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Abstract: Autonomous manipulation in semi-structured environments where human 

operators can interact is an increasingly common task in robotic applications. This paper 

describes an intelligent multi-sensorial approach that solves this issue by providing a  

multi-robotic platform with a high degree of autonomy and the capability to perform 

complex tasks. The proposed sensorial system is composed of a hybrid visual servo control 

to efficiently guide the robot towards the object to be manipulated, an inertial motion 

capture system and an indoor localization system to avoid possible collisions between 

human operators and robots working in the same workspace, and a tactile sensor algorithm to 

correctly manipulate the object. The proposed controller employs the whole multi-sensorial 

system and combines the measurements of each one of the used sensors during two 

different phases considered in the robot task: a first phase where the robot approaches the 

object to be grasped, and a second phase of manipulation of the object. In both phases, the 

unexpected presence of humans is taken into account. This paper also presents the 

successful results obtained in several experimental setups which verify the validity of the 

proposed approach. 
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1. Introduction 

 

The development of flexible manipulation tasks by robotic manipulators in semi-structured 

environments with human operators presents an important challenge for the implementation of robot 

controllers. These robot controllers should perform context-aware tasks so that the robots’ trajectories 

are adapted to the changes in the environment. This context-awareness can be achieved by the 

combination of the information registered by several sensors. These sensors should be able to track not 

only the objects to be manipulated, but also the human operators who work in the same workspace. 

This paper proposes a multi-sensorial system composed of a camera (which is used to guide the robotic 

system towards the object to be manipulated), a human tracking system (which combines an inertial 

motion capture system and an indoor localization system to localize human operators) and several 

tactile sensors (which are used to execute the object manipulation tasks).  

Different techniques have been implemented in order to interpret the information from these sensors 

for their application in the robot controller. Visual servoing techniques are usually applied to guide 

robots using information registered by cameras. However, robotic systems based on visual servoing 

suffer from occlusions, particularly in manipulation tasks where the robotic tool may block the line of 

sight between the camera and the object to be manipulated. In order to overcome this drawback, this 

paper proposes to use an additional mini-robot, which is installed at the end-effector of the robotic 

manipulator, as shown in Figure 1. The camera is installed at the end of this mini-robot, so that the 

camera can be moved independently to avoid occlusions caused by the robotic manipulator. This 

camera can be used to control the movements of both robots by considering its view of the object to be 

manipulated. On the one hand, the mini-robot is guided by employing a direct visual servoing control, 

which obtains the forces and torques to be applied to each joint of the robot in order to perform the 

desired task. This robot controller only takes into account the visual information of the object obtained 

from the camera of the mini-robot and does not consider the position of the human operator. This paper 

extends the previous direct visual control with a novel hybrid approach which uses the human-robot 

distance computed by the human tracking system in order to avoid collisions between any human who 

may enter the workspace and the mini-robot. On the other hand, the robotic manipulator is controlled 

by a Reference Virtual Camera (RVC) which simulates the use of an eye-in-hand camera from the 

images registered by the camera of the mini-robot. 

In order to implement the manipulation of the object, this paper proposes the use of a robotic hand 

installed at the end-effector of the robotic manipulator (see Figure 1). This paper presents a novel 

tactile controller which takes into account the pressure information obtained from several tactile 

sensors installed over the fingers of this robotic hand. This tactile controller guarantees that a stable 

grasp of the object is kept while the fingers of the hand are moved to drive the object to a desired 

configuration. 

This multi-sensorial system considers that the execution of the manipulation tasks is divided into 

two main phases (see Table 1): the first phase involves the robot approaching towards the object to be 

manipulated, and the second phase constitutes the manipulation of this object. During the first phase, 

the trajectory of the robotic manipulator is controlled by the RVC in order to move the robotic hand 

installed at its end-effector towards the object. A 3D model of the object is known. Meanwhile, the 

trajectory of the mini-robot is obtained by the direct hybrid controller. In this phase the robotic hand 
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does not perform any movement because it is away from the object to be manipulated. During the 

second phase, the robotic manipulator does not move because it is already at the manipulation position 

and thus, the robotic hand performs the tactile control in order to execute the manipulation task. The 

trajectory of the mini-robot continues to be obtained by the direct hybrid controller since the human 

operator may enter the environment in any phase of the task. 

Figure 1. Multi-robot system composed of the robotic manipulator and the coupled  

mini-robot with a camera in an eye-in-hand configuration. 

 

Table 1. Phases and control used by each one of the robotic systems in the proposed approach. 

Phases Robot Controller 

Approaching 

Robotic manipulator RVC 

Mini-robot Direct Hybrid Controller 

Robotic Hand No Control 

Manipulation 

Robotic manipulator No Control 

Mini-robot Direct Hybrid Controller 

Robotic Hand Tactile control 

This paper is organized as follows. Section 2 discusses the research works related to the approach 

presented in the paper. Section 3 describes the proposed hybrid controller. The particular control 

system developed to guide the mini-robot is detailed in Section 4. Section 5 expands the system 

proposed to position the robotic manipulator using the Reference Virtual Camera. The phase of 

autonomous manipulation of an object is described in Section 6. Section 7 shows different experiments 

to validate the proposed methods. Finally, the most important conclusions are discussed in Section 8.  

2. Related Work 

In an autonomous robotic manipulation task, the first topic that must be resolved is the positioning 

of the robot manipulator. In order to increase the safety and precision of the robotic task, visual 

servoing systems are usually employed to guide the movement of the robotic system using visual 

information [1]. Nevertheless, when a visually guided robot performs a manipulation task, the image 

features acquired from the sensors can be occluded by the robot tool, or by the own object geometry. 

