
Sensors 2011, 11, 3595-3610; doi:10.3390/s110403595

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Design and Development of a Run-Time Monitor for Multi-Core

Architectures in Cloud Computing

Mikyung Kang
1
, Dong-In Kang

1
, Stephen P. Crago

1
, Gyung-Leen Park

2
 and Junghoon Lee

2,
*

1
 Information Sciences Institute (ISI), University of Southern California (USC), Arlington, VA

22203, USA; E-Mails: mkkang@isi.edu (M.K.); dkang@isi.edu (D.-I.K.); crago@isi.edu (S.P.C.)
2
 Department of Computer Science and Statistics, Jeju National University, Jeju 690-756, Korea;

E-Mail: glpark@jejunu.ac.kr

* Author to whom correspondence should be addressed; E-Mail: jhlee@jejunu.ac.kr;

Tel.: +82-64-754-3594; Fax: +82-64-725-2579.

Received: 31 January 2011; in revised form: 10 March 2011 / Accepted: 12 March 2011 /

Published: 25 March 2011

Abstract: Cloud computing is a new information technology trend that moves computing

and data away from desktops and portable PCs into large data centers. The basic principle

of cloud computing is to deliver applications as services over the Internet as well as

infrastructure. A cloud is a type of parallel and distributed system consisting of a collection

of inter-connected and virtualized computers that are dynamically provisioned and

presented as one or more unified computing resources. The large-scale distributed

applications on a cloud require adaptive service-based software, which has the capability of

monitoring system status changes, analyzing the monitored information, and adapting its

service configuration while considering tradeoffs among multiple QoS features

simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is

a system software to monitor the application behavior at run-time, analyze the collected

information, and optimize cloud computing resources for multi-core architectures. RTM

monitors application software through library instrumentation as well as underlying

hardware through a performance counter optimizing its computing configuration based on

the analyzed data.

Keywords: Run-Time Monitor; multi-core architectures; cloud computing; QoS; library

instrumentation; performance counter

OPEN ACCESS

Sensors 2011, 11

3596

1. Introduction

Cloud computing is a new information technology trend that moves computing and data away from

desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver

applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and

distributed system consisting of a collection of inter-connected and virtualized computers that are

dynamically provisioned and presented as one or more unified computing resources [1]. The

large-scale distributed applications on a cloud require adaptive service-based software, which has the

capability of monitoring the system status changes, analyzing the monitored information, and adapting

its service configuration while considering tradeoffs among multiple QoS features simultaneously.

The cloud provides scalable processing power and several kinds of connectable services. This

distributed architecture has many similarities with a typical wireless sensor network, where a lot of

motes, which are responsible for sensing and local preprocessing, are interconnected with wireless

connections [2]. While wireless sensor networks are limited in their processing power, battery life and

communication speed, cloud computing usually offers the opposite features, which makes it attractive

for long term observations, analysis and use in different kinds of environments and projects. These

sensing data could be stored in one or more cloud computing facilities, and could be supplemented in

operation on by extensive sensor data, collected and made available in near real-time.

Recently, multi-core and many-core architectures are becoming more and more popular due to the

diminishing returns from traditional hardware innovations such as caching and deep pipeline

architectures. With more cores in a processor, it is easier to get performance gains over traditional

approaches by parallelizing applications. In addition, traditional processors consume large amounts of

power to achieve high performance by using high frequencies. By using multiple cores at a lower

frequency, and consequently lower voltage, multi-core architectures can achieve higher performance

with lower power consumption.

There have been many multi-core processors from commercial vendors [3-5]. Among them, Tilera

Corporation offers three processor families with the largest number of cores on a general-purpose chip

available on the market [6]. Boeing has developed a processor called MAESTRO, to be used in space,

based on the first Tilera processor, TILE64 [6,7]. The TILE64 has 64 cores on a chip. Each core has a

three-instruction-wide Very Long Instruction Word (VLIW) pipeline, memory management unit,

L1 and L2 cache, so each core itself is a complete processor, which can run a complete operating

system like Linux (although more commonly, a single operating system instantiation is used to control

multiple cores). The cores are interconnected with mesh networks, the processor executes at up to

866 MHz to achieve up to 443 billion operations per second. The Maestro chip is similar to the

TILE64 except that Maestro has a floating point unit in each core, radiation-hardening by design,

49 cores instead of 64, and runs at a lower frequency.

