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Abstract: One of the main strengths of active microwave remote sensing, in relation to 
frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so 
that information can be drawn about the vegetation and hydrological properties of the soil 
surface. All this information is gathered in the so called backscattering coefficient (σ0). 
The subject of this research have been olive groves canopies, where which types of canopy 
biophysical variables can be derived by a specific optical sensor and then integrated into 
microwave scattering models has been investigated. This has been undertaken by means of 
hemispherical photographs and gap fraction procedures. Then, variables such as effective 
and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of 
vegetation canopy, two models based on Radiative Transfer theory have been applied and 
analyzed. First, a generalized two layer geometry model made up of homogeneous layers 
of soil and vegetation has been considered. Then, a modified version of the Xu and Steven 
Water Cloud Model has been assessed integrating the canopy biophysical variables derived 
by the suggested optical procedure. The backscattering coefficients at various polarized 
channels have been acquired from RADARSAT 2 (C-band), with 38.5° incidence angle at 
the scene center. For the soil simulation, the best results have been reached using a Dubois 
scattering model and the VV polarized channel (r2 = 0.88). In turn, when effective LAI 
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(LAIeff) has been taken into account, the parameters of the scattering canopy model are 
better estimated (r2 = 0.89). Additionally, an inversion procedure of the vegetation 
microwave model with the adjusted parameters has been undertaken, where the biophysical 
values of the canopy retrieved by this methodology fit properly with field measured values.  

Keywords: active remote sensing; RADARSAT 2; soil roughness; soil moisture; 
backscattering coefficient; microwave scattering models; hemispherical photography; Gap 
Fraction; Leaf Area Index (LAI) 

 

1. Introduction  

Microwave remote sensing has increasingly been used in the Earth Sciences, such as Environment, 
Hydrology, Agriculture, Forestry, Geology, etc., where these data and associated techniques are able to 
provide information about biomass, canopy descriptors indices, soil moisture and roughness, as well as 
some other related variables. Moreover, for a specific vegetation canopy, the common knowledge of 
specific variables which can be derived from SAR data along a hydrological cycle, allows determining 
the irrigation status of agricultural crops [1-3].  

In the microwave domain, the study of the vegetation canopy requires one to evaluate separately the 
electromagnetic behavior of soil and vegetation layers, as well as the specific geometric properties of 
their constituents. Soil surface scattering models need to take into account statistical roughness 
parameters, such as profile height displacement standard deviation and correlation length, in addition 
to the dielectric properties that are responsible of the soil reflectivity properties [4,5]. These variables 
are common hydrological parameters, and their knowledge allows establishing the corresponding 
surface scattering models, so that they can be further inverted in order to locally or regionally retrieve 
hydrologic or vegetation related information of the surface [6,7]. A certain number of theoretical and 
empirical models are available for deriving these values, and they are commonly defined by some 
specific validity ranges, as it is the case for the Oh and Dubois models [4,8]. 

Furthermore, for describing the vegetation layer, it is mandatory to define a geometrical model, as 
well as to define also the electromagnetic properties of its constituents. For this purpose, a certain 
number of models such as those based on Radiative Transfer (RT) theory have been developed [9-11]. 
However, the main difficulty is to define appropriate representations, for the geometry and for the 
electromagnetic properties of the vegetation constituents [12,13]. In order to overcome this difficulty, 
semi-empirical models have been adopted, since they can be adapted more conveniently to defined 
scenarios. In this case, the vegetation canopy is usually regarded as a homogeneous or random layer, at 
a certain height above the terrain surface; this layer is used to compute the attenuation of the wave 
through this layer [14]. This simplification requires a geometric generalization of the vegetation layer 
and its constituents. The main simulation models are based on Radiative Transfer theory, which allows 
for different approaches. In this sense, the ‘Water Cloud Model’ [5], can be efficiently adapted to any 
vegetated medium, and its constituents can be approximated by more general variables such as the 
vegetation Water total Content—WTC- [15], or the Leaf Area Index—LAI- of the canopy [16-20]. In 
the microwave region, it has been proven that the assessment of this variable is also closely related to 



Sensors 2011, 11  
 

 

7478

the operating radar system frequency. As it has been stated in [21], high frequencies are dominated by 
scattering processes in the crown layer produced by small branches, twigs and foliage within the 
canopy. LAI is a relevant variable since, besides expressing a biophysical value of the vegetation, it is 
also considered a descriptor of the leaf geometry and density of the canopy, and therefore it can also be 
related to the crown or leaf biomass [22-26].  