These occlusions can appear not only in an eye-in-hand configuration (the camera is located at the  

Robotic manipulator 
Mini-robot 

Camera 

Objects to 

manipulate 

Robotic hand 
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end-effector of the robot), but also in an eye-to-hand approach (the camera observes the end-effector 

and the object). Therefore, the problem of occlusions is an important topic of research in visual 

servoing systems. The use of more than one camera can decrease the probability of an occlusion event 

during the visual servoing task [2]. In [3], the problem is tackled by introducing a second camera in 

order to have the benefits of both configurations: eye-in-hand and eye-to-hand. The eye-to-hand 

camera is positioned over a mobile robot that observes the manipulator (which has an eye-in-hand 

configuration). The same strategy is employed in [4], where both camera configurations are fused to 

improve the visual servoing task. In order to improve the manipulation tasks while guiding the robot 

manipulator using a visual servoing scheme, a similar approach to [3] is proposed in this paper. The 

main drawback in this type of solutions is that the occlusions are not completely solved despite the use 

of multiple cameras. However, in this paper only one camera is employed to improve the scene 

visibility. The approach proposed in order to solve the problem of occlusions involves the building of a 

mini-robot. This mini-robot has a camera located at its end-effector with the aim of obtaining a suitable 

viewing point for helping the robotic manipulator to manipulate the objects correctly. Therefore, contrary 

to the other mentioned approaches, only one camera is employed to improve the scene visibility. 

Classical image-based visual servoing systems assume that the robot is a perfect positioning device. 

This type of control does not take into account the system dynamics, which is not suitable when the 

robot executes fast and/or accurate movements. As mentioned in [5], until the mid 90s, few proposed 

visual-based controllers took into account the non-linear dynamic robot-arm model. During the  

last 15 years, the research trend in this field has continued to be the same: controllers are designed with 

the assumption that the robot is a perfect positioning device without dynamics. By means of direct 

visual servo, the internal control loop of servo motors is removed, so that the visual servo control has 

to stabilize the robot. One of the first research works about direct visual servo control was the one 

developed in [6]. The controller proposed by Miyazaki and Masutani was based on the transpose 

Jacobian approach, which is a method implemented for the first time by Takegaki and Arimoto [7]. 

However, in this approach, the visual system was modelled as a simple rotation transformation, 

without taking into account the robot translation. Kelly and Márquez [8] implemented a more accurate 

camera-robot system model than the one proposed in [6]. This method solves the problem of the need 

to obtain the intrinsic parameters of the camera, but it requires accurate of its orientation. This problem 

is solved in [5], where the controller proposed in [8] is improved to consider the generated uncertainty 

for the camera orientation and thus, local asymptotic stability is achieved. During the first decade of 

the 21st century, adaptive control theory has been studied in depth, which allows solving the errors of 

the dynamic parameters estimation. This way, Zergeroglu et al. designed an adaptive controller which 

takes into account the estimation uncertainty of the camera-robot parameters [9]. In 2008, Wu and Li 

developed another adaptive controller which estimates the extrinsic and intrinsic parameters of the 

camera by considering a dynamic model of the robot [10]. In this field, the research of Wang et al. [11] 

is worth mentioning, in which the authors solve the visual control of a three d.o.f. robot by using an 

adaptive algorithm that updates, in each iteration, the distance value between the camera and the object. 

Thereby, this method obtains a distance-independent interaction matrix. Only a few works about direct 

visual servo include an image-based visual control approach, and neither of them permits to divide the 

space using a hybrid approach as presented in this paper. 
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Hybrid control involves the simultaneous control of separate directions with different sensors.  

Thus, hybrid visual/force control involves the simultaneous control of separate directions by vision and 

force [12,13], which is an extension of hybrid position/force control [14]. Hybrid control schemes have 

been widely developed using visual servoing systems: not only for combining visual and force sensors 

like in [12,13], but also for combining position-based and image-based visual servoing [15], or for 

integrating reinforcement learning with visual servoing [16]. The proposal in this paper is based on the 

hybrid control approximation. In order to assure the safety of a human operator who is working in a 

robotic cell, the mini-robot directions are partitioned. Hence, a direct visual servoing system controls 

the principal task of positioning, whereas the distance between the human and the robot controls the 

secondary task of human safety. 

In regard to the manipulation phase, the robotic hand installed at the end-effector of the robotic 

manipulator executes a specific trajectory of its fingers in order to move the manipulated object to a 

desired configuration. In order to compute and execute this trajectory, a manipulation planner should 

be implemented by considering three different types of constraints [17]: fingers’ kinematics 

constraints, contact maintenance constraints and equilibrium constraints. The first type of constraints 

verifies that the fingers’ trajectories computed by the planner are kinematically feasible; in other 

words, the required movements of the fingers should be within the kinematic limits of their joints. The 

second type of constraints guarantees that the contact between the surfaces of the fingers and the object 

is maintained during the entire manipulation task. The third type of constraints verifies that the fingers 

apply a minimum contact force to the object in order to keep the grasp stable and thus undesired 

sliding between their surfaces is avoided. Previous research works propose different planners in order 

to solve this robotic manipulation problem [18]. Some of them (such as [19] and [20]) are only based 

on the geometric relations between the fingers and the object so that they resolve the kinematic and 

contact maintenance constraints but they do not consider the contact forces which are required to fulfill 

the equilibrium constraints. Other planners are based on punctual contact models with friction based on 

force closure, which guarantee theoretically that a specific grasp is able to counteract any external 

force applied to the object. These theoretical models are usually implemented as inequalities between 

the components of the friction forces which are solved by linear/quadratic programming (such as  

in [21] and [22]) or by conditions which are verified for each intermediate grasp of the object to be 

manipulated (such as in [23] and [24]). These planners use approximations where the surfaces of the 

fingers and/or the object are simplified in order to assume punctual contacts. This simplification 

involves that these planners are only applied in simple simulations and they are never applied in real 

manipulation tasks where objects and fingers with complex surfaces are used. In order to overcome 

this limitation, this paper proposes a novel tactile control algorithm that verifies that a robotic hand can 

perform a manipulation task of an object with arbitrary shapes by taking into consideration the contact 

pressures registered by tactile sensors installed over its fingers. This tactile control algorithm receives 

as input a list of finger joint angles which are obtained off-line by the geometric planner described  

in [25]. This planner considers the kinematic and contact maintenance constraints of the manipulation 

task in order to obtain a possible sequence of fingers movements which drive the object to the desired 

configuration. Afterwards, the proposed tactile control is applied in order to execute the planned 

fingers movements with the real hand. This tactile control guarantees that the fingers apply a minimum 

contact force to the object in order to avoid grasp instability caused by the loss of contacts between the 
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object and the fingers. Thereby, the tactile control verifies that the equilibrium constraints are verified 

during the real execution of the robotic manipulation. 