We aimed to design a Run-Time Monitor (RTM) which is a system software to monitor the

characteristics of applications at run-time, analyze the collected information, and optimize resources

on a cloud node which consists of multi-core processors. The rest of the paper is organized as follows.

In Section 2, the system architecture is briefly described. Our proposed Run-Time Monitor is described

in Section 3. Implementation results are described in Section 4, and Section 5 concludes the paper.

Sensors 2011, 11

3597

2. System Architecture

2.1. Eucalyptus and OpenStack

The Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems

(Eucalyptus) project began at the University of California at Santa Barbara, and was mainly targeted at

building a private open-source cloud platform [8]. Currently Eucalyptus is an open-source

implementation of Amazon Elastic Compute Cloud (EC2) and compatible with most business

interfaces [9,10]. Eucalyptus is an elastic computing structure that can be used to connect the user’s

programmers to the useful systems and it is an open-source infrastructure using clusters or

workstations implementation of elastic, utility, and cloud computing. Figure 1 demonstrates the

topology structure of Eucalyptus resources.

Figure 1. The resource topology structure of Ecalyptus.

In this figure, the node controller is a component running on the physical resources. On each node,

all kinds of virtual machine entities can run. Logically connected nodes form a virtual cluster, and all

nodes belonging to the same virtual cluster receive a command from the cluster controller and then

report to the same controller. Parallel HPC applications often need to distribute large amounts of data

to all compute nodes before or during a run [11]. In a cloud, these data are typically stored in a

separate storage service. Distributing data from the storage service to all compute nodes is essentially a

multicast operation.

Eucalyptus clouds can be run on heterogeneous machine types, that is, shared memory machines,

tiled processor machines, and co-processors, as shown in Figure 2. Through HPC and Networking

extensions, bandwidth reservation, node locality, switch topology, or private network interfaces can be

considered on the clouds. University of Southern California (USC)/Information Sciences Institute (ISI)

Sensors 2011, 11

3598

has been working on Dynamic On-Demand Computing System (DODCS) which is a heterogeneous

high performance computing extension for Eucalyptus clouds. Since 2011, our DODCS team shifted

the open source platform from Eucalyptus to OpenStack and we are now working on the OpenStack

platform.

Figure 2. Heterogeneous processing test-beds.

OpenStack is a collection of open source technologies delivering a massively scalable cloud

operating system [12]. OpenStack is currently developing two interrelated projects: OpenStack

Compute and OpenStack Object Storage. OpenStack Compute is software to provision and manage

large groups of virtual private servers, and OpenStack Object Storage is software for creating

redundant, scalable object storage using clusters of commodity servers to store terabytes or even

petabytes of data. This paper targets multi-core processor with a single compute node for 10 multi-core

boards. After receiving data and commands, each node processes data while monitoring performance

and optimizing resources and then it returns the results to the cluster node.

On DODCS 3D heterogeneous processing test-beds, it will measure system responsiveness to

analyst- and event-driven workloads, deploy heterogeneous processing test-bed for GED researchers,

and support 3D ―voxel‖ processing application development. In advance of implementation on these

heterogeneous processing test-beds, our RTM is targeted at the basic tiled processors, TILE64 or

TILEPro64, for processing parallel programs.

2.2. TILE64/TILEPro64

TILE64 is the first commercial processor from Tilera Cooperation [7]. A block diagram of the

processor is shown in Figure 3. The processor has 64 cores with an 8 by 8 array layout. Each core has a

three-instruction-wide VLIW pipeline and an 8 KB L1 instruction cache, 8 KB data cache, and 64 KB

L2 cache. The L2 cache is a unified 2-way cache. Each core is independent and is capable of executing

its own operating system (or can be treated as part of a multiprocessor with a single operating system).

The complete processor of 64 cores is cache coherent, using neighborhood caching.

