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Abstract: A nonlinear redundant lifting wavelet packet algorithm was put forward in this 

study. For the node signals to be decomposed in different layers, predicting operators and 

updating operators with different orders of vanishing moments were chosen to take norm 
pl  of the scale coefficient and wavelet coefficient acquired from decomposition, the 

predicting operator and updating operator corresponding to the minimal norm value were 

used as the optimal operators to match the information characteristics of a node. With the 

problems of frequency alias and band interlacing in the analysis of redundant lifting 

wavelet packet being investigated, an improved algorithm for decomposition and node 

single-branch reconstruction was put forward. The normalized energy of the bottommost 

decomposition node coefficient was calculated, and the node signals with the maximal 

energy were extracted for demodulation. The roller bearing faults were detected 

successfully with the improved analysis on nonlinear redundant lifting wavelet packet 

being applied to the fault diagnosis of the roller bearings of the finishing mills in a plant. 

This application proved the validity and practicality of this method.  
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1. Introduction  

With the continuous changes and improvements of modern science, technologies and industries, 

various kinds of mechanical equipments are developing rapidly towards the trend of large scale, high 

precision, high speed and automation. With the increasingly meticulous design and manufacturing of 

equipment, the social and economic benefits created by them have also been accumulating. However, 

the normal equipment operation inevitably causes the dissipation of components, the long-term 

accumulation of which will eventually cause the failure of the whole equipment. Due to the difference 

in the production and assembly of equipments as well as the complexity of the operation environment, 

there are generally many uncertainties during the operation. In order to prevent the occurrence of 

accidental faults and avoid the resulting severe consequences, the investigation and application of 

advanced signal processing techniques and the achievement of the effective monitoring of equipment 

status is of great practical significance. 

Equipment in operation generally exhibits nonlinear engineering characteristics, so the wavelet 

transform has been widely applied to the fault diagnosis of equipment owing to its multi-resolution 

analysis feature. However, conventional wavelet functions are generally constructed in the field of 

mathematics and have difficulties in fitting with practical engineering signals; besides, wavelet 

functions in different scales are acquired from mother wavelets after scaling and translation. Therefore, 

once a wavelet function is chosen, identical filter groups are employed both within one scale and 

among different scales, which suggests a lack of flexibility and certain limitation in capturing variable 

information. 

In 1996, Sweldens from Bell Laboratories proposed a lifting framework to construct compactly 

supported wavelets and dual wavelet functions in the time domain. Wavelet functions with expected 

characteristics could be obtained with the design on the lifting operator based on prior initial 

biorthogonal filter groups, e.g., increasing the orders of vanishing moments of wavelets or making 

wavelet functions to approximate specific waveforms [1]. Such a wavelet construction method, which 

does not depend on the Fourier transform but is implemented completely in the time domain, is also 

known as the second generation of wavelet transforms. With its advantage of simple and rapid 

calculation, not only the characteristics of first-generation wavelets could be preserved, but the 

drawbacks of the scaling and translation invariation could be overcome [2]. The lifting algorithm has 

been widely studied since the day of its presentation. Claypoole et al. presented a design method of the 

predicting operator and updating operator based on equivalent filters [3]; Duan et al. applied the 

sliding-window characteristics extraction method based on the lifting algorithm and successfully 

detected the shock components induced by misalignment, imbalance and fracture of bearing pads [4]; 

Huang et al. extracted distribution information and composed the feature vectors by applying 

sampling-importance-resampling procedure to the signals decomposed with lifting wavelet packets in 

the wavelet domain, then the equipment state was evaluated with the support vector machine [5]. 