3. Visual Hybrid Controller 

This section describes the hybrid controller proposed for the mini-robot guidance. Section 3.1 

describes the concept of hybrid tasks. The primary task is defined as a visual servoing task to be 

performed by the robot. The secondary task is another sensor based task which will be used for 

avoiding collisions between the robot and the human operator. Furthermore, in Section 3.2 the hybrid 

controller is extended to direct control in order to improve the system behavior. Finally, Section 4 

describes how this controller is applied for the guidance of the mini-robot. 

3.1. Hybrid Tasks Definition 

In image-based visual servoing systems, the control is directly carried out in the image space. 

Therefore, the controller input is a comparison between the observed image features s and the desired 

ones. The reference or desired features, s*, are expressed as features observed by the computer vision 

system in the desired location (i.e., points, lines, circles, corners, etc.). The vision system is located in 

the feedback of the control loop, and deals with the extraction of these features during the task, s. The 

controller compares the real features and the desired ones and executes the necessary control actions in 

order to achieve the position where s = s*. 

This technique is usually implemented in an external loop that provides an input to the robot’s 

internal controller. This approach corresponds with the indirect visual servoing, but contrary to indirect 

visual servoing, in direct visual servoing the internal joint controller of the robot is replaced by the 

visual controller, which uses the vision system data directly to control and stabilize the robot. This last 

approach is employed to guide the mini-robot during the phases of approaching and manipulation. 

However, in order to avoid collision between the human and the robot, a new hybrid approach is 

presented in the following paragraphs.  

A visual servoing task can be described by an m-dimensional image function, e1, which must be 

regulated to 0: 

 1 s  e B s* -s B e  (1)  

where s = (f1, f2, … fk) is a k × 1 vector containing k visual features observed at the current state  

(fi = (fix, fiy)), while s* = (f1*, f2*, … fk*) denotes the desired features (extracted at the desired location). 

The visual features depend on the robot pose, s = s(r(t)), where r(t) is the relative pose between the 

camera and the environment at time t. B is an m × k combination matrix that must be of full rank m ≤ k 

in order to produce the m independent components of e1. The aim of visual servoing is to regulate the 

task function e1 to 0 so that se  = 0. 

The task e1 controls m degrees of freedom from a total of n. When m < n, this means that a virtual 

link of class N is fulfilled so that m = n − N ≤ k. The used combination matrix B is:  

T

sWLB   (2)  
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where T

sL  represents the transpose of the interaction matrix [1]. W is an m × n matrix of full rank m 

and has the same kernel that Ls. The choice of W depends on the number of features k. For example, 

let us consider the following cases: 

• Rank (Ls) = m = k → sLW  . In this particular case, mIB  . 

• Rank (Ls) = m < k → the rows of W are the m vectors which form the base of the row space 

generated by sL . 

In a general case, with k visual features s only m robot degrees of freedom (DOF) are constrained,  

m = n − N ≤ k. Therefore, two different tasks will be defined [26]: 

• e1: primary task (see Equation (1)). This is the visual task which employs the desired visual 

features, s*, to guide the mini-robot. 

• e2: secondary task. This task is expressed as a cost function to be minimized under the 

constraint that e1 is satisfied. Furthermore, when e2 = 0, nΙWW  . Therefore, if the 

secondary task is null, all the degrees of freedom are controlled by the primary task. 

Considering the previous assumptions, the following task function, e, which depends on the primary 

e1 and the secondary e2 tasks, is defined: 

     
T

2
n

*

T

2
n1 

























 

r

e
WWΙssBW

r

e
WWΙeWe  (3)  

where 
r

e



 2
 is the gradient of e2 and WWΙ

n  is a projection operator on the null space of W. 

In order to completely define the task function, the value of e2 must be described. e2 is defined as a 

cost function which depends on the task performed by the robot (see Section 4).  

3.2. Direct Hybrid Controller 

Robot dynamics expresses the relationship between the forces acting on a robot mechanism and the 

accelerations produced: 

      τqGqqqCqqM   ,  (4)  

In this equation, 
nx1q  are the joint positions, 

nx1q  represent the joint velocities and 
nx1q  are the joint accelerations. Furthermore, 

nxnM  is the symmetric positive definite 

manipulator inertia matrix,   nx1, qqqC   is the vector of centripetal and Coriolis torques, 
nx1G  

is the vector of gravitational torques and 
nx1τ  are the effective joint torques. The hybrid controller 

that computes the suitable joint torques to regulate the task function e to 0 (see Equation (3)) is  

given by: 

   
 qGqK

e
WWΙJ

e
WJeJKτ 









  

v
2

n

T

g
1T

g

T

gP

ˆ

t

Gr

t
 (5)  

where 
t

 1ê
 and 

 
t

Gr



 2e
 represent the variation on the primary task and the gradient of the secondary 

task due to a possible autonomous target motion. 
nxn

P K  is the square diagonal nonsingular 

proportional matrix gain and nxn

v K  is the derivative matrix gain. These constants are symmetric 



Sensors 2011, 11                            

 

 

9846 

positive-defined matrices that are estimated by the user. J = J(q, s) is defined as the Jacobian matrix 

and it is computed according the following equation: 

     qJsLsqJ gs,   (6)  

where Ls (s) is the previous defined interaction matrix. Jg = Jg (q) is the geometric Jacobian matrix of 

the robot which relates the joint velocities and the translational and angular velocities (νc, ωc 

respectively) with respect to the camera frame located at the robot end: 

 qqJ 
g

c

c












v
 (7)  

In order to apply the previous defined controller in the mini-robot, the following assumptions are 

considered: 

(1) The scene is static, so that 
t

 1ê
 and 

 
t

Gr



 2e
 are zero. In case of non-static scenes, our previous 

approach [27] can be applied in order to determine the estimation of the autonomous target motion. 