The cores are interconnected with five networks: two networks are hardware controlled and are

dedicated to memory and cache communication, one network is dedicated to I/O and the two

remaining networks are dedicated to application communication. Having the five networks

functionally distributed eliminates bottlenecks due to resource sharing as seen on single bus

architectures. Each network is a two-dimensional mesh network with 32-bit width. Our

implementation uses one of the two networks dedicated to the applications: the user dynamic network

(UDN). The UDN network provides a very low latency and high bandwidth up to 31 Tbps, which

provides a much better performance than traditional shared memory.

http://www.openstack.com/projects/compute
http://www.openstack.com/projects/compute
http://www.openstack.com/projects/storage

Sensors 2011, 11

3599

There are several I/O interfaces on the chip that eliminate external I/O circuits such as DDR2

memory controllers, PCIe, GbE, and XAUI that allow simpler design and smaller PCB space for a

system. Another advantage of the processor is its low power consumption. For example, at 700 MHz,

power per core is approximately 1/5 Watts. So, the total power for 64 cores is about 12 Watts, and with

additional power consumption coming from memory controllers and I/O.

Figure 3. TILE64 block diagram [7].

TILEPro64 is Tilera’s latest generation processor. It features 64 identical processor cores (tiles)

interconnected with Tilera’s iMesh™ on-chip network [7]. Each tile is a complete full-featured

processor, including integrated L1 and L2 cache and a non-blocking switch that connects the tile into

the mesh. The TILEPro™ family incorporates Tilera’s Dynamic Distributed Cache (DDC™)

technology that accelerates coherent cache performance by a factor of two, compared with other

multicores.

3. Run-Time Monitor (RTM)

3.1. RTM Overview

Run-Time Monitor is a system software to monitor the characteristics of applications at run-time.

As shown in Figure 4, RTM monitors both application software and hardware. We implemented RTM

through library instrumentation for software information and through Perfmon2/PAPI [18,19] for

hardware information. The collected software and hardware information can be used by Parallel

Performance Analysis Tool and the Run-Time system.

Sensors 2011, 11

3600

Figure 4. Run-Time Monitor Overview.

Performance of a parallel program is usually limited by the following reasons: (a) imbalance of

computations among the threads/processes; (b) serialization due to synchronization; (c) waiting time

due to synchronization; (d) contention of accessing shared memory. The information we collect for

each API is as follows:

Timestamps: these time stamps will be used by RTM to construct the time sequence of the events

and extract further information such as blocking time at the lock, critical section time, etc.

Event identifier: the event identifier is used to identify the type of the event, for example,

pthread_mutex_lock(), pthread_mutex_unlock(), pthread_create(), pthread_join(), pthread_cond_

wait(), etc.

Data structure associated with the event: for each event, information is collected. Process id and

thread id are collected for all events. For each event, the information is customized. For example, we

collect the address of pthread mutex variable for pthread_mutex_lock(), pthread_unlock(), and

pthread_cond_wait().

PC value of the calling function: identifying the location of an event in the source code is useful for

debugging and performance optimization at the source code.

Affinity of the thread (on which CPU the thread runs): affinity denotes the CPU id where the thread

runs. Since the Linux SMP scheduler schedules threads onto many cores dynamically, a thread can be

scheduled onto multiple cores in its lifetime.

We are to monitor synchronization among the parallel threads/processes, blocking time due to

synchronization, processing time within lock/unlock pairs, waiting time at barriers, and DMA activity

if available. Monitoring of these factors can be used to detect performance bottlenecks of the

application. Instrumenting pthread library can collect useful information to deduce the behavior of the

parallel programs. We considered two techniques to instrument pthread libraries: a weak symbol

binding technique or a library interposition technique. Each has its own pros and cons. A weak symbol

binding technique needs source code changes of the pthread library, while library interposition doesn’t

need those changes. Library interposition techniques only work when dynamic linking is used, while

the weak symbol binding technique can be used for both dynamic linking and static linking.

Sensors 2011, 11

3601

3.2. RTM Libraries

RTM implementation targets multi-core processors such as Tilera’s TILE64 processor, the

TILEPro64 processor or the MAESTRO processor. The implementation has been developed on top of

a modified version of libraries such as iLib [7], MPI [13], pthread, and so on.