Samuel et al. suggested an adaptive lifting algorithm with constraints to detect and diagnose the faults 

of the bearings in an epicyclic gearbox of helicopter transfer equipment [6]. Because lifting wavelets 

had the translation invariability, Lee et al. put forward the non-sampling lifting wavelet transform and 

omitted the link of subdivision in original transform [7]. To explain the propagation of error in the 

redundant lifting algorithm, Li et al. presented an improved redundant lifting algorithm based on 



Sensors 2011, 11                            

 

 

262

normalized factors, and extracted successfully the characteristics of faint fault signals using the shock 

pulse method [8]. Zhou et al. applied the second-generation redundant wavelet transform in the 

vibration signal analysis of the gearboxes and the valve gears of petrol engines, and conducted 

identification using extracted fault characteristics as the classifier input, with better classification 

results being obtained [9]. In conclusion, the lifting algorithm has been constantly investigated in 

depth and applied to signal analysis, image processing and other fields. Based on prior studies, the 

thought of nonlinear redundant lifting wavelet packet transform was introduced for the first time in this 

paper. Meanwhile, combined with solutions of frequency alias and band interlacing problems, a new 

nonlinear redundant lifting wavelet packet transform decomposition and node-signal single-branch 

algorithm was then proposed and successfully applied to the fault diagnosis of the roller bearings in 

large equipment. 

The paper is organized as follows: Section 2 presents the implementation of the nonlinear redundant 

lifting algorithm in detail, with the problems of frequency alias and band interlacing in the algorithm 

being analyzed and improved; Section 3 presents a characteristics extraction method based on the 

wavelet packet energy and single-branch reconstruction signal demodulation; in Section 4, the 

algorithm is validated through the analysis of engineering examples; finally, conclusions are made. 

2. Improved Algorithm for Nonlinear Redundant Lifting Wavelet Packet 

2.1. Lifting Wavelet Principle 

The lifting wavelet transform is implemented in the following three steps [10]: 

(1) Split. The original signal }),({ ZkkxX   is subdivided into two parts: odd sample )(kxo  and 

even sample )(kxe : 

}),12({)(},),2({)( ZkkxkxZkkxkx oe   (1) 

(2) Prediction. Since adjacent signal samples are highly correlated, the odd sample is predicted 

based on the even sample through a predicting operator P , and the prediction error is defined as the 

detail signal d(k): 

)]([)()( kxPkxkd eo   (2) 

(3) Updating. In order to reduce the frequency alias induced by the down-sampling in the splitting 

process and correct the difference between xe(k) and X, it is necessary to update the detail signal d(k) 

through an updating operator U and replace xe(k) so as to acquire a smoother approximation signal 

d(k): 

)]([)()( kdUkxka e   (3) 

Since the lifting wavelet transform is performed completely in the time domain, the reconstruction 

course is very simple, including updating recovery, prediction recovery and merging, i.e., the direction 

of the signal flow and the operator in the original formula are reversed. 
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2.2. Redundant Lifting Wavelet Principle 

Although the lifting algorithm has been widely used, it still has the following problems: 

(1) The first step of the lifting wavelet transform is to perform a subdivision which is actually a  

down-sampling course, so the lengths of the acquired odd and even samples are both the half of 

original signals. With the increase of the decomposition scale, the point number of samples 

decreases constantly, and the amount of the information provided decreases consequently. 

(2) Since the split is a down-sampling course, the sampling rate of detail signals may no longer 

satisfy the Nyquist sampling principle. Accordingly, frequency alias emerges, and false 

frequency components are created. 

(3) Due to the existence of the split course, the output results change when original signals delay 

for an odd number of sampling points. Therefore, the lifting algorithm does not have the 

translation invariability. 

According to the analysis, all the above problems are induced in the link of split. Accordingly, the 

split step was considered to be removed. The representation of multi-phase matrix for the lifting 

wavelet transform was shown in Figure 1 [11]: 

Figure 1. Expression of multi-phase matrix for lifting wavelets. 
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With the equivalent translocation transform [12] being performed on the above figure and the  

down-sampling step being removed, translation was performed on detail signals, then the 

decomposition course of the redundant lifting wavelet transform divided into the following two  

steps [13]: 

(1) Prediction:  
)]([)()( kxPkxkd new        (4) 

(2) Updating:  
)]([)()( kdUkxka new       (5) 

The reconstruction course of the redundant lifting algorithm still included three steps: updating 

recovery, prediction recovery and merging. The approach to the implementation of updating recovery 

and prediction recovery was the same as that to the lifting algorithm, but the course of acquiring 

reconstructed signals by merging was changed into the process of averaging the samples xu(k) and xp(k) 

acquired by updating recovery and prediction recovery, i.e.: 