(2) There exists a robot joint configuration qd for which the task function is zero (and it is an 

isolated solution). 

Considering the previous assumptions, the closed loop behavior can be easily obtained as: 

    qKeJKqqqCqqM 
v

T

gP,   (8)  

From the previous equation, the value of q  can be obtained: 

    qqqCqKeJKqMq  ,v

T

gP

1



 (9)  

In order to demonstrate the controller stability, the following locally positive defined candidate 

Lyapunov function is employed: 

  sP

T

s

T

2

1

2

1
eKeqqMqV    (10)  

The time derivative of the previous Lyapunov function is: 

    sP

T

s

TT

2

1
eKeqqMqqqMqV    (11)  

and considering qJe  s  and Equation (9), the previous time derivative function is equal to: 

    

    qJKeqqMqqqqCqqKqeJKq

qJKeqqMqqqqCqKeJKqV





P

T

s

TT

v

TT

gP

T

P

T

s

T

v

T

gP

T

2

1
,

2

1
,





 (12)  

Furthermore, the time derivative of the inertia matrix, and the centripetal and Coriolis matrix satisfy: 

    0,
2

1T 







 qqqqCqMq   (13)  

Finally, from Equations (3), (12) and (13) it can be concluded that: 

  qJKeqKq
r

e
WWΙBeWJKqV 

P

T

sv

T

T

2
ns

T

gP

T 

























 

 (14)  
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If there is no human in the workspace, all the degrees of freedom are controlled by the primary task. 

In this case the visual task constrains all the n degrees of freedom and 
nΙW , which leads to 

0WWΙ  

n . With this assumption, Equation (14) is equal to: 

qKqqJKeqKqeLJKqV 
v

T

P

T

sv

T

s

T

s

T

gP

T   (15)  

Kv is a symmetric positive-defined matrix, consequently V is a globally negative semi-definited 

function. Therefore, the point    TT

0

TTT 0qqq   is a stable equilibrium. 

In order to study the asymptotic stability, the LaSalle theorem can be applied. To do that, the 

following assumptions are considered:  

 As previously indicated, a static target is considered, therefore, the closed loop system is 

autonomous.  

 The Jacobian, J, is considered as continuous differentiable with respect q, so that, the rank of J 

is n.  

To probe the condition of the LaSalle theorem, first, the components of the state vector  Tqq   

which makes 0V  must be determined. In this case, 0V  when 0q . Considering q  and q equal 

zero, from Equation (8) the following equation is obtained: 

s

T

Ps

T

s

T

gP

T

gP0 eJKeLJKeJK   (16)  

In order to assure that the equilibrium    TT
0dqqq  is stable, we must conclude that dqq   

from Equation (16). As it is described in [5,8], considering the previous mentioned assumptions, 

Equation (16) has an isolated solution at dqq  , therefore, the equilibrium is locally asymptotically 

stable. 

When the human enters within the workspace, the secondary task must be minimized under the 

constraint e1 = 0. Therefore a Cartesian controller is applied to some degrees of freedom determined by 

WWΙ
n . More details about the stability of Cartesians controllers based on Jacobian transpose can 

be seen in [28]. 

4. Mini-Robot Controller 

As previously indicated, the mini-robot has been constructed by the authors. Therefore, the 

dynamical behavior is well known. This aspect permits to apply the direct hybrid controller presented 

in Section 3.2 to guide the mini-robot. The primary and secondary tasks employed by this robot are  

the following: 

• e1: the primary task is an image-based task (see Equation (1)). 

• e2: the secondary task is employed to avoid collisions between the robot and human operators. 

When the human operator enters within the workspace, the primary task does not constrain all the n 

robot DOF. In this way, the other motion components are redundant and can be used to perform the 

secondary task e2.  
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The main goal of the secondary task is to guarantee that the mini-robot does not collide with the 

human operator while it is performing its task. In [4], a cost function is employed to avoid occlusions. 

However, in this paper another secondary task is defined so that it reaches its maximum when the 

collision occurs. The employed cost function is equal to: 











dmin

dist
12 e  (17)  

where dmin is an empirical threshold so that e2 = 0 if dist > dmin, and α is a positive gain to be adjusted. 

Thereby, the threshold dmin represents the minimum distance which must be kept between the 

mini-robot and the human operator. While the human-robot distance dist is above this threshold, the 

task e2 is null. Otherwise, this task moves the mini-robot away from the human as safety behaviour.  

The distance dist between the human operator and the mini-robot is computed in real-time during 

the execution of the manipulation task by the safety human-robot interaction system described in [29]. 

This system is composed of a human tracking system and a precise human-robot distance computation 

algorithm based on bounding volumes.  

The human tracking system (see Figure 2(a)) is composed of an inertial motion capture system and 

an UWB (Ultra-WideBand) localization system [30]. The inertial motion capture system is based on a 

suit with 18 IMUs (Inertial Measurement Units) which register the relative rotations of all the limbs of 

the human body.  

 

Figure 2. Safety system for human operators: (a) Human Tracking system; (b) Bounding volumes. 