A fundamental aim of this research was to relate vegetation biophysical variables acquired by an 
optical sensor to radar backscatter. In order to fulfill these prerequisites, it has been considered that  
C-Band frequency of RADARSAT 2 (5.5 GHz − λ = 5.6 cm) was the most appropriate for studying 
these processes, due to the similarities of the leaf dimensions of the observed vegetation canopy 
compared with the Radar system wavelength. In addition, full polarimetric mode has been selected as 
reference imagery in order to investigate the sensitivities of the different polarized channels to the 
effect of the canopies geometries. In this respect, a key point of this research is to differentiate  
between ‘Effective LAI’ and ‘True LAI’, since they express different concepts of leaf distribution 
within the canopy. Methods for determining these two variables are described by the ‘Gap Fraction 
Theory’ [27,28], where true and effective LAI’s are related through a clumping index. Moreover, 
many instruments for the observation of these two variables are available. Among them, the technique 
of hemispherical photography is very suitable, due to its accuracy, affordable devices and to the fact 
that green elements of vegetation can be very easily discriminated from trunks, branches, etc. [29,30]. 
Accordingly, this technique has been chosen for this research, integrating the different sets of derived 
biophysical values into specific vegetation scattering models. Subsequently, an inversion procedure 
has been tested in order to infer these biophysical variables over larger areas.  

This paper is organized as follows. In Section 2, the study area and the motivations that have led to 
this particular study are described. Additionally, details on the SAR data used for this work are also 
given, which are followed by a list of field materials and methods employed in this research. The 
scattering models used in this work for extracting and processing physical and biophysical variables of 
the canopy, are also presented there. Then, the results reached at each stage of this research are 
presented and discussed (Section 3). Finally, some conclusions are drawn from the suggested 
methodology and achieved results.  

2. Materials and Methods 

2.1. Study Area  

The research area is located in central Spain, near the city of Madrid, on the Southern part of a 
geomorphologic formation named ‘Páramo de la Alcarria’, demarcated by the Tajuña and Jarama 
rivers basins (Figure 1). Two main stratigraphic domains are differentiated on this formation, belonging 
respectively to a Neogene and Quaternary formation, which are usually formed by limestones, 
tobaceous limestones, marls, clays, sandstones, and conglomerates. The most frequent soils in this area 
are Inceptisols, formed by weathering of the parent material, in this case limestones. The second soil 
type in this area is made up of Entisols. According to the agroclimatic classification of Papadakis, this 
area is classified as a Mediterranean-Temperate domain with continental influences, characterized by 
remarkable annual thermal amplitude with a marked summer drought. Common annual temperature 
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variations are between 13–14 °C, with a summer average of 22–25 °C, and a winter average of near 6 °C. 
During the months of July and August the mean temperature exceeds frequently 30 °C. 

Figure 1. Geographical situation of the study area. 

 

The most abundant landcover and landuse types in this region can be classified into agricultural 
land, with irrigated crops (corn, alfalfa, etc.), and rainfed crops such as barley, olive groves, vineyards, 
etc. In the case of olive groves, they are clearly distributed into homogeneous parcels throughout the 
study area (Figure 2).  

Figure 2. Location of olive grove study areas and corresponding sampling units (SU). 

 

Natural land is generally made up of typical Mediterranean vegetation like shrubs and bushes, as 
well as Mediterranean oaks. Large coniferous extensions of Pinus halepensis and Pinus pinea are also 
present. From these vegetation typologies, olive groves have been chosen for this research for different 
reasons. First, this landcover is not only referred to as a local representative landscape, but it also 
constitutes an essential part of ecological and landscape values in Mediterranean areas. These have 
been declared as biosphere zones of the utmost importance, due to their shield effect on the underlying 
soils, its biodiversity richness, as well as to the sustainability of the agricultural practices. Additionally, 
the socioeconomic and cultural significance that this landuse represents for the different Mediterranean 
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countries must also be mentioned [31]. Moreover, in the field of microwave observation systems, this 
cover type has not been frequently analyzed in the last decade; the most representative works are 
described in [3,32,33].  

In this respect, the performances of new SAR systems must then be verified. For this purpose, within 
a large olive groves area, eight sampling units (SU) of approximatively 50 × 50 m, have been identified 
in order to retrieve hydrological and biophysical vegetation canopies reference values (Figure 2). 

2.2. SAR Data 

The SAR image used in this research has been acquired by the system onboard RADARSAT 2 
which operates in full polarimetric mode, with three polarization states (HH, HV y VV) available; 
these have been processed as a single look complex (SLC) product. Given the specific pattern and 
architectural properties of olive groves, and the different vegetation constituent’s dimensions, the 
microwave frequency of this system (5.4 GHz—C Band), as well as its resolution and polarimetric 
capabilities, appear to be suitable for the aims of this research. The acquisition of this image has 
previously been programmed, so that soil field surveys and SAR image are temporally coincident. In 
order to have optimal climatic and soil moisture conditions, the early days of autumn have been chosen 
for this purpose. Satellite data have been finally acquired on 9 October 2008, with an incidence angle 
of 38.5° at the scene centre and a nominal resolution of 8 m in range and azimuth. Figure 3 shows a 
Pauli color combination derived from the three polarization states, where the study area is also indicated.  

Figure 3. RADARSAT 2 image, PAULI combination (B- VVHH SS + , G- HVS  and  

R- VVHH SS − ). 