The TILE Processor is a new class of multi-core processing engine that delivers unprecedented

levels of performance, flexibility and power efficiency. The device is fully programmable via a

standard ANSI C environment, which provides an easy platform to port applications. The device

implements Tilera’s SmartMesh Multi-core technology, which allows the ported applications to scale

in multiple dimensions. The combination of multiple, C programmable processor cores and the mesh

interconnect enables the device to achieve the performance of an ASIC in a software programmable

solution, providing reduced development time and faster time-to-market. Tilera’s iLib API allows

programmers to effectively utilize the TILE Architecture’s resources from C programs [7]. iLib

applications are implemented as a set of processes, one per tile. These processes can communicate by

streaming data over channels, passing data buffers via messages, or through shared memory.

Our implementation of MPI is based on a modified iLib implementation [14]. Since there are a few

features needed by MPI that are not in iLib, such as non-blocking functions and support of

MPI_ANY_TAG and MPI_ANY_SOURCE, we augmented the original iLib library provided by

Tilera. Then, on top of the modified library, we implemented the full MPI library, following the MPI

1.2 standard. We tested our MPI library with several MPI test suites including an IBM test suite [15],

Intel test suite [16], MPICH test suite [17], and SpecMPI test suite [18]. It passed all C-language tests

in the suites except when the data size is too big for the memory on the TILExpress-64 evaluation

board. In these cases, we reduced data sizes, and the tests passed.

3.3. Library Interposition

For the dynamic linking at runtime via preload, we exploited library interposition with the library

instrumentation as shown in Figure 5.

Figure 5. Library Interposition.

Interposition is a technique that allows an additional function to be automatically called whenever a

library function is called. In RTM model, an interposed library layer was added so that original library

modification/recompilation is not needed, no source is needed for anything, and no recompilation/redo

on library version update (only on API change), so in each interposed library, needed information was

collected after calling the unmodified binary library.

Sensors 2011, 11

3602

Let’s see this sample interposed call, pthread_join, in Figure 6. In the application, pthread_join is

called. Then, in the interposed library layer, the unmodified original library is called and the return

value is saved. The dlsym is a routine that gives the user direct access to the dynamic linking facilities.

The dlsym allows a process to obtain the address of a symbol defined within a shared object previously

opened by dlopen. If handle is RTLD_NEXT, the search begins with the next object after the object

from which dlsym was invoked. The pthread_join is the symbol’s name as a character string. And then

other information needed for RTM was calculated, set, and saved in FIFO system. After saving the

necessary information, the interposed library sends the information to the RTM server at the

instrumentation layer. Basic library functions and inline/macro functions were instrumented for the

interposition.

Figure 6. Sample Interposed Call.

3.4. RTM Server and Client Model

The RTM server and client concept is illustrated in Figure 7. After loading the RTM software and

hardware servers, the RTM client program begins to run. Whenever an event happens on each tile, the

RTM client sends the information to the RTM server using the system FIFO. Then the RTM software

server calculates the communication pattern and synchronization information providing task graph and

synchronization graph XML files periodically.

Sensors 2011, 11

3603

Figure 7. RTM Server and Client.

The RTM hardware server also collects hardware information from hardware clients on each tile

through Perfmon2/PAPI. Perfmon2 is the hardware-based performance monitoring interface for

Linux [19]. Performance Application Programming Interface (PAPI) aims to provide the tool designer

and application engineer with a consistent interface and methodology for use of the performance

counter hardware found in most major microprocessors [20]. PAPI enables software engineers to see,

in near real time, the relation between software performance and processor events.

In the message passing model, source and destination rank and tile location, transferred data

amount, timestamp for each event are saved whenever an event happens and then collected by

monitoring tile periodically according to the pre-defined interval. Using statistical results for each

(source, destination) pair/process calculated by the RTM software server, the user can know that task

dependency and the load, as shown in Figure 8.

Figure 8. Message Passing Model Information.