  

(a) (b) 

 

The UWB localization system is based on a small tag which is worn by the human operator and 

which emits UWB pulses to four sensors installed at fixed positions of the workspace. This UWB 

system computes the position of the tag and thus it obtains a good estimation of the global position of 

the human operator in the environment. The rotational measurements of the inertial system and the 
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global position measurements from the UWB system are applied over a skeleton which represents the 

kinematic structure of the body of the human operator. Thereby, the resulting human tracking system is 

able to determine precisely the position of all the bones of the body of the human operator on  

real-time. The human-robot distance computation algorithm receives as input the previous skeleton of 

the human operator and the current joint values of the robots. Afterwards, it covers the skeleton of the 

human with a group of bounding volumes, Swept-Sphere Lines, (see Figure 2(b)) and it also covers 

each link of the mini-robot with these bounding volumes [31]. The positions of the links of the mini-

robot are updated by applying forward kinematics to its joint values. Finally, the algorithm computes 

the distance between each pair of bounding volumes which cover the body of the human operator and 

the structure of the mini-robot. The distance dist applied for the control of the robot is established as 

the minimum distance value between all these pair-wise distance tests. 

5. Robotic Manipulator Controller 

5.1. Reference Virtual Camera 

Only a vision-based task is employed for the robotic manipulator guidance. Therefore, the approach 

described in Section 3.1 can be used considering nΙWW  . In this case, only the task e1 is used. 

However, in order to guide the robotic manipulator, some modifications must be performed in the 

previous approach. The controller described in Section 3.1 considers that an eye-in-hand camera is 

employed. However, in our case the camera is located at the end of the mini-robot. To overcome this 

problem, a Reference Virtual Camera (RVC) located at the end of the robotic manipulator is used. The 

RVC is a virtual camera which will be employed to simulate the use of an eye-in-hand camera at the 

robotic manipulator.  

Using the RVC, the image-based controller employed to guide the manipulator robot is: 

 RVC

s u uλ *v - L s - s  (18)  

where su and su* are the extracted and desired visual features considered by the RVC. In order to 

obtain these features, the approach described in the following paragraphs is employed. 

First, we consider C
OM  as extrinsic parameters of the real camera located at the end of the mini-robot 

(pose of the observed object frame with respect to the camera frame). Therefore, a 3D point of the 

object, 
O
PP , can be expressed in the camera coordinate frame as: 

  O

P

C

O

C

P

C

P

C

P

C

P ,, PMP zyx  (19)  

Considering a pin-hole camera projection model, the point 
C

PP  with 3D coordinates relative to the 

camera reference frame is projected onto the image plane at the 2D point p. This point is computed 

from the camera focal length, f, as: 

 
T

C

P

C

P

C

P

C

PT
f,f, 












z

y

z

x
yxp  (20)  

Finally, the units of Equation (20) specified in terms of metric units are scaled and transformed in 

pixel coordinates relative to the image reference frame, as: 

   yx,ff v0u0yx fvfu, f  (21)  
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where (fu, fv, u0, v0) are the camera intrinsic parameters. More specifically, (u0, v0) is the position of 

the optical center and (fu = sx, fv = sy) represent focal length in terms of pixel, where sx and sy are the 

scale factors relating pixels to distance. 

In order to perform the robotic manipulator guidance using the RVC, the following steps have been 

implemented: 

(1) Considering s = (f1p, f2p, …, fkp,) as the extracted visual features by the camera located at the 

end of the mini-robot, the pose of the observed object frame with respect to the mini-robot 

camera 
MC

OM  must be obtained (estimation of the camera extrinsic parameters). To determine 

the value of 
MC

OM , an initial estimation of the previous pose is used  
1

MC

OM . A 3D model of the 

observed object is also known. This model stores the position of the characteristic points with 

respect to the object frame  O
kp

O
2p

O
1p

O
p ,...,, pppP   which will be extracted by the camera at the  

mini-robot. Furthermore, the model stores other characteristic points which will be employed to 

reconstruct the visual information captured by the RVC,  O
ku

O
2u

O
1u

O
u ,...,, pppP  . Figure 3 

represents the characteristic points P
o 

p extracted by the camera at the mini-robot and the points 
O

uP  extracted by the RVC. 

Figure 3. Reference Virtual Camera scheme. 

 

To determine the value of 
MC

OM , an additional controller is defined which progressively 

reduces the error indicated in Equation (22). This error represents the difference between the 

observed data, s, and sp. This last set of features is the position of the same features as s  

but computed by back-projection employing the current extrinsic parameters,  
1

MC

OM   

Equations (19) and (21): 

ev = sp − s (22)  

The time derivative of ev is equal to: 

tt
s

p

pv














r
L

r

r

s
s-se   (23)  
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To make ev decrease exponentially to 0, v2v λ ee  , the following control action is obtained: 

vs2λ
t

eL-
r 



 (24)  

where λ2 is a positive control gain. 
t

r
represents the variation to be applied, at each iteration, to 

the extrinsic parameters,  
i

MC
OM . Once the error is cancelled, the value of  

i
MC
OM  will be equal 

the extrinsic parameters of the camera located at the end of the mini-robot. 

(2) From MC
OM  and the mini-robot kinematics ( RVC

MCM ), the homogeneous transformation matrix 

between object O and the RVC can easily be obtained as RVC
OM  = RVC

MCM ·
MC
OM . 

(3) From the object 3D model it is possible to obtain 
O
uP  (3D pose of the characteristic points with 

respect to the frame O, see Figure 3). This last set of features is different of the object features 

extracted by the mini-robot. Using this information and the matrix RVC
OM , the pose of the 

characteristic points with respect to RVC is equal to RVC
uP  = RVC

OM ·
O
uP . From the previous 

pose and using Equations (20) and (21), the value of the visual features in pixel coordinates 

relative to the image reference frame su can be obtained. These features will be the extracted 

features used at each iteration of the visual servoing task. 

(4) As a classical image-based visual servoing is performed, the desired features are extracted by 

using a learning stage in which the robotic manipulator is moved to the desired location. In this 

stage, the pose of the mini-robot is unknown (the mini-robot can be located at any pose). 

Therefore, to learn the desired features ( u *s ) the steps 1–3 must be performed but considering 

the robotic manipulator located at the desired pose. 