 

The available polarization states have been filtered with a ‘Lee speckle filter’ with a window width 
of 5 × 5 cells. Then the backscattering coefficients have been derived from the scattering matrix Spq. A 
geometrical transformation has also been applied, so that position of field survey samples and image 
coordinates may coincide properly. GPS measurements and 1/5,000 scale digital cartography have also 
been used for refinement of the image geometry. Olive groves areas are distributed spatially over a 
nearly flat terrain, assuming for this reason, that the terrain effects on these SAR data are negligible. 



Sensors 2011, 11  
 

 

7481

2.3. Physical and Biophysical Canopy Parameters Determination 

Soil and vegetation measurements have been driven on the 8 sampling units (SU) introduced in 
Section 2.1, where the corresponding physical and biophysical parameters were respectively measured 
by a specific method and instrument. 

2.3.1. Soil Physical Parameters 

Soil physical parameters comprise both, surface roughness and moisture content measurements. 
Each roughness measure has systematically been along a direction parallel to the nominal flying line of 
the satellite. A one meter length 5 × 5 cm gridded tablet has been employed for this task. Once it has 
been inserted into the soil surface, leveled and oriented, a picture has been recorded with a digital 
photographic device, so that this original position might be geometrically restored and the profile 
digitized by means of image processing techniques. This method enables to derive the statistical 
parameters of the soil surface such as the standard deviations of height displacements (σ) and 
correlation lengths (lc) associated to the correlation function of each profile. Subsequently, soil profiles 
have been obtained by means of a semi-automatic procedure combining image segmentation techniques 
and manual editing, so that incorrect identified height displacements might be manually corrected.  

Soil moisture sampling has been carried out by means of a metallic cylinder of 5 × 5 cm in diameter 
and in height, which has been in turn inserted into the first 5 cm of the soil surface. The extracted 
samples were held in a plastic bag with hermetic closure, and subsequently brought to the laboratory 
where they were weighted and dried in oven at 60 °C for 70 h. Then, each sample has been weighted 
again. Finally, 14 of these samples have been retained for successive texture analysis. All these 
samples have been used to derive soil moisture parameters such as gravimetric moisture, bulk density 
of the material and volumetric moisture. The latter, together with soil texture information have been 
finally used to compute the soil dielectric constant by means of the Dobson-Peplinsky model [34]. 
Then, these retrieved soil physical values have been used as input variables for simulating the 
backscattering coefficient (σ0) of the observed soil surfaces by means of the models that will be 
described in Section 2.4. 

2.3.2. Vegetation Biophysical Parameters 

Vegetation biophysical variables have been derived by means of hemispherical photographs. This 
process has been undertaken in each sampling unit where soil roughness and moisture have also been 
determined, so that these new values may be spatially consistent with the previous ones. This 
technique allows computing variables such as true and effective LAI’s, Average Leaf Angle (ALA) 
and fraction cover for individual or group of plants. Regarding acquisition conditions, some properties 
of the instrument and vegetation cover must also fulfilled [29], i.e., good sensor resolution and 
sensibility, as well as using an extra wide angle objective (fisheye). For this study a CANON EOS 
450D camera (12.6 Mpixels sensor resolution) equipped with a SIGMA Circular Fisheye 4.5 mm  
f2.8 EX DC has been employed. In order to observe the canopy with this camera, a tripod with a 3D 
head for orienting the optical axis vertically has also been used. Since the vegetation cover is 
considered ‘high’, i.e., higher than 70 cm, the sensor has been set at 40 cm above the soil surface. 
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Furthermore, in order to ensure a homogeneous capture of all canopy elements, solar lighting 
conditions must be as diffuse as possible. Usually, cloud cover days are the most appropriate for this 
purpose, although the early or late hours of the day are also suitable.  

The sampling methodology is based on the strategy proposed in [28] and [29], who suggest that for 
periodic canopies, the acquisition of photographs must be conducted along diagonal transects with 
equidistant ranges. In this case each transect has an approximated length of 21 m, and each photograph 
is recorded at equidistant positions of 7 m, resulting thus in four photographs per transect. Each 
transect is fitted between two single trees. Usually, there are more than one transect per sampling unit, 
and these are organized along parallel lines, in such a manner that each SU or canopy is described 
regularly by a set of hemispherical photographs. Figure 4 shows a SU/canopy described with a set of 
12 hemispherical photographs taken along three transects. 

Figure 4. Example of a set of transects describing a sampling unit/vegetation canopy. 