At the hardware level, Perfmon2 counter values were collected on each tile, transferred to the RTM

hardware server and then provided as an XML file. The performance counters such as ONE,

MP_BUNDLE_RETIRED, TLB_EXC, HIT, L2_HIT, MP_DATA_CACHE_STALL, MP_

INSTRUCTION_CACHE_STALL, MISS_I, MISS_D_RD, and MISS_D_WR, were used for the

Sensors 2011, 11

3604

hardware information. This information is collected by way of multiplexing on each tile and sent to the

RTM hardware server. In Table 1 the characteristics of each performance counter are described:

Table 1. Performance counter.

Counter Description

ONE Clock cycles

MP_BUNDLE_RET

IRED

The event occurs when an instruction bundle is retired

TLB_EXC The event occurs when the address of a data stream memory operation

causes a Data TLB Exception including TLB Misses and protection

violations

HIT This event occurs when a load instruction hits in the L1 Data cache

L2_HIT This event occurs when any cache access hits the L2 and includes MDN

fills and Memory Fence operations locally or remotely issued

MP_DATA_CACH

E_STALL

An event occurs every cycle that an instruction bundle is stalled on a

data memory operation, except for the cycles when a replay trap is being

performed. Instructions that depend on the result of a load and are fired

speculatively cause a reply trap if the request misses the L1 data cache

and thus are not counted. The wait is 4 if the consumer of the load

immediately follows the load or 3 if there is a cycle between the load

issue and the consumer issue. Multiple stall events may occur and be

counted during the same cycle

MP_INSTRUCTIO

N_CACHE_STALL

An event occurs every cycle that an instruction bundle is stalled on a

instruction memory operation. Multiple stall event occur and be counted

during the same cycle

MISS_I The event occurs when an instruction stream read misses the L2 cache

due to an L1 instruction cache miss

MISS_D_RD The event occurs when a load request or instruction prefetch misses the

L2 cache due to an L1 miss with the page cached locally or remotely

MISS_D_WR The event occurs when a store request misses the L2 cache with the

page cached locally or remotely

In the shared memory model, the event name (Barrier/Mutex/Lock/Conditional events), the number

of occurrences for each event, Max/Min/Ave time of each thread/process for each event,

process/pthread ID, and the address of each event group are saved whenever an event happens and then

collected by monitoring tile periodically according to the pre-defined interval. Using statistical results

for each process/pthread/event, the user can know the synchronization information as shown in

Figure 9. At the hardware level, it has no difference from the message passing model.

Sensors 2011, 11

3605

Figure 9. Shared Memory Model Information.

4. Implementation

The 64 cores are interconnected with mesh networks, while each processor executes at up to

866 MHz to achieve up to 443 billion operations per second. For supporting several libraries, we

implemented MPI on the TILE64/TILEPro64/MAESTRO based on the MPI 1.2 specification.

Perfmon2/PAPI was also ported on multi-core architecture by the research group of Professor Donald

Young at The University of Maryland at College Park in collaboration with the USC/ISI.

Figure 10. RTM Console.

Figures 10 and 11 depict the RTM eclipse plug-in which can be used for analyzing the periodic

hardware and software results on TILE64/TILEPro64 or MAESTRO. After the user can select library

options, application options, and multi-core environments and then run RTM with applications using

the RTM console plug-in. These tile commands can also be run as a script by a node controller on

Eucalyptus. Once RTM is run, the collected information is saved, analyzed, generated to XML format,

and provided to RTM Graph View and Info plug-in offline.

Sensors 2011, 11

3606

Figure 11. RTM Graph View and Graph Info.

Figure 12 shows a snapshot of the task graph for the communication pattern. As we mentioned in

the previous section, the graph view and the related information can be provided. We can know the

event’s source, destination, total count, data amount, distance, sender cycles, time, Cycles Per Word

(CPW), bandwidth, and receiver cycles, time, bandwidth.

Figure 12. RTM Task Graph.

Sensors 2011, 11

3607

Figure 13 shows a snapshot of the sync graph for the synchronization information. The first and

second images show the result when the <link to the event / event> is selected. We can know the rank,

the number of occurrences, maximum/minimum/average cycles, and the average execution time

between each event.

Figure 13. RTM Sync Graph.

The RTM hardware server gathers performance counter information and provides in a XML file.

Using this XML file, user can know the current status of which tile is running.

Figure 14. RTM Hardware Info Graph.