)]()([
2

1
)( kxkxkx pu       (6) 
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According to (4) and (5), the algorithm á trous [12] was introduced, and a method of designing the 

predicting operator and the updating operator of redundant lifting wavelets could be obtained; the 

initial prediction and updating coefficients could be acquired with the interpolating subdivision 

method; the coefficient of layer j was obtained through the interpolation zero-filling method performed 

on the coefficient of layer j − 1. Therefore, the predicting operators and updating operators used for 

decomposition at different layers were all different; besides, the lengths of the approximation signal 

samples and detail signal samples acquired from decomposition were the same as those of original 

signals, so the information was redundant. 

2.3. Nonlinear Redundant Lifting Algorithm 

The construction of wavelet functions based on the lifting algorithm is conducted completely in the 

time domain rather than on a basic function after scaling and translation, which made it possible to 

design different predicting operators and updating operators for one same decomposition layer or 

different decomposition layers. Claypoole et al. put forward a nonlinear lifting algorithm based exactly 

on the above idea, i.e., selecting different predicting operators according to the local characteristics of 

images [14]. In the local smooth area of an image, the adjacent samples had strong correlation, so 

predicting operators with high-order vanishing moments were employed; near the edge of an image, 

the adjacent samples had weak correlation, so low-order predicting operators were employed. 

Accordingly, such lifting wavelet transform, in which predicting operators were determined based on 

the sample correlation, was nonlinear, while the lifting algorithm guaranteed the reversibility of the 

transform. 

Based on the above idea and prior studies, the idea of a nonlinear transform was introduced in the 

redundant lifting wavelet packet transform in this study to obtain a nonlinear redundant lifting wavelet 

packet algorithm. Since the nodes generated by the decomposition of wavelet packets involved 

different band information, predicting operators and updating operators with different orders of 

vanishing moments were employed when performing redundant lifting wavelet packet decomposition 

on the node signals to be decomposed in layer j (j ≥ 1), so that all the characteristic information in the 

signals to be decomposed could be matched as much as possible. Because the number of node signals 

in the wavelet packet of layer j, 2j times of selection of predicting operators and updating operators 

were needed. 

2.3.1. Design of Predicting Operators and updating Operators 

In this study, the initial prediction coefficients and updating coefficients in all layers were designed 

with interpolating subdivision before trousa'  was introduced to perform zero-filling interpolation on 

initial coefficients. For the decomposition at layer j, 2j − 1 zeros were interpolated among initial 

prediction coefficients and updating coefficients to acquire the prediction coefficients and updating 

coefficients at layer j. 

After their respective design, the predicting operators and updating operators (for decomposition) 

with different lengths were chosen according to the time-frequency characteristics of the scale function 

and wavelet function. The length of the predicting operator was denoted by N, and the length of the 

updating operator was denoted by N
~

. When N was small, the frequency characteristics of the scale 
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function and wavelet function could not be improved even if N
~

 was increased; when N  increased 

gradually, the frequency characteristics of the scale function and wavelet function would be  

improved [13]; besides, when N  increased inapparently, the frequency characteristics of the scale 

function and wavelet function did not improve much. Because of the above two reasons as well as the 

purpose of reducing the amount of computation, N = 4, 12, 20 and 20,12,4
~ N  ( NN ~

) were 

chosen as the lengths of predicting operators and updating operators in this study, respectively. Thus, 

the following six wavelet functions in total could be obtained through combination: 

Table 1. Selection of predicting operators and updating operators. 

Predicting operators 4 12 12 20 20 20 
Updating operators 4 4 12 4 12 20 

 

Therefore, six groups of decomposition results could be obtained from the node signals of each 

wavelet packet for each decomposition result. The answer as to which pair of predicting operator and 

updating operator generated by corresponding decomposition result was optimal depended on the 

established objective function. 

