H H H H   
  Ω G G G G     (15) 

When 2M  , the autocorrelation matrix is suggested to be in the form: 

    
1

, , , , ,
1 1

i m i n i m i n

M M H

i m n H H H H
m n m

   




  

   Ω G G G G     (16) 
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where ,m n  is a weighting factor [8]. The transmit waveform is designed to maximize the weighted 

average Euclidean distance of each binary pair, which is the eigenvector corresponding to the 

maximum eigenvalue of matrix 
iΩ . Using the target probabilities, Goodman [10] compared two 

weighting factor ,m n  options, ,m n m nP P    and ,m n m nP P  , and found that the second weighting 

coefficient provides better performance. However, since we have no idea about the value of unknown 

parameter 
i , it should be set to 1 if the eigen-waveform solution is applied directly. 

4.2. Minimum Correlation Algorithm 

To solve the problem of amplitude sensitivity, we suggest using the minimum correlation criterion 

instead of the maximum Euclidean distance. Figure 3 shows the multidimensional space for the 

received signal under two target hypotheses, where Figure 3(a) represents the situation without 

amplitude fluctuation and Figure 3(b) represents the one with amplitude fluctuation.  

Figure 3. Multidimensional space for received signal under two target hypotheses. The 

situation without amplitude fluctuation is shown in (a) and the situation with amplitude 

fluctuation is shown in (b). 

1Gu

2Gu

1Gu

2Gu

s s

 a  b

 

As shown in Figure 3(a), since the ideal echo signals 
1G u  and 

2G u  are exactly known, the 

likelihood ratio between the two hypotheses is determined by the Euclidean distance between s  and 

1G u  and the Euclidean distance between s  and 2G u . This leads to the idea of designing the transmit 

waveform to maximize the weighted average Euclidean distance. However, in situations with 

amplitude fluctuation, shown in Figure 3(b), the GLR between the two hypotheses is determined by the 

perpendicular distance from s  to the axis of 
1G u  and the axis of 

2G u . The transmit waveform should 

be designed to make the axis of 
1G u  and 

2G u  perpendicular to each other, or, in other words, to 

minimize the correlation between 
1G u  and 

2G u . When 2M  , according to the eigen-waveform 

solution, the transmit waveform 
iu  is designed to minimize the weighted average of correlation 

between each binary pair. Thus, in our optimization approach we aim to achieve: 

 
1

, ,
1 1

arg min
i m i n

M M
H H

i m n H H
m n m

P P
 



  

  
u

u u G G u   (17) 

subject to the constraint in (6), where mP  and nP  are the posterior probabilities of target hypothesis mH  

and nH . 
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5. Results 

In this section, we demonstrate the benefits of a cognitive radar network for extended target 

recognition by comparing it to one without a feedback structure. We also compare the performance of 

the different adaptive waveform design approaches described in Section 4. To evaluate the 

performance of the closed-loop system, 500 different sets of targets are generated. Each set includes 

4M   target hypotheses. For each hypothesis, a two-dimensional target with multiple reflection 

centers is randomly generated according to: 

      , , , , ,

1

,
j j j j

L

H x y H l x x H l y y H l

l

g         


    (18) 

where the number of reflection centers 5L  , the reflection coefficients ,jH l  are the samples of a 

zero-mean complex Gaussian distribution with unit variance, ()  denotes the Dirac delta function, and 

the locations of the reflection centers are the samples of uniform distribution in a circular region. The 

diameter of the circle equals the length of the target impulse response gL . From every aspect angle, the 

impulse response represents the projection of the reflection centers onto the radar LOS [26], which is 

given by: 

    , , , , , ,

1

cos sin
i j j j j

L

H H l x H l i y H l i

l

g t t      


    (19) 

Since the Dirac delta function in Equation (19) is not practical and cannot be sampled in discrete 

time, the continuous impulse response is filtered using an ideal low-pass filter with bandwidth 1B   

and sampled with an interval of 1sT  . The elements of the impulse response vector ,i jHg  are given by: 

     , , , , , ,

1

sinc 1 2 cos sin
i j j j j

L

H H l g x H l i y H l i

l

n n L     


    g  (20) 

where 1,2 gn L   and sinc()  denotes the normalized sinc function. The impulse response vector is 

then normalized to unit energy. The specified error rate in SHT is , 0.01m n   for all hypotheses and the 

prior probability 
   0

jP H  is set to 1/ M  for every j. The length of all impulse responses and 

waveform vectors is 31u gL L  . In the observation process, the additive noise 
in  is randomly 

generated with variance 2 1i   and the amplitude factor i  is the sample of a zero-mean complex 

Gaussian distribution with unit variance. 

5.1. Adaptive Waveform Design 

For Figure 4, three radars (located at 1
ˆ ˆ0 0R x y 


, 2

ˆ ˆ10 0R x y 


, and 3
ˆ ˆ0 10R x y 


km) form the 

network. The target is located at ˆ ˆ10 10R x y 


km and is moving with velocity ˆ ˆ100 0v x y 


m/s. The 

position and velocity of the target are assumed to be exactly known by the radars. 