 

Each set of photographs has been processed using CAN_EYE software version 1.4 [35], which is 
able to process up to 20 photographs at the same time. The operating procedure for obtaining the 
biophysical variables of interest is based on the ‘Gap fraction’ Theory described in [27,28]. In the case 
of a random spatial distribution of infinitely small leaves, is often called transmittance [36]. This 
quantity also plays an important role in the radiative balance of plants, and is closely linked to the 
structure of the vegetation canopy. A ray of light crossing a poor developed canopy (which is 
characterized by low LAI values) will have a high probability of reaching the soil surface; 
alternatively, if it crosses a denser canopy (high LAI values), this probability will decrease. These 
concepts can also be used in microwave remote sensing, since such canopies will respectively reveal a 
high or low transmissivity to the incoming radiation energy. There are several theoretical expressions 
to relate Gap Fraction to the canopy geometry. The most common models [27,28] are based on a 
random distribution of leaves within the canopy, i.e., leaves are not distributed regularly within the 
canopy; this variable is referred to as Effective Leaf Area Index, and it is related to the True Leaf Area 
Index through the so called clumping index λ0 [28]. In this sense, Effective LAI is an important 
variable, as it is also a geometrical or architectural descriptor of the canopy. The method for retrieving 
biophysical values from this methodology is described in Section 3.1.3.  
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2.4. Microwave Backscattering Models 

There are two main theories for modeling vegetation canopies in the microwave domain which  
take into account soil and vegetation contributions separately, i.e., the Distorted Born Approximation 
(DBA) and the Radiative Transfer (RT) Theory [37,38]. In this work, the second approach has been 
adopted. In theoretical scattering RT models, vegetation can be treated as a discrete medium over the 
soil surface, which in turn is considered as a continuous dielectric surface [5,11,21,39]. RT models can 
also derive into very sophisticated modeling procedures which take into account 3D simulations of  
the vegetation canopy constituents for describing radiation interactions between them, as it is the case 
in [40,41]. In [40] it is also stated that it is possible to use the same structural description of the  
canopy to drive optical and microwave scattering models. Although, optical radiation models are not 
addressed in the current study, the basic principle is recovered here, where a more generalized 
approach has been followed. For this purpose, the structural description of the canopy is represented by 
Effective LAI (LAIeff), which in turn is integrated into a modified version of the so called Water Cloud 
Model—WCM-developed by [14], which can be made up of explicit physical and biophysical 
variables of the canopy [42], such as True LAI or Effective LAI, among others. The microwave 
scattering methods adopted in this work are described in the next sections. 

2.4.1. Simulation of the Dielectric Surface 

Each microwave scattering model used for describing a vegetation canopy needs to incorporate a 
simulation of the soil surface beneath the vegetation layer, which is modeled as a dielectric surface. 
This task can be undertaken by means of many existing models. Amongst these, the Oh and Dubois 
surface models, referred to as semi-empirical [7] and empirical [8], respectively, might initially appear 
suitable for the soil surfaces conditions given in the study area. In addition, each of these models has 
also the capacity to compute at least two polarization states of the backscattering coefficient, which is 
also important, as the radar data used in this work is a full polarimetric mode. Therefore the suitability 
of applying both models will depend exclusively on their validity ranges, and the ability of being 
adapted to the soil conditions of the study sites. In this sense, the Oh model allows computing the  
three polarizations states of the backscattering coefficient, for soil roughness values −k (k is the wave 
number and the height vertical displacements of the soil surface) comprised between 0.1 and 6, and 
soil volumetric moisture (mv) values ranging from 9.5% to 31%. Additional details for this model can 
be found in [4]. Regarding the Dubois model, this method takes only into account the co-polarized 
channels, and is limited to kσ  < 2.5 and mv < 35% soil conditions. The range of incidence angles of the 
acquired radar image are within the validity ranges for these two models. In the case of the Dubois 
model, the two polarization states of the backscattering coefficient are approached by: 
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where λ is the wavelength of the radar system, and ε the soil dielectric constant. The Dubois model is 
selected here as it delivers reasonable results in conditions with bare soil or sparse vegetation [42], 
which matches the conditions seen in this study.  

2.4.2. RT Vegetation Scattering Models—WCM 

Generally, Radiative Transfer models for vegetation canopies take into account contributions of the 
soil surface (S) and vegetation (V) separately, as well as multiple interactions between them, which are 
produced between soils, trunks (Tr) and/or primary branches. However, for the sake of simplicity, 
within the framework of this work, these interactions have not been considered, and as they are not 
considered to be a dominant term in the copolarized returns [43,44]. Thus, the selected microwave 
canopy models will consist only of two layers, represented by the contributions of soil and vegetation, 
which is considered to be formed by a homogeneous layer of particles (Figure 5(b)). 

Figure 5. (a) Interactions produced between the different constituents/contributions  
(‘V’: vegetation, ‘S’: soil, ‘Tr’: trunk); and (b) generalization of the vegetation canopy. 