2.3.2. Norm lp 

After being decomposed with the redundant lifting wavelet packet algorithm, the signals could be 

characterized by a series of approximation coefficients and wavelet coefficients. In the various 

application fields of wavelets, such as fault signal analysis, signal denoising and image compression, it 

is generally preferred that the number of non-zero wavelet coefficients is as small as possible. Because 

the wavelet transform is flexible in basis selection while the time-domain structure characteristics of 

wavelets based on the lifting algorithm bring more freedom in selecting predicting operators and 

updating operators, which wavelet basis is the optimal one matching the characteristics of signals and 

satisfying analysis requirements? Since the wavelet transform is the inner product operation between 

signals and wavelet function and the autocorrelation function and cross-correlation function of the 

signals can be expressed by inner product form, the wavelet transform could be regarded as a measure 

for the correlation or similarity between the wavelet function and signals [15]. The more similar the 

selected wavelet function is to the interested characteristics in signals, the larger the wavelet 

coefficient will be; consequently, such characteristics could be embodied more significantly and other 

components in signals were inhibited. Therefore, the maximal similarity to signal characteristics could 

be used as the criterion for selecting the optimal wavelet basis. However, the following problem 

emerges: how to measure the similarity between signals and the wavelet basis? Since the purpose of 

the wavelet transform is to characterize original signals with a few wavelet coefficients, the sparsity 

could be used as one of the criteria for the similarity assessment [16].  

There are multiple parameters used for the sparsity evaluation. For the case without noise, generally 

norm l0 (i.e., the number of non-zero elements in the data vector) or the Shannon entropy standard is 

used to measure the sparsity of samples; for the case with noise, other parameters should be selected 

because the introduction of weaker noise is more likely to turn original sparse samples into ones that 
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are not sparse at all [17]. A frequently used approach is to replace norm l0 with lp. lp is defined as 

follows: 

1,)( 1   pxx p

k

p
kp      (7) 

Norm l0 is the utmost value of norm lp when p→0. In order to enable lp to approach l0 as much as 

possible, generally p is set very low, so p is chosen as 0.1 in this study. Besides, predicting operators 

and updating operators with different lengths were used in this study to perform redundant lifting 

wavelet packet decomposition on signals. The more similar the interesting components in signals were 

to the wavelet function corresponding to one of the groups of predicting operators and updating 

operators, the larger wavelet coefficients were acquired. According to the law of conservation of 

energy, the wavelet coefficients for other components in signals would be smaller or even approach 

zero. Thus, the number of the non-zero elements in wavelet coefficients would decrease, the 

coefficients became sparser, and corresponding norm lp would be lower. Therefore, the predicting 

operator and updating operator corresponding to the minimal lp of the coefficients acquired through 

decomposition were the optimal operators in this study.  

For computation simplification and the convenience of comparison, the coefficients acquired 

through the decomposition of wavelet packets were normalized to solve lp. Suppose the node signals in 

the wavelet packets to be decomposed at layer j−1 were xj−1,m (m = 1,2…2 
j−1), then the wavelet packet 

coefficient for layer j was xj,n (n = 1,2…2 
j). Normalized lp was solved against xj,n, i.e.: 

jp

k

p

k
knjknjpnj npxxx 2,2,1;1,)( 1

,,,,,     (8) 

where knjx ,,  was the No. k  element in wavelet packet coefficient No. n  at layer j. Since low-

frequency and high-frequency decomposition was conducted simultaneously in wavelet packet 

decomposition: 

1
2,12,,1 2,2,1;1, 

  j

pmjpmjpmj mpxxx   (9) 

where 
pmjx ,1  was the normalized pl  of the node signals in No. m wavelet packet at decomposed 

layer 1j . Because six groups of wavelet functions were chosen to decompose mjx ,1  in this study, 

six 
pmjx ,1  could be obtained for each mjx ,1 . The group of predicting operators and updating 

operators corresponding to the minimal value was selected as the optimal operators.  

In conclusion, the nonlinear redundant lifting wavelet packet algorithm could be divided into the 

following five steps: 

(1) The number i  of decomposed layers was determined; 

(2) Totally six groups of wavelet functions with different vanishing moments were chosen to 

perform wavelet packet decomposition on )1(,1 ijx mj  ; 

(3) The njx ,  acquired by decomposition was solved for its normalized pl ; 

(4) The predicting operators and updating operators corresponding to the minimal 
pnjx ,1  were 

selected as the optimal operators of mjx ,1 ; 

(5) The above steps (2)–(4) were repeated till layer i  was decomposed completely. 
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2.4. Problems of Frequency Alias and Band Interlacing 

There were two important problems in the lifting wavelet transform: frequency alias and band 

interlacing. The results of signal processing may be affected somewhat if such problems were ignored. 