Figure 4(a) shows the average number of iterations required for each waveform design approach to 

reach a decision as a function of transmit energy while Figure 4(b) shows the correct recognition rates 

of the decisions. Since GLR is used in the Bayesian formulation instead of the likelihood function, the 

correct rates for different methods are no longer the same when the same desired incorrect probabilities 



Sensors 2010, 10                            

 

 

10191 

are set. For each target set, two waveforms, a simple pulse and an eigen waveform, are used for 

comparison with the waveforms obtained by the proposed minimum correlation algorithm. A simple 

pulse is defined as  1,1, ,1
T

uE Lu   which is a constant in the transmit duration. It does not 

change according to knowledge acquired from the environment, which represents a non-cognitive radar 

system. The eigen-waveform solution adaptively changes the transmit waveform to maximize the 

weighted average Euclidean distance between each hypothesis pair, where the weighting factor is the 

product of prior probabilities. In our algorithm, the waveform is designed to minimize the weighed 

correlation between the hypotheses. Both the eigen-waveform solution and the minimum correlation 

algorithm update the system’s understanding of the target after each observation and then optimize the 

waveform to match that understanding. To show the importance of using the GLR test in situations 

with amplitude fluctuation, the three waveform design techniques are also involved in a statistical 

model mismatch. With the same observations, the generalized likelihood function Equation (9) is 

replaced with the likelihood function that assumes the amplitude factor 
i  is known to be 1, which is 

not true. 

Figure 4. (a) Average number of illuminations to reach a decision and (b) correct 

recognition rates at the time when a decision has been made vs. energy per illumination for 

different waveform design approaches. 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

18

20

Energy per illumination

(a)

A
v
g

. 
n

u
m

b
e

r 
o

f 
ill

u
m

in
a

ti
o

n
s

 

 

Simple pulse

Eigen solution

Min correlation

Simple pulse(mismatch)

Eigen solution(mismatch)

Min correlation(mismatch)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy per illumination

(b)

C
o

rr
e

c
t 
re

c
o

g
n

it
io

n
 r

a
te

s

 

 

Simple pulse

Eigen solution

Min correlation

Simple pulse(mismatch)

Eigen solution(mismatch)

Min correlation(mismatch)

 

As shown in Figure 4(b), for all three methods without considering actual amplitude fluctuations 

(mismatch), the correct recognition rates are approximately equal to 0.25 (1 M ), which is the same as 

the probability of blind random selection. From Figure 4, it is clearly demonstrated that both of the 

closed-loop waveform design methods perform better than the approach transmitting a simple pulse. 

With approximately the same number of illuminations, the eigen-waveform solution achieves much 

higher correct rates. Meanwhile, the minimum correlation method not only reduces the average number 

of illuminations but also enhances recognition accuracy. Nevertheless, it is difficult to make a 

judgment between the two. Compared with the eigen-waveform solution, our method requires fewer 

illuminations, but performs higher probabilities of failure. 
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To make a fair judgment, an additional experiment is performed, in which all three methods execute 

the same number of illuminations. No hard decision is made by the SHT framework. The probability of 

each hypothesis is updated repeatedly after each illumination using the Bayesian formulation. Once the 

number of illuminations reaches the maximum, the hypothesis with the greatest probability is selected 

to be true. Figure 5 presents the correct recognition rates of 500 different sets after six illuminations 

and eight illuminations. Our method shows the highest recognition accuracy among the three while the 

approach transmitting a simple pulse shows the lowest. In addition, for each waveform design 

approach, the greater the number of illuminations is, the higher the correct recognition rates become. 

Figure 5. Correct recognition rates after six (a) or eight (b) illuminations vs. energy per 

illumination. The hypothesis with maximum probability is selected to be true after six  

(a) or eight (b) illuminations. 
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Figure 6. Waveform spectra compared to target spectral variance. Eigen-waveform 

solution is shown in (a) and the minimum correlation algorithm is shown in (b). 
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In Figure 6, the spectrum of both the waveforms designed by the eigen-waveform solution and the 

minimum correlation algorithm are compared with the weighted spectral differences between the four 

impulse responses. To maximize the weighted Euclidean distance, eigen waveform focuses most of its 

energy on the maximum response frequency, since the Fourier transform preserves the Euclidean 
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distance between signal and its spectra. However, our minimum correlation algorithm seems to have no 

significant relation with the target spectral variance, since it aims to achieve minimum correlation 

between the echo signals. 

The average Euclidean distance and the average correlation between the ideal echoes generated by 

different methods are shown in Figure 7, where 50 target impulse response sets are randomly generated 

according to previous descriptions as test samples.  