6. Robotic Manipulation Based on Tactile Control 

As described in the Introduction section, while the robotic manipulator is approaching the object to 

be manipulated, the robotic hand installed at its end-effector is situated over this object. When the 

RVC control of the robotic manipulator stops since the approaching phase has finished, the 

manipulation task of the robotic hand is executed. First of all, an automatic closing process of the 

fingers of the hand is performed until the object is restrained by the fingers and its initial grasp is 

obtained. In order to calculate this initial configuration of the fingers, previous grasp synthesis 

algorithms could be applied [32]. Then, the in-hand manipulation task of the object is executed in 

order to drive the object to a desired configuration by controlled movements of the fingers. In order to 

develop this task, tactile information is needed. This information is obtained from several tactile 

sensors installed over the surfaces of the fingers of the hand. Each sensor is composed by an array of  

pressure-sensing elements (i.e., tactels). Thereby, each sensor obtains an array of contact pressure 

values which correspond to the pressure applied to each tactel. This paper proposes a tactile control 

algorithm which takes into consideration the maximum pressure values from these tactile arrays in 

order to execute the movements of the fingers which are required to move the manipulated object. 

This tactile control algorithm receives as input a list of finger movements (i.e., a trajectory of finger 

joint angles) and executes them while verifying that each finger exerts a minimum contact pressure 

over the object so that the contact is not broken. The finger joint trajectory is computed by the 

geometric planner for robotic manipulation presented in [25] by considering the kinematic limits of the 
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fingers and the geometric models of their surfaces (represented as triangle meshes). For each step of 

the previous finger joint trajectory, the tactile control algorithm is executed. Algorithm 1 shows the 

general pseudo-code of the developed tactile control algorithm.  

 

Algorithm 1. Tactile Control Algorithm. 

Algorithm: Tactile Control Algorithm 

Input: JointTrajectory[1..nSteps][1..nFingers], readjustThreshold[1..nFingers], safetyThres[1..nFingers] 

Implementation: 

01: for i = 1..nSteps 

02:   Execute Joint Angles of step i of the trajectory for all fingers: JointTrajectory[i][1..nFingers]. 

03:   for f = 1..nFingers 

04:     numReadjust = 0 

05:     Get Maximum contact pressure p for finger f from its tactile sensor arrays. 

06:     if p < readjustThres[f] && numReadjust < NUM_MAX_READJUSTMENTS 

07:       Increment joint angles of finger f if joint torques of f do not exceed maximum allowable torque 

08:       numReadjust = numReadjust+1 

10:       goto line 5 

11:     end if 

12:     if p < safetyThres[f] && numReadjust == NUM_MAX_READJUSTMENTS 

13:       return // End manipulation task 

14:     end if 

15:   end for 

16: end for 

 

First of all, this algorithm sends to all the fingers the commands which are required to move them to 

the joint angles stored in the trajectory from the geometric planner (line 2 of Algorithm 1). After the 

movements of the fingers, the tactile control algorithm obtains the maximum contact pressure which is 

applied by each finger to the object from its tactile sensors (line 5 of Algorithm 1) in order to compare 

it with two thresholds: the readjustment threshold and the safety threshold. This maximum contact 

pressure is firstly compared with the readjustment threshold. If the contact pressure is above the 

threshold, this means that the finger is applying sufficient pressure to the object and the following 

finger is verified. Otherwise, the tactile control algorithm executes a small increment of the joint 

angles of the finger (line 7 of Algorithm 1). This small increment supposes a readjustment of the finger 

where its position does not change (since the finger is blocked by the surface of the object) but its 

contact pressure over the object is increased (since the torques applied to the joints of the fingers are 

increased and thus the force applied by its fingertip). Then, the contact pressure of this readjusted 

finger is compared again with the readjustment threshold in order to determine if more readjustments 

are necessary. Before executing each readjustment, the algorithm verifies that the maximum allowable 

joint torques of each finger are not exceeded.  

This iterative process can end in two different situations: either the contact pressure is increased by 

the successive readjustments over the readjustment threshold or a maximum number of readjustments 

is exceeded. This maximum number of readjustments is established in order to avoid infinite loops in 

the tactile control algorithm when the relative configuration between the object and the finger does not 
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permit sufficient pressure increments to reach the desired threshold. When the maximum number of 

readjustments is exceeded, the contact pressure is compared with the second threshold, i.e., the safety 

threshold. If it is above this threshold (line 12 of Algorithm 1), the algorithm continues and repeats the 

process with the following contacting finger. Otherwise, the manipulation task is stopped (line 13 of 

Algorithm 1) and the subsequent finger movements of the trajectory from the geometric planner are 

not performed since the contact between the finger and the object is too weak and more movements 

could create undesired sliding between their surfaces, which provokes grasp instability. If the 

maximum pressures of all the contacting fingers are over the corresponding safety thresholds, the 

following movement of the joint trajectory is executed. The process is repeated for the following step 

of the finger joint trajectory and it finishes when all the steps of the trajectory are executed. The 

readjustments of this algorithm involve an increase of the pressure of those contact points which are 

weak. Nevertheless, they do not involve an increase of the net force which is applied over the object 

and thus, undesired movements of the object are avoided. When a finger increases its contact pressure 

over the object, the forces transmitted to the other contacting fingers through the object are 

counteracted automatically by their motor controllers in order to keep their angular values. 

The main contribution of the proposed tactile control algorithm is the use of real contact pressure 

measurements in order to guarantee that finger-object contacts are not broken. As stated in Section 2, 

previous robotic manipulation planners which consider contact pressures/forces are based on the force 

closure principle. These algorithms are based on applying restrictions over the shapes of the surfaces 

of the fingers and the object (such as spherical or parametric surfaces) and over the contacts between 

them (such as point contacts). These restrictions permit to efficiently solve the constraints established 

by force closure, but they limit considerably the types of fingers and objects that can be applied in 

manipulation tasks. The proposed tactile control algorithm overcomes these limitations since it does 

not need any supposition about the surfaces and the contacts. This algorithm only takes into 

consideration the contact pressure values registered by the tactile sensors installed over the fingers. 