Therefore, they were analyzed one by one and solved in this study. 

2.4.1. Frequency Alias 

The same as the classic wavelet transform, the frequency alias also existed in the lifting wavelet 

transform. There were two causes for this [18]:  

(1) The subdivision step in the lifting algorithm was a down-sampling course, and the sampling 

rate of detail signals in the wavelet packet decomposition would no longer satisfy the Nyquist 

sampling principle. Therefore, the frequency alias occurred with 
12 j

sf
 ( sf  was the sampling 

frequency, and j  was the number of decomposed layers) as the center of symmetry and the 

false frequency components was produced; 

(2) The undesirable cut-off characteristics of the high-pass filter and low-pass filter corresponding 

to predicting operators and updating operators made the frequency components of other nodes 

within the transitional zone of the filter to be folded up with the frequency boundary 

]
2

1
,

2
[

11 sjsj
f

v
f

v



 ( sf  was the sampling frequency, j  was the number of decomposed layers, 

and 12,1,0  jv  ) of the node as the center of symmetry. 

For the frequency alias induced by cause (1), there were two solutions: 

(1) Single-branch reconstruction was performed on node signals, so that the folded frequencies in 

the decomposition could be folded back during the reconstruction; 

(2) The split step in the decomposition course and the induced down-sampling problem were 

removed, with the redundant lifting wavelet transform brought in. 

The solution to the problem of frequency alias induced by cause (2) was as follows: 

(1) With the redundant lifting wavelet packet transform being performed on signal x , all node 
signals )(, nx kj  ( j  indicated the number of the layer being decomposed currently; 

jk 2,2,1   represented the serial numbers of nodes; Ln ,2,1 , n  indicated the serial 

number of sampling point of )(, nx kj  and L  indicated the sample length of )(, nx kj ) were 

acquired; 
(2) FFT  transformation was performed on all )(, nx kj : 

1,1,0)()(
1

0
,,  





LmWnxmX mn
L

L

n
kjkj   (10) 

where L
j

L eW
2


 . 
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(3) The frequency components excluding the band where )(, nx kj  was set to zero: 












 

othersmX

f
k

f
k

mXmXmX

kj

sjsjkjkjkj

,0)(
~

]
2

,
2

1
[)(),()(

~

,

11,,,
 (11) 

(4) IFFT  transformation was performed on )(
~

, mX kj  which was obtained through related 

processing: 

1,1,0)(
~1

)(~
1

0
,,  




 LmWmX

L
nx mn

L

L

n
kjkj   (12) 

In this study, the problem of frequency alias in the lifting algorithm was solved with the above 

method. 

2.4.2. Band Interlacing 

There was the band interlacing in the lifting algorithm apart from the problem of frequency alias. 

Although the frequency alias induced by the course of subdivision down-sampling could be overcome 

with the redundant lifting algorithm, the problem of band interlacing still could not be solved. A 

simulation signal was given as follows: the redundant lifting wavelet packet decomposition was 

performed on the above simulation signal, and the result was as follows: 

)4002sin()3602sin()1602sin()1202sin( tttts    (13) 

Figure 2. Node spectrogram about redundant lifting wavelet packet decomposition of simulation 

signal. 

 
It was seen that the frequency interchange still occurred at nodes )3,2(  and )4,2(  in Figure 2. 

Accordingly, the partially induced down-sampling as well as the consequent frequency folding-up 

against the center of symmetry were not the primary causes of the band interlacing; instead, the 

primary reason was the frequency alias caused by the undesirable cut-off characteristics of filters. With 



Sensors 2011, 11                            

 

 

269

the multi-layer redundant lifting wavelet packet decomposition being performed on signals (taking 

triple-layer decomposition for instance), the sequence of the nodes in different layers could be 

obtained as follows: 

Figure 3. Node sequence in redundant lifting wavelet packet decomposition. 