Figure 7. Comparison of (a) the average Euclidean distance and (b) the average correlation 

between the ideal echoes for different waveform design techniques. 
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As seen in Figure 7, the eigen waveforms clearly produce echoes with largest average distance 

among all the transmit waveforms. However, the eigen solution also causes highest correlation in the 

echo set. With the presence of unknown parameter 
i  described in our signal model (5), echoes with 

high correlation can hardly be distinguished from each other, since the amplitude and the initial phase 

of the signal no longer contain any information. The echoes of simple pulse show a volatile average 

distance since no adaptation is performed. A more stable average distance is acquired by our minimum 

correlation algorithm because the transmit energy is widely distributed in the passband. Despite the fact 

that the echoes of our algorithm show lower average distance than that of the eigen solution, our 

algorithm outperforms any other method in the comparison of average correlation, which leads to 

better recognition performance in the situations with amplitude fluctuation. 

The ideal echoes in a scenario with only two target hypotheses are presented in Figure 8 to show the 

characteristics of different waveform design techniques in a more intuitive way. As we can see, the 

echoes corresponding to the eigen solution have more energy than the echoes corresponding to the 

minimum correlation algorithm, and the distance between the eigen solution echoes is also much larger 

than the distance between the minimum correlation echoes, which is consistent with the results shown 

in Figure 7(a). However, significant correlation is found between the eigen waveform echo 1 and the 

eigen waveform echo 2. It is very difficult to distinguish the two signals, if the eigen solution echo 1 is 

multiplied by a factor “−1”. The echo signals have a tendency to be opposite to each other about the 
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origin in the multidimensional space, since the eigen solution aims to maximize the Euclidean distance 

between the two signals. 

Figure 8. Ideal echoes generated by (a) the eigen-waveform solution and (b) the minimum 

correlation algorithm in a scenario with only two target hypotheses. 
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5.2. Estimation Variance of Target Aspect Angle 

In previous experiments, the position and velocity of the target are assumed to be known by the 

radars, which means that the target aspect angle for the thi  radar in Equation (1) is known. To show 

the influence of the estimation variance of aspect angle on system performance, the direction of the 

estimated target velocity v̂


 is assumed to be the sample of a uniform distribution on 

   arg 2,arg 2v v    
 

, where   is the interval of the uniform distribution. 

Figure 9. (a) Average number of illuminations to reach a decision and (b) correct 

recognition rates at the time when a decision has been made vs. energy per illumination for 

different estimation variances of the target aspect angle. 
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In Figure 9, the proposed waveform design approach is tested with 500 target sets in situations with 

different  , while the other conditions are the same as those from the previous experiments. As 

shown in this figure, higher correct recognition rates are achieved with fewer average illuminations in 

the situation of higher target aspect angle accuracy. If we assume that the variance of the measured 

Doppler velocity is the same for each radar, higher accuracy in target velocity can be acquired by 

increasing the number of radars in the network, which will lead to better system performance. It is also 

clear that the average number of illuminations and the correct recognition rates for both 0    and 

3    are very close to each other. The feasibility of building a knowledge base with target templates 

every three degrees is proved once again. 

5.3. Number of Radars 

Figure 10 shows the performance of the proposed waveform design algorithm applied to centralized 

cognitive radar networks with different numbers of radars. The target is still located at 

ˆ ˆ10 10R x y 


km and is moving with velocity ˆ ˆ100 0v x y 


m/s while the radars are located at 

1
ˆ ˆ0 0R x y 


, 2

ˆ ˆ10 0R x y 


, 3
ˆ ˆ0 10R x y 


, 4

ˆ ˆ20 0R x y 


, 5
ˆ ˆ0 20R x y 


, 6

ˆ ˆ20 10R x y 


, and 

7
ˆ ˆ10 20R x y 


km. The first N  radars in the queue are selected to work while the others remain idle. 

We also assume that the position and the velocity of the target are exactly known. As shown in  

Figure 10(b), the recognition accuracies are approximately the same for different number of radars in 

the network. In Figure 10(a), the average number of illuminations apparently decreases monotonically 

with increasing numbers of radars in the network. However, the total energy transmitted from all the 

radars to reach a decision still increases. 

Figure 10. (a) Average number of illuminations to reach a decision and (b) correct 

recognition rates at the time when a decision has been made vs. energy per illumination for 

different numbers of radars in the network. 
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6. Conclusions 

We have extended the idea of integrating waveform design techniques with a SHT framework for 

target recognition [10] to the case of a centralized cognitive radar network. Several issues, including 

the target-aspect sensitivity and the echo amplitude fluctuation, have been considered and solved. The 

GLR was employed in the SHT framework to update the joint probabilities of target hypotheses 

because of the unknown amplitude factor. The performance of three waveform design approaches, a 

non-adaptive method transmitting a simple pulse, the eigen-waveform solution, and our minimum 

correlation algorithm, are compared using simulation. The advantage of both adaptive waveform 

design technologies based on the latest knowledge about the target was substantial, and our minimum 

correlation algorithm outperformed the eigen-waveform solution. Moreover, the influence of system 

parameters on recognition performance is shown by simulations using different estimation variances of 

target aspect angle and different number of radars. 
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