(a)  (b) 

Therefore, according to this principle the total backscattering coefficient will be expressed by: 
000
soilvegetation σσσ +=

 (2) 

A first characterization the vegetation canopy has been undertaken using the Rayleigh vegetation 
backscattering model (Equation (5)). This model appears to be appropriate when the size of the 
vegetation constituent is comparable to the wavelength of the radar system, and it has already been 
applied successfully to different types of vegetation covers [39,43,45]. In this case, the radar system 
operates in C Band (λ = 5.6 cm for RADARSAT 2), whose wavelength is similar to the dimensions of 
the olive tree leaves. This model requires only the soil simulated backscattering coefficient, as well as 
the respective radar incidence angles for each position on the SAR image. Then, it evaluates the 
transmissivity of the vegetation layer (Γ) and its albedo (ω) according to the following expression: 

( )
oncontributi  soil

0
 

2
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(3) 

where ‘pp’ stands for horizontal (hh) or vertical (vv) polarization. Once Γ and ω are derived, this 
model might be used for retrieving the soil contribution of the vegetation canopy according to the 
following expression (Equation (6)):  
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For a continuous set of observation incidence angles, this expression enables one to compute a 
raster layer representing the soil contribution of the observed canopies using known values of 
transmissivity and albedo. This is also the first step for extracting soil moisture content values (mv), 
which can also be carried by means of Oh and/or Dubois inversion procedures. This process requires 
that both polarizartion states (pp = hh and pp = vv) are computed [7,8].  

The second model taken into consideration is based on the model specified in [46], which is a 
modified version of the original Water Cloud Model (WCM). Here, the Leaf Area Index (LAI) is used 
as a descriptor of the canopy, and is integrated according to: 

( )[ ] ( )
( )

( )i

s

i LAIB

oncontributisoil

si
LAIB

pp mDCeA θ

σ

θ θσ cos2

  

cos20 ecos1
0

⋅−⋅− ⋅⋅++⋅−⋅=

 
(5)  

where C and D are soil specific parameters which hold a lineal relationship with the soil moisture 
content ms, while the terms A y B are linked to the vegetation canopy and represent respectively the 
density and attenuation of the vegetation layer [21]. First, this model is solved for parameters C and D 
using a linear regression, in which soil moisture content values are evaluated against measured 
backscattering values. Then, A and B parameters are evaluated by means of a non linear regression. In 
this study, Equation (7) is modified so that the soil contribution is replaced by the soil scattering values 
derived from soil simulation process, which is the written as: 

( ) ( )ii LAIB
soilppi

LAIB
pp eeA θθ σθσ cos/20
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cos/20 cos1 ⋅−⋅− ⋅+⋅−⋅=  (6)  

This second model has been selected and further adapted, due to its convenience for integrating the 
physical and biophysical variables considered in this study, i.e., True LAI and Effective LAI. Like the 
Rayleigh model, Equation (6) can also be inverted in order to derive the soil contribution for both 
polarized returns, so that soil moisture might in turn be retrieved. Theoretically, soil contributions 
derived from these two canopy approximations are considered to be consistent, i.e., both methods must 
deliver equivalent results for the soil surface, as they are computed under identical spatial and temporal 
conditions for the same canopy type, using the same calibration data. The main difference between 
both models is that Equation (6) adds an explicit vegetation descriptor of the canopy for calibrating its 
parameters, e.g., LAI, while in Equation (3) the latter might be implicitly contained into parameters Γ 
and ω. Instead, in this work and in the manner described in [46], once the parameters of Equation (6) 
are derived, the possibility of generating a map of LAI values by inverting this equation has been 
explored, where the original soil contribution ( )smDC ⋅+  is again substituted by a set of soil 
simulated values ( 0

soilpp−σ ). Such inversion procedure is expressed by: 
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(7)  

For this purpose, it is suggested to take as soil contribution a soil raster layer derived by means  
of the inverted model represented by Equation (4). This operation will be described in Sections 3.5.1  
and 3.5.2.  
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3. Results and Discussion 

In this section, the results achieved for soil physical and vegetation biophysical values are first 
presented. Then, the simulation of the backscattering coefficient by means of soil and vegetation 
microwave scattering models is also described and analyzed. Finally, LAI values are inferred from an 
inversion procedure and compared to field reference values.  

3.1. Soil Surface Roughness Results 

According to the procedure specified in Section 2.3.1, soil surface roughness has been assessed by 
means of a 5 × 5 cm gridded one meter length plate inserted into the soil surface and recorded on 
digital pictures. For this purpose, 37 pictures have been registered at singular spatial positions 
distributed regularly throughout the sample units. Furthermore, these pictures have been processed 
digitally using a semi-automatic methodology, which enables the acquisition of highly dense profiles 
describing very precisely the soil surface (green lines in Figure 6).  

Figure 6. Example of soil roughness profiles (in green) and associated parameters  
(‘dim’: n° of points in the profile, ‘min’: minimum vertical displacement in cm, ‘max’: 
max. vertical displ. in cm, ‘σ’: height displ. standard deviation in cm), (a) smooth surface, 
(b) and (c) rough surfaces.  

 
(a) 

 
(b) 

 
(c) 

 
Each one meter length profile is characterized by at least 400 regularly distributed vertices, whose 

spatial coordinates allow deriving the vertical displacements of the surface. In turn, these values have 

dim: [864], μ=1.69, min=0.7 [624], max= 2.925 [258], σ=0.35

dim: [900], μ=2.30, min=0.425 [614], max= 4.87 [92], σ=1.02

dim: [938], μ=4.41, min=0.40 [24], max=8.02 [272], σ=1.63
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been used to compute the standard deviation of these displacements (σ) and the correlation length (lc). 
However, the latter was not used, as the scattering models applied in this work do not consider this 
value.  