This RTM has been already demonstrated on Multi-Core Architecture, and the multi-core

architecture has been set for Cloud Computing, so the proposed monitoring can be run in the context of

Sensors 2011, 11

3608

Cloud Computing. The overhead introduced by our performance assessment tools varies significantly

with the specific tools and calls and the application. PAPI is a standard, portable API that provides an

interface for performance counter hardware. PAPI provides a set of function calls that allow the

programmer to control and read performance counters that are implemented in the hardware. The

performance overhead of using PAPI is under control of the programmer, since calls to PAPI functions

are manually inserted. Performance impact is typically low since the actual event counting is done in

hardware. For example, a program may set up a performance counter to monitor cache misses at the

beginning of a program, let the program execute normally for many seconds, and then read the results

of the counter, in which case the performance overhead of PAPI would be negligible. A call to a PAPI

function can vary depending on the function and the arguments but is comparable to a system call. The

overhead introduced by PAPI for a specific usage can be analyzed by running the program with and

without PAPI and using the get_cycle_count function call to measure the execution time.

The run-time monitor that USC/ISI has developed uses instrumented versions of common libraries

to collect information at run-time about program behavior. The run-time monitor collects information

about communication for message passing programs and about synchronization calls for shared

memory programs. For iLib messages passing for small messages, overhead for performance

monitoring is very large—roughly 10x the execution time of the base function call. This is expected

since iLib is intended to provide access to the UDN with little overhead, and the performance

monitoring code can be much more complex. For applications that send small messages frequently,

this overhead would be unacceptable because the perturbation to the original program behavior would

be enough that gather performance information on the instrumented program would be irrelevant.

Programs with less frequent message passing would see less perturbation. For larger message sizes,

overhead is much more reasonable. For example, for a message size of 64 K words (256 KB),

overhead is less than 30%. The overhead introduced to pthread synchronization calls can also be

significant. Instrumentation causes the cost of calls to lock and unlock functions to increase by a factor

of 20. For programs that make frequent calls to available locks, this overhead would be unacceptable.

However, for programs that are frequently waiting for locks (making the execution time of

uninstrumented locks much longer), this overhead may be much more tolerable. As with all

performance analysis techniques, the programmer must consider the affect of the measurements on

program behavior and use the tools accordingly.

5. Conclusions

In this paper, we have designed a Run-Time Monitor which is a system software to monitor the

characteristics of applications at run-time, analyze the collected information, and optimize resources

for cloud computing. RTM monitors both application software through library instrumentation and

underlying hardware through performance counter optimizing its computing configuration based on

the analyzed data. For future work, we are planning to develop a dynamic run-time self-morphing

software framework on multi-core systems. It is expected to provide a framework for an automated

optimization of the software with minimal overhead on multi-core systems. After all, the key feature of

our framework is that: (1) performance monitoring is detached from the applications to system-wide

run-time manager, (2) the application has a range of morphing at run-time, (3) the run-time manager

Sensors 2011, 11

3609

monitors the application’s performance and morphs the application at run-time for either better

performance or adapting to a situation.

An overview of a run-time dynamic self-adapting software framework is shown in Figure 15. An

application has a range of self-morphing internally. RTM manages the system resources and decides

resource allocation, scheduling, and morphing for the applications. RTM monitors the applications and

morphs the applications when it is needed. An application informs RTM of its own characteristics that

include the ranges of morphing and the properties of each morphing. RTM monitors applications using

hardware monitor, software monitor, and performance monitor.

Figure 15. Overview of run-time dynamic self-adapting software framework.

Acknowledgements

This research was supported by the OPERA Software Architecture Project and also by the MKE

(The Ministry of Knowledge Economy), through the project of Region technical renovation, Republic

of Korea.

References

1. Buyya, R.; Yeo, C.S.; Venugopal, S. Market-Oriented Cloud Computing: Vision, Hype, and

Reality for Delivering IT Services as Computing Utilities. In Proceedings of the 10th IEEE

International Conference on High Performance Computing and Communications, Dalian, China,

September 25–27, 2008.