)4,3( )3,3( )8,3( )7,3( )5,3()1,3( )2,3( )6,3(

)1,2( )2,2( )4,2( )3,2(

)1,1( )2,1(

 
 

It is clear from Figure 3 that the decomposition results for all layers exhibited band interlacing from 

layer 2 on. Besides, it was also noticed from the figure that the occurrence of the interlacing had 

certain regularity, i.e., the two nodes obtained would be interchanged when the high-frequency nodes 

at each layer were decomposed. Accordingly, the problem of band interlacing could be solved with the 

following method: when the wavelet packet decomposition was performed on the high-frequency 

nodes in each layer, the information of the two obtained nodes (high-frequency and low-frequency) 

was exchanged. As the above process proceeded successively in each layer, the decomposition results 

with theoretical sequential arrangement of nodes could be acquired eventually. Figure 4 below showed 

the schematic solution to band interlacing: 

Figure 4. Schematic solution to band interlacing. 

)3,3( )4,3( )5,3( )6,3( )7,3()1,3( )2,3( )8,3(

)1,2( )2,2( )3,2( )4,2(

)1,1( )2,1(

 
 

According to Figure 4, the original signals were decomposed at the first layer and required no 
interchanging; when it came to the second layer, decomposition results )4,2(  and )3,2(  were 

interchanged to )3,2(  and )4,2(  because )2,1(  was a high-frequency signal, and a sequential result of 

)1,2( , )2,2( , )3,2(  and )4,2(  was obtained finally; when the original signals were decomposed at the 

third layer, decomposition results )4,3(  and )3,3(  were interchanged to )3,3(  and )4,3( , and )8,3(  and 

)7,3(  were interchanged to )7,3(  and )8,3(  because both nodes )2,2(  and )4,2(  were high-frequency 

signals; finally, a sequential decomposition result was obtained. The method above was applied layer 

by layer till the decomposition was finished. According to the discussions in the above sections, the 

improved forward transform of nonlinear redundant lifting wavelet packets proposed in this study was 

implemented as shown in the following figure: 
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Figure 5. Block diagram of improved forward transform of nonlinear redundant lifting 

wavelet packets. 

newP newUX

a

dNL

NL  FC

FCBM

BM

 
 

where NL  was a nonlinear operator based on norm )1( pl p  and was used to select the optimal 

predicting operator and updating operator adaptively which matched to the characteristics of node 

signals; newP  and newU  were the redundant predicting operator and the updating operator, respectively; 

BM was the operator to solve the band interlacing; FC was the operator used to eliminate the 

frequency alias. After approximation signal a and detail signal d were acquired through the 

implementation of the above forward transform on signal X which was to be decomposed, the 

decomposition of nonlinear redundant lifting wavelet packets could be achieved with the above 

forward transform being repeated on a and d. 

2.5. Node-Signal Single-Branch Reconstruction Algorithm 

In order to extract characteristic information from the interested bands, the nonlinear redundant 

lifting wavelet packet single-branch reconstruction algorithm was applied to node signals. The specific 

implementation of the reconstruction was as follows: 

(1) The node information to be reconstructed was preserved, while all other node information was 

set to zero; 

(2) Since other node information was set to zero, the frequency alias induced by the undesirable 

cut-off characteristics of the filter could be ignored; 

(3) In the redundant lifting wavelet packet decomposition, the information about two nodes 

obtained from high-frequency signal decomposition was interchanged to solve the problem of 

band interlacing. Therefore, this course must be taken into account in reconstruction; 

otherwise, wrong reconstruction results would be obtained. In this study, an approach of 

recording decomposition paths was employed to record the decomposition paths of nodes in the 

wavelet packet decomposition, and reverse reconstruction was carried out based on the 

decomposition paths of nodes in single-branch reconstruction; 

(4) The predicting operators and updating operators chosen for the decomposition of nodes were 

also recorded, and reverse reconstruction was carried out based on the recording results in 

single-branch reconstruction because a nonlinear algorithm was used in decomposition.  