According to the Rayleigh criterion, for the radar frequency used in this study, surface standard 
deviations lower than 0.7 cm will be designated as smooth, and conversely rough, for σ higher than 
this quantity. An example of the surfaces observed in some sampling units is given in Figure 6, which 
show different degrees of roughness, from smooth to rough. The highest standard deviation was 
obtained for sampling unit 5 with σ = 2.64 cm, while the lowest was found in sampling unit 3 with  
σ = 0.32 cm. Although, some of the profiles exhibit low standard deviations, in general most of the 
surfaces can be considered rough since the mean value is σ = 1.1 cm. The detected differences might 
be essentially due to the different tillage practices found in each sampling unit.  

As a consequence of these results, the gathered soil surface values for the sampling units appear to 
lie within the validity range of Oh and Dubois models, so they may be integrated into these soil surface 
scattering simulation models. 

3.2. Soil Moisture and Texture Results 

For soil moisture determination, the results reveal extremely low soil moisture content values. A 
mean volumetric moisture value of mv = 10% has been reached, with a minimum value of mv = 4.5% 
and a maximum of mv = 14%. Although, these differences might appear very high, this range of values 
exhibits unfortunately very low moisture content.  

These variations may be due to errors introduced by the measurement device and method, as well as 
the spatial distribution of the soil bulk density in the sampling units, which in turn could be produced 
by the compaction effects resulting from the tillage techniques, as it is stated in [1]. Furthermore, the 
low values reached for this variable can also be produced by the low precipitations rates during the 
data acquisition period, combined with a high temperature regime at this time of the year. Figure 7 
shows graphically individual values of soil volumetric moisture, where most of these values are 
observed to be below 10%. While these values are observed to remain within the validity range for the 
Dubois model (<30% mv), most of the moisture observations are far below the lower valid limit for the 
Oh model, which is therefore considered inappropriate to characterize the soil surface of the current 
vegetation canopies. In [6], this model is considered that performs correctly for values exceeding 10% 
of volumetric moisture, which occurs only in a few cases for this soil moisture dataset. 

Soil texture knowledge is also important since it determines the properties of water retention and 
transmission of the soil. Soil textural classes are based on the proportions of sand, silt and clay 
expressed in percentages. In this work, 14 soil samples have been retained for deriving representative 
soil texture classes. For those not included in this analysis, their class has been assigned based on the 
nearest determined texture. For this purpose, a conventional methodology based on Stokes Law has 
been applied. According to the USDA soil texture classification scheme, almost all analyzed samples 
belong to class clay, although it has been found than in some sampling units the textural class ‘silty 
clay’ is also present. Volumetric soil moisture as well as soil texture are needed as input variables for 
dielectric models. The Dobson-Peplinsky model has been selected and applied in order to compute the 
complex dielectric constant required for the soil surface models introduced in Section 2.3.1. 
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Figure 7. Soil volumetric moisture values for each sampled location.  

 

3.3. Vegetation Biophysical Parameters 

Biophysical values of the vegetation canopy have been retrieved using the methodology depicted in 
Section 2.3.2. First, in order to minimize optic distortions produced on canopy elements due to far 
extreme observation angles, it is necessary to eliminate these effects from photographs, which is done 
by reducing the field of view to from [0°–90°] to [0°–60°]. Moreover, due to illumination conditions, it 
is not possible to distinguish properly between green and non green elements such as branches, twigs, 
etc. In order to facilitate this discrimination, a contrast correction can be applied [Figure 8(b)], so that 
these elements are better recognized, and non green elements might be eliminated in order to exclude 
them during the segmentation process. Then, a manual edition for eliminating non green elements has 
been carried out [Figure 8(c)].  

Figure 8. Edition of photographs, (a) Original image, (b) Gamma correction, (c) Elimination 
of non-green vegetation elements eliminated. 

  
(a) (b) (c) 

Then a segmentation process must be carried out. This operation is considered to be as the most 
critical in the extraction chain, since the final result will depend on the approach taken to discriminate 
between the different classes contained in these pictures [Figure 9(a)]. In this case, the referred classes 
will only cover sky and green vegetation, as trunks, primary and secondary branches have previously 
been eliminated. Nevertheless, fine branches and twigs will persist, given the difficulty of separating 
them from leaves. 
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Figure 9. Hemispherical view of a single tree, (a) segmented image, (b) gap fraction P0. 

(a) (b) 

The segmentation operation is carried out by means of a supervised training, where image values 
are assigned to their corresponding class applying the Convex Hull algorithm [29]. A segmentation 
result as well as its corresponding derived gap fraction is illustrated in Figure 9a and 9b, respectively. 
Then, the distinct average gap fractions (P0) for the eight analyzed olive grove canopies (SU) are 
highlighted in Figure 10.  

Figure 10. (a)–(h) Average Gap Fractions (P0) of the eight studied sampling units 
(SU)/vegetation canopies (VC, P0 [0°, 60°]). 