2. Kurschl, W.; Beer, W. Combining Cloud Computing and Wireless Sensor Networks. In

Proceedings of the International Conference on Information Integration and Web-based

Applications & Services, Kuala Lumpur, Malaysia, December 14–16, 2009; pp. 510-517.

3. Feng, W.; Balaji, P. Tools and Environments for Multicore and Many-Core Architectures. IEEE

Comput. 2009, 42, 26-27.

4. Schneider, S.; Yeom, J.; Nikolopoulous, D. Programming Multiprocessors with Explicitly

Managed Memory Hierarchies. IEEE Comput. 2009, 42, 28-34.

Sensors 2011, 11

3610

5. Multi-core Processor. Available online: http://en.wikipedia.org/wiki/Multi-core_processor

(accessed on March 18, 2011).

6. Bell, S.; Edwards, B.; Amann, J.; Conlin, R.; Joyce, K.; Leung, V.; MacKay, J.; Reif, M.; Bao, L.;

Brown, J.; Mattina, M.; Miao, C.C.; Ramey, C.; Wentzlaff, D.; Anderson, W.; Berger, E.;

Fairbanks, N.; Khan, D.; Montenegro, F.; Stickney, J.; Zook, J. TILE64 Processor: A 64-Core SoC

with Mesh Interconnect. In Proceedings of IEEE International Solid-State Circuits Conference,

(ISSCC), San Francisco, CA, USA, February 3–7, 2008; pp. 88-98.

7. Tilera Corporation. Available online: http://www.tilera.com/ (accessed on 21 March 2010).

8. Eucalyptus Community. Available online: http://open.eucalyptus.com/ (accessed on 21 March

2011).

9. Peng, J.; Zhang X.; Lei, Z.; Zhang, B.; Zhang, W.; Li, Q. Comparison of Several Cloud Computing

Platforms. In Proceedings of International Symposium on Information Science and Engineering,

Shanghai, China, December 26–28, 2009; pp. 23-27.

10. Hill, Z.; Humphrey, M. A Quantitative Analysis of High Performance Computing with Amazon’s

EC2 Infrastructure: The Death of the Local Cluster? In Proceedings of 10th IEEE/ACM

International Conference on Grid Computing, Banff, AB, Canada, October 12–16, 2009; pp. 26-33.

11. Chiba, T.; Burger, M.; Kielmann, T.; Matsuoka, S. Dynamic Load-Balanced Multicast for

Data-Intensive Applications on Clouds, In Proceedings of 10th IEEE/ACM International

Conference on Cluster, Cloud, and Grid Computing, Melbourne, VIC, Australia, May 17–20, 2010;

pp. 5-14.

12. OpenStack. Available online: http://www.openstack.com (accessed on March 22, 2011).

13. Message Passing Interface Forum. MPI: A Message Passing Interface Standard. Available online:

http://www.mpi-forum.org/docs/ (accessed on March 22, 2011).

14. Kang, M.; Park, E.; Cho, M.; Suh, J.; Kang, D.; Crago, S.P; MPI Performance Analysis and

Optimization on Tile64/Maestro, In Proceedings of Workshop on Multi-core Processors for

Space—Opportunities and Challenges Held in conjunction with SMC-IT, Pasadena, CA, USA, July

19–23, 2009.

15. IBM Test Suite. Available online: http://www.mcs.anl.gov/research/projects/mpi/

mpi-test/ibmsuite.html (accessed on March 22, 2011).

16. Intel Test Suite. Available online: ftp://ftp.mcs.anl.gov/pub/mpi/mpi-test/intel-mpitest.ps (accessed

on March 22, 2011).

17. MPICH Test Suite. Available online: http://www.mcs.anl.gov/research/projects/mpi/mpi-test/

tsuite.html (accessed on March 22, 2011).

18. SpecMPI Test Suite. Available online: http://www.spec.org/mpi2007/ (accessed on March 22,

2011).

19. Perfmon2. Available online: http://perfmon2.sourceforge.net/ (accessed on March 22, 2011).

20. Mucci, P. PAPI—The Performance Application Programming Interface. Available online:

http://icl.cs.utk.edu/papi/ (accessed on March 18, 2011).

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

http://icl.cs.utk.edu/papi/documents