The implementation flow of the above node-signal single-branch reconstruction algorithm was as 

shown in Figure 6. In the figure, R  is the operator to record the decomposition paths of nodes; NL  is 

a nonlinear operator. The node information was preserved while the information of all other nodes was 

set to zero in the single-branch reconstruction of a node (e.g., in the reconstruction of a , d  was set to 

zero; vice versa). 
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Figure 6. Block diagram about node-signal single-branch reconstruction of improved 

nonlinear redundant lifting wavelet packets. 

newPnewU
X
~

a

d



NL

NL

R

R

 21

 
 

Nodes were reconstructed according to recorded decomposition path R  and nonlinear operator NL , 

and then the two outputs were averaged, with the result as the eventual output of the node in the 

reconstruction of the layer. With the above course repeated, the final result of the node-signal  

single-branch reconstruction in multi-layer decomposition could be obtained. 

3. Characteristic Extraction Algorithm 

In order to successfully extract the faint fault characteristics from strong background noise and 

achieve an effective fault diagnosis of mechanical equipment, the nodes obtained from the nonlinear 

redundant lifting wavelet packet decomposition must be processed further combined with the fault 

mechanisms of corresponding parts. 
A spectral peak group with concentrated energy will be formed in a certain high-frequency band 

because of the modulating characteristics of the fault signals of roller bearings induced by resonance. 

Generally, great attention is paid to the band where the spectral peak group lies, due to the abundant 

fault information contained in it. Through the redundant lifting wavelet packet transform, signals are 

decomposed into different bands. In order to identify the node whose band is involved the spectral 

peak group, the analysis of the wavelet packet energy should be conducted according its energy 

concentration characteristics. Suppose knjx ,,  is element No. k ),,2,1( lk   in node n )2,2,1( jn   

at layer j and l is the sample length at the node, then the energy of the normalized wavelet packet is 

defined as follows: 


 


j

n

l

k
knj

l

k
knjknj xxxE

2

1 1

2
,,

1

2
,,,, )(  (14) 

A node with the maximal )( ,, knjxE  was selected for single-branch reconstruction according to the 

algorithm in Section 2.5. Hilbert modulation and envelope spectrum analysis [19] were conducted on 

)(~ tx  so as to identify the characteristic frequency of the fault because signal )(~ tx  still contained  

high-frequency modulating information after single-branch reconstruction: 
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In the equation, )](~[ txH , )(
~

tX  and )](
~

[ tXA  are the Hilbert transform, analytic form and amplitude 

envelop of )(~ tx , respectively. In conclusion, the fault characteristics extraction algorithm used in this 

study proceeded as follows: 

(1) The improved nonlinear redundant lifting wavelet packet transform was performed on signals; 

(2) The wavelet packet energy analysis was performed on the nodes obtained from decomposition; 

(3) Single-branch reconstruction, Hilbert modulation and envelop spectrum analysis were 

conducted on the nodes corresponding to the maximal energy. 

4. Engineering Cases Analysis 

The improved algorithm for nonlinear redundant lifting wavelet packet was applied to the case 

analysis on the step-up boxes in the high-speed finishing mills of a steel mill. The driving chain of the 

finishing mill is shown in the following figure: 

Figure 7. Driving chain of finishing mill in a steel mill. 

 
 

In the figure, black stripes represented the locations of measurement points. The on-line monitoring 

system detected that the peaks at the horizontal measurement point at the southern output terminal of 

the step-up box (marked by a red ellipse in Figure 7) exhibited an increasing trend from March 3, 

2009, with the maximum of 140.121 m/s2. The vibration acceleration signals (with the sampling 

frequency of 10,000 Hz and the number of sampling points of 2,048) at the measurement point at 3:00, 

February 22 were selected for time-domain and frequency-domain analysis. The results were as 

follows: 

Figure 8. Basic analysis of vibration acceleration signals at measurement point:  

(a) time-domain image. (b) frequency spectrogram. 
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Figure 8. Cont. 

 
 

From the time-domain image, it was clear that there were shock components and energy 

concentration also appeared in the frequency spectrogram. Accordingly, it was deduced preliminarily 

that the step-up box may have the potential for failure.  

The method in this study was applied to the signal for triple-layer wavelet packet decomposition, 

with the result obtained as follows: the calculated values of norm pl  for all nodes in all layers are 

shown in the following Table: 

Table 2. pl )10( 29  of all nodes. 