Therefore, the proposed tactile control algorithm does not verify the force closure of the intermediate 

grasps during the manipulation task. Nevertheless, the omission of the force closure principle does not 

involve the generation of unstable grasps during the manipulation task because the algorithm is able to 

avoid them by stopping the manipulation process when the contact of one finger is too weak, which is 

an indication of an imminent undesired break of contact. 

 

7. Experimental Results 

In this section, three experiments are described in order to show the correct behaviour of the 

approaches described in the paper. As described previously, the experimental architecture consists of a 

multi-robot system composed of a robot manipulator and a mini-robot. A camera is located at the  

end-effector of the mini-robot, whereas the end-effector of the robot manipulator consists of a robotic 

hand with tactile sensors. 

The mini-robot (built with the aim of helping the robotic manipulator by increasing the visibility 

during the manipulation task) is a joint RRR robot with three DOF attached to the end of the robotic 

manipulator, a Mitsubishi PA-10 (see the multi-robot system setup in Figure 4). This joint structure 

has been successfully adapted at the end of the PA-10 without physical modifications in the latter. All 
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the rotary joints of the mini-robot are independent of the robotic manipulator movement. The first 

rotary joint (q1) is used to place the mini-robot at any point around the manipulation task. The other 

two joints (q2, q3) move the camera on the point to achieve the objective and to acquire images without 

occlusions. To develop all the experiments, a Gigabit Ethernet TM6740GEV camera is mounted at the 

mini-robot end-effector. This camera acquires 200 images every second with a resolution of 640 × 480 px. 

The camera intrinsic parameters are (u0, v0) = (298, 225) px, and (fu, fv) = (1,082.3, 1,073.7) px. 

Finally, a three-fingered Barrett hand and seven PPS RoboTouch tactile sensors (two tactile sensors for 

each finger and one tactile sensor for the palm) have been employed to perform the manipulation tasks. 

Figure 4. Multi-robot system setup. 

 

In the first experiment, the robotic manipulator describes a trajectory in order to approach the 

robotic hand towards the object to be grasped. Although the proposed system is able to react to the 

presence of a human operator, during this experiment, the human operator does not interact with the 

robot and all the DOF of the mini-robot are controlled by the primary task of the hybrid controller. To 

test the correct behavior of the safety strategy, in the second experiment, the robotic manipulator 

performs the same trajectory. However, during the approaching phase the human enters within the 

robot workspace. Finally, in the third experiment the manipulation phase is tested, presenting a  

multi-sensorial scheme to perform manipulation tasks in a robotic cell. 

The execution time of the tactile control algorithm is limited by the sampling rate of the tactile 

sensors because the computational cost of the algorithm is negligible since it is based on comparisons 

with constant thresholds. Therefore, it is executed with a frequency of 30 Hz (i.e., 33 ms for each 

execution step). 

7.1. Experiment 1 

As previously described, during this experiment the human will not enter within the robot workspace 

and all the DOF of the mini-robot are controlled by the vision-based task. The main objective of this 

experiment is to test the direct visual servoing scheme proposed in Section 3.2, as well as the RVC 
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scheme proposed in Section 5 to guide the robotic manipulator, without the constraint of the human 

presence imposed by the hybrid controller. To do so, in this experiment, the matrix W
+
W = In in 

Equation (3). The desired features employed by the mini-robot controller in the primary task are  

s* = (f1*, f2*, f3*, f4*) = ((324,207), (377,272), (307,322), (257,259)) in pixels. Using these values, the 

image trajectories described by the features extracted by the mini-robot are shown in Figure 5. To 

perform this trajectory, the torques generated by the proposed controller are shown in Figure 6. In this 

figure, the label ―1‖ indicates the moment when the mini-robot reaches the desired features, (s = s*), 

but the experiment continues until the robotic manipulator achieves the corresponding desired features, 

u *s . The desired features required to guide the robotic manipulator are computed as described in 

Section 5. For this experiment, the set of visual features obtained at the goal position of the RVC is 

u *s  = ((254,79), (293,226), (131,274), (93,116)) in pixels. During this last phase of the experiment, 

the mini-robot compensates the robotic manipulator motion in order to maintain s = s*. The trajectory 

of the virtual visual features extracted by the RVC during the robotic manipulator guidance is 

represented in Figure 7. It is possible to observe that the desired features are achieved. 

Figure 5. Trajectory of the visual features extracted by the camera at the end of the  

mini-robot during the first experiment. 

 

Figure 6. Torques employed to guide the mini-robot during the first experiment. 
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Figure 7. Image trajectory described by the robotic manipulator using the RVC. 

 

7.2. Experiment 2 

Initially, both the robotic manipulator and the mini-robot desired features are the same as indicated 

in the Experiment 1. The main difference with respect to the previous experiment is the presence of the 

human operator. When the human enters within the workspace, the robotic manipulator is near its 

desired location and this robot only performs a decrease in depth. At this moment, the goal of the  

mini-robot is to observe the y-coordinate of f1p at position 272, i.e., f1py* = 272 px. Only one DOF is 

required to perform the image-based task e1 of the mini-robot direct hybrid controller. This DOF 

compensates the motion of the robotic manipulator. The other motion components will be used to carry 

out the secondary task. However, all the visual features are extracted to obtain the necessary 

information to guide the robotic manipulator. 

The torques applied during this second experiment are shown in Figure 8. At the beginning of this 

experiment, the human does not enter the workspace. Therefore, only the primary task is applied and 

the visual features extracted by the mini-robot are maintained at the desired location. When the human 

enters within the workspace, the cost function (17) increases and the secondary task is employed to 

avoid the collision.  