  

(a) P0-SU/VC1 (b) P0-SU/VC2 (c) P0-SU/VC3 (d) P0-SU/VC4 

  

 

(e) P0-VC5 (f) P0-VC6 (g) P0-VC7 (h) P0-VC8  

These average P0 representations depict the geometry/architecture of each observed canopy and 
reveal the grouping (clumping) effect of the vegetation constituents (mainly leaves in this case). Thus, 
each vegetation cover is supposed to have a specific behavior to the electromagnetic waves. In this 
sense, lighter grey scales values indicate a greater transmissivity of the vegetation cover, while the 
darker indicate a higher opacity. This is the rationale for assessing to which extent the grouping of 
vegetation components, represented by effective LAI, has an influence on the characterization of the 
backscattering coefficient, in comparison to the regular distribution of leaves described by true LAI.  
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As a result of these gap fraction representations, the following parameters are derived: Clumping 
Index ( 0λ ), Average Leaf Angle (ALA), Effective LAI (LAIeff) and True LAI (LAItrue), as well as 
LAItrue 57° and LAIeff 57°, which are estimated from the gap fraction measured at a zenithal angle of 
57.5°. For this particular direction, the projection function G(θv,φv) can be considered independent 
from leaf inclination, simplifying therefore the LAI estimation procedure [47]. 

An additional parameter of interest that must be also mentioned is the canopy or plant cover 
fraction, which is defined as the fraction of ground covered by vegetation [36]. In spite of the 
knowledge of all these parameters, in this work, only LAIeff and LAItrue have been taken into 
consideration, leaving the treatment of the remaining parameters for forthcoming studies. The range of 
values for these two variables varies from 0.28 to 0.47 m2.m−2 for LAIeff and from 0.47 to 1.5 m2.m−2 
for LAItrue. For the latter, these values are in accordance with those given in other studies as in [48,49]. 
Unfortunately, no other reference values for effective LAI have been found in the bibliography for this 
type of vegetation canopy. The different LAI values for the studied sampling units are summarized in 
Table 1, where the P0 estimated standard deviation (σPo) values are given for three hemispheric angles, 
i.e., zenith (0°), 57°5 and 60°. These values increase monotonically between the two extreme angles.  

Table 1. Summary of Gap Fraction and LAI values for the Sampling Units (SU). 

SITE/SU#/VC# 
LAIeff 

(m2·m−2)
LAIeff 57° 
(m2·m−2) 

LAI 
(m2·m−2) 

σPo 
(0°) 

σPo 
(57°5) 

σPo 
(60°) 

Longitude (λ) Latitude (φ) 

1 

SU1/VC1 0.41 0.22 1.5 0.05 0.08 0.10 3°28’55’’W 40°13’47’’N 
SU2/VC2 0.47 0.34 1 0.02 0.12 0.12 3°28’56’’W 40°13’44’’N 
SU3/VC3 0.40 0.19 1 0.03 0.07 0.12 3°28’58’’W 40°13’45’’N 
SU4/VC4 0.40 0.26 0.94 0.03 0.10 0.12 3°28’58’’W 40°13’47’’N 

2 SU5/VC5 0.32 0.27 0.71 0.02 0.08 0.10 3°28’51’’W 40°13’45’’N 

3 
SU6/VC6 0.26 0.15 0.47 0.06 0.07 0.10 3°29’34’’W 40°13’44’’N 
SU7/VC7 0.28 0.22 0.54 0.03 0.10 0.10 3°29’31’’W 40°13’39’’N 

4 SU8/VC8 0.41 0.22 1.2 0.02 0.08 0.10 3°29’13’’W 40°13’49’’N 

3.4. Soil Scattering Models 

Once the physical values of the soil surface are available, the next phase consists in simulating the 
soil surface backscattering coefficient. Due to the volumetric soil moisture results derived for the study 
area only the Dubois model is assessed. First, a sensitivity analysis of the behavior of this model to the 
range of the sampled moisture and roughness values has been undertaken. For this purpose, a set of 
plotted curves [Figure 11(a,b)] illustrating the behavior of soil backscattering coefficient to the soil 
volumetric moisture content for fixed values of surface roughness (kσ). This analysis has been 
performed for the two polarization sates (pp = hh and vv), and the required angle of incidence has been 
set up fixed at 38.5°, i.e., the incidence angle at the scene center. Figure 11(a) shows that, for the given 
‘kσ’ roughness values, 0

hhσ  is not too sensitive to the soil moisture content for mv values near to 10%. 
In turn, in the domain of low surface roughness values, i.e., kσ ∈ [0.1–1], this coefficient is especially 
sensitive to short variations of this value, while kσ tends to saturate for values above 2, so it is possible 
to appreciate the upper valid limit (kσ = 2.5) for this variable and model. This situation is also 
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observed for the vertical case 0
vvσ , though it appears that this coefficient is more sensitive to mv for 

values near to 10%.  

Figure 11. (a,b) Variations of 0
ppσ  due to soil volumetric moisture according to different 

soil roughness degrees (ks ≡ kσ), Oh and Dubois Models. 
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Thus, the outlined model show slight different behaviors depending on the polarization used, which 
might also produce different results, but in both cases, the Dubois model appears appropriate for the 
soil simulation, as the existing set of soil physical values fall within the valid limits of this model. Only 
roughness values approaching kσ ∼2.5 are expected to not deliver good results, which occurs only in 
few cases. In this preliminary analysis and for the sake of simplicity, the backscattering coefficient has 
been represented in decibels (dB), while the results for the forthcoming simulation process using the 
existing values of surface roughness soil moisture content (mv) will be expressed in m2.m−2. For this 
set of values, their corresponding C- 0

ppσ  coefficients have simulated using the Dubois model. In turn, 
these simulated results have been compared to the image measured backscattering coefficients using a 
linear statistical regression procedure, where 37 available measured/simulated observations pairs were 
initially available. Then, the best correlated observations have been compared graphically. As a 
general rule, all simulated backscattering coefficients must exhibit lower values than those derived 
from the image, so that the attenuation effect of the vegetation layer on the radiation reaching the soil 
surface is also considered.  

For the horizontal polarization state (C- 0
hhσ ), the best regression analysis has been reached with a set 

of 21 observed values, and with a coefficient of determination r2 = 0.85 (Figure 12(a)). With this values, 
a reasonable trend between backscattering values (simulated vs. measured) is observed (Figure 12(b)), 
although in three particular cases (P24, P38 and P41), the simulated 0

hhσ exceed their corresponding 
measured values. This means that the combined effect of the vegetation layer and the soil surface 
might not be properly modeled. In these three cases, the surface roughness value (kσ) is 2.39, which is 
the highest value in this data set and approximates the upper limit of this variable for the Dubois 
model. This may then explain the discrepancy between the observed and simulated values. In any case, 
the reported observations should not be used for subsequent operations, which imply that in the 
horizontal case, the dataset of surface physical surface values for modeling the vegetation canopies 
will not be sufficient for subsequent simulations and statistical analysis.  
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Figure 12. (a) Dubois- 0
hhσ  vs. measured- 0

hhσ  regression analysis, (b) Dubois- 0
hhσ  simulated 

vs. measured- 0
hhσ  values. (Error bars show the standard error value).  

(a) (b) 

In turn, for the horizontal polarization state (C- 0
vvσ ), good results are achieved using the results  

of the soil simulation processed and the image measured backscattering values. In this case, the 
coefficient of determination reaches r2 = 0.88 (Figure 13(a)) with a set of 29 observed values. 
Additionally, the problems encountered for the reported cases of the horizontal simulation are not 
present in this case, and for these particular experimental conditions, this model delivers better results. 
Similarly, the trend between these backscattering values appears to be consistent, as simulated values 
do not exceed measured values, and relative minima and maxima match also correctly (Figure 13(b)).  

For this canopy type and observation conditions, this result shows that the simulated soil surface 
values are in accordance with the image measured backscattering coefficients, as the volumetric 
scattering contribution of the vegetation layer produces an additive effect on the returned signal and 
therefore the image measured values must be higher than those returned only by the soil surface. 
Consequently, this resulting dataset of the soil simulation process is definitely considered as the most 
suitable for characterizing the vegetation canopy, and will be then used for assessing the vegetation 
microwave scattering models selected for this study (Equations (4) and (6)).  

Figure 13. (a) Dubois- 0
vvσ  vs. measured- 0

vvσ  regression analysis, (b) Dubois- 0
vvσ  simulated 

vs. measured- 0
vvσ  values. (Error bars show the standard error value).  

(a) (b) 
 

r2=0.85 

r2=0.88 
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Regarding the satisfactory results reached by this simulated vertical polarization state, they appear 
to be in agreement with the reported results given in [50], who point out that at this frequency band,  
C- 0

vvσ  increases with the incidence angle. For this particular scene, the local incidence angle (θi) at the 
image center is 38.50°, which is considered as a medium-high incidence angle. Moreover, concerning 
the behavior of the measured polarization state (C- 0

vvσ ), In [51], authors considers that the sensitivity 
of this coefficient at this particular band, is strongly influenced by the planting pattern. In addition to 
the effect produced by the incidence angle, [52] states that the soil contribution for low foliar biomass 
levels (as those present in the study area), may be higher for the vertical polarization. Hence, these 
considerations might also justify the achieved results. 

3.5. Characterization of the Vegetation Canopy 

Once the simulation of the soil surface has been performed, the considered type of vegetation 
canopy is evaluated by means of the microwave scattering models introduced in Section 2.3.1, which 
are assessed in the following sections using a non linear regression based on the ‘Levenberg-Marquadt’ 
algorithm, where the convergence criterion for the sum of squares has been always set to 10−8. All 
statistical analyses have been carried out at a 5% significance level. 

3.5.1. RT Vegetation Scattering Models