             Nodes 
Operators 

(0,1) (1,1) (1,2) (2,1) (2,2) (2,3) (2,4) 

(4,4) 8.4610 10.029 9.7141 10.466 10.430 10.288 9.9694 
(12,4) 8.4799 9.9424 9.7322 10.443 10.419 10.300 9.9515 
(12,12) 8.4499 9.9080 9.7571 10.438 10.425 10.300 9.9772 
(20,4) 8.4866 9.9333 9.7375 10.438 10.413 10.314 9.9509 
(20,12) 8.4482 9.9071 9.7595 10.434 10.421 10.312 9.9774 
(20,20) 8.4536 9.9088 9.7654 10.423 10.425 10.308 9.9871 

 

According to Table 2, the optimal predicting operator and updating operator used for the further 

wavelet packet decomposition of nodes were as follows: 

Table 3. Optimal predicting operator and updating operator for nodes. 

Nodes (0,1) (1,1) (1,2) (2,1) (2,2) (2,3) (2,4) 
Operator

s 
(20,12) (20,12) (4,4) (20,20) (20,4) (4,4) (20,4) 

 

According to Table 3, the optimal predicting operator and updating operator were applied for the 

nonlinear redundant lifting wavelet packet decomposition and thus the time-domain images for eight 

nodes obtained by triple-layer wavelet packet decomposition were shown as indicated in Figure 9. The 

normalized wavelet packet energy was taken from the eight nodes in Figure 9, and the results are 

shown in Figure 10. 
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Figure 9. Triple-layer nonlinear redundant lifting wavelet packet decomposition of signals. 

 
 

Figure 10. Wavelet packet energy analysis. 

 
 

From the wavelet packet energy shown in Figure 10, distribution and comparison of the energy of 

the eight nodes could be seen. The energy corresponding to node (3,2) was maximal, so the  

single-branch reconstruction and Hilbert modulation were carried out on (3,2). In order to verify the 

superiority of the method in this study, the local frequency spectrograms of signals were selected with 

both results being compared, as follows: 
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Figure 11. Modulation analysis: (a) local frequency spectrogram of signals. (b) 

modulation spectrogram after single-branch reconstruction of nodes. 

 
 

From the analysis of the results in Figure 11, several conclusions were made: 

(1) Figure 11(b) suggested the frequency component of 117.2 Hz as well as its double 

frequency Hz4.234  and triple frequency 351.6 Hz, and the component of double frequency 

was distinct; 

(2) The above frequencies could not be found in Figure 11(a); 

(3) The method in this study was superior according to the above comparison; 

(4) The base frequency of 117.2 Hz in the figure was very close to the calculated characteristic 

frequency 119.5 Hz of the fault occurred on the outer ring of a horizontal bearing at the 

southern output terminal of the step-up box of the finishing mill, within the range of 

frequency resolution.  

Figure 12. Schematic damage of bearing outer-ring of axis I at the southern output 

terminal of the step-up box. 
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It was deduced that the bearing had a fault on its outer ring. This analysis result agreed completely 

with the result of unboxed overhaul in mid-March of 2009. The image in Figure 12 shows the bearing 

damage detected in the overhaul. 

5. Conclusions 

In this study, an improved algorithm for nonlinear redundant lifting wavelet packets was put 

forward and applied to the extraction of faint fault characteristics. With the minimal norm pl  as the 

criterion for selecting the optimal predicting operator and updating operator which matched the 

characteristics of node signals, the redundant lifting wavelet packet decomposition were performed on 

different nodes through predicting operators and updating operators with different vanishing moments. 

The frequency alias and band interlacing emerged during decomposition were analyzed, and a solution 

was given. The node signals were selected for single-branch reconstruction and Hilbert modulation 

based on the wavelet packet energy method. With the application of the method described in this study 

to the case of outer-ring damage in the bearing of a step-up box of a finishing mill from a steel mill, 

the characteristic frequency and the frequency multiplication component of the outer-ring faults of 

bearings were extracted successively in the analysis results, proving the feasibility and validity of the 

method in the fault diagnosis of roller bearings. 
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