Figure 8. Torques employed to guide the mini-robot during the second experiment. 
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Figure 9 represents the image trajectory described during this experiment. When the human 

operator enters in the workspace, the primary task compensates the decrease in depth of the robotic 

manipulator and the secondary task causes a small variation in the image features in order to avoid the 

collision (f1py* = 272 px). Once the human goes out of the robot workspace (dist > dmin), only the 

primary task is employed, which considers the desired features indicated in the Experiment 1 (for the 

sake of clarity this last phase is not represented in Figure 9). 

Figure 9. Trajectory of the visual features extracted by the camera at the end of the  

mini-robot during the second experiment. 

 

The 3D trajectories described by the robotic manipulator and the mini-robot in these experiments 

are represented in Figure 10.  

 

Figure 10. 3D trajectory of both robots during the second experiment. 

 

The trajectory of the camera located at the end of the mini-robot during the first phase of the 
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sample, the coordinate frame at the end of the robotic manipulator is represented). The correct 

positioning of both robots is achieved and the mini-robot does not collide with the human operator 

while it is performing its task. 

7.3. Experiment 3 

In order to develop the manipulation phase of robotic tasks, this paper proposes the use of a  

three-fingered Barrett hand installed at the end-effector of the robotic manipulator. This hand  

has seven tactile sensors installed over its fingers: one tactile sensor for each outer phalanx of each 

finger, one tactile sensor for each inner phalanx of each finger and a tactile sensor for the palm. The 

tactile sensors of the outer phalanxes are composed by an array of 22 tactels with an area of 36 mm
2
 per 

tactel. The tactile sensors of the inner phalanxes are composed by an array of 24 tactels with an area  

of 25 mm
2
 per tactel. The tactile sensor of the palm contains an array of 24 tactels with an area  

of 100 mm
2
 per tactel. All these tactels register pressure values in the range 0–140 kPa, with a 

sampling rate of 30 Hz and a sensibility of 0.7 kPa. 

Figure 11 depicts a manipulation task of a cylinder with the robotic hand employed in this paper. 

First of all, the robotic hand performs an automatic closing process of the fingers in order to establish 

the initial grasp of the object (as shown in frames 1–4 of Figure 11). Then, a joint trajectory of the 

fingers is obtained by the geometric planner of [25] in order to translate the cylinder in the 

perpendicular direction of the fingers. This planner is implemented in a software simulator [33]. 

Afterwards, the tactile control algorithm proposed in Section 6 is performed in order to execute the 

finger joint trajectory previously computed by the geometric planner. Frames 5–8 of Figure 11 show 

several of these finger movements generated by the tactile control algorithm. 

Figure 11. Sequence of frames of the manipulation phase of the robotic task. 

 

Figure 12(a) depicts the evolution of the motor counts of each finger during the development of the 

task. These values are proportional to the joint angles of the corresponding finger because they are 

mechanically coupled and driven by a unique motor. The different slopes in this plot correspond to the 

execution of the finger movements calculated by the geometric planner. The horizontal lines in this 
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plot correspond to the execution of finger readjustments by the tactile control algorithm since they 

suppose an increase in the contact pressure but without really moving the fingers because they are 

blocked by the surface of the object. These finger readjustments are executed when the maximum 

contact pressure of a finger is below the readjustment threshold: 10 kPa for fingers 1–2 and 20 kPa for 

finger 3. Figure 12(b) depicts the evolution of the maximum contact pressure of each finger. For 

instance, in the time interval t = [18 s, 30 s] several readjustments of finger 2 are performed because its 

pressure is below the readjustment threshold (10 kPa). These finger readjustments increase the contact 

pressure of finger 2 until it surpasses the readjustment threshold, as shown in instant t = 28 s of  

Figure 12(b). In the interval t = [30 s, 38 s] several finger movements without readjustments are 

performed since the contact pressure of all fingers are over their readjustment thresholds. In the 

interval t = [38 s, 53 s], several readjustments are necessary for finger 3 because its pressure is below 

its readjustment threshold (20 kPa). 

Figure 12. Evolution of fingers’ parameters during the execution of the manipulation task: 

(a) motor counts; and (b) maximum contact pressure. 

  

         (a)          (b) 

Regardless of all these readjustments, the contact pressure of finger 3 decreases gradually. After 

executing the maximum number of readjustments, the manipulation task is stopped because the contact 

pressure is below the safety threshold (10 kPa). The end of the manipulation task is necessary because 

the surface of finger 3 is in contact with the object near to its edge so that further movements could 

provoke the breaking of the contact between finger 3 and the object and thus, grasp instability. 

8. Conclusions 

This paper has presented a multi-sensorial system which solves the problem of autonomous robotic 

manipulation in a human-robot workspace. The approach proposed is composed by the following 

sensors: a camera which is used to guide a multi-robotic system towards the object to be manipulated, 

a human tracking system which combines an inertial motion capture system and an indoor localization 

system to localize human operators, and several tactile sensors which are used to execute the 

manipulation task of the object.  

The new controller shown in the paper is based on a hybrid control which combines the information 

from these sensors in order to solve the addressed problem. Firstly, in order to overcome the problem 
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of occlusions in a manipulation task, an additional mini-robot has been built and installed at the end of 

the robotic manipulator. Thereby, the camera is installed at the end of this mini-robot to avoid 

occlusions which are caused by the robotic manipulator. The mini-robot is guided by using a novel 

hybrid direct visual servoing control which takes into account both the visual information of the object 

obtained from the camera and the position of the human operator within the workspace. The robotic 

manipulator is controlled by another approach called RVC, which simulates the use of an eye-in-hand 

camera from the images registered by the camera of the mini-robot. In addition, the paper has shown a 

novel tactile controller which takes into account the pressure information obtained from several tactile 

sensors installed over the fingers of the robotic hand. This tactile controller guarantees that a stable 

grasp of the object is kept while the fingers of the hand are moved to drive the object to a desired 

configuration. Finally, the paper has shown the results obtained in three experiments which validate 

the proposed multi-sensorial controller.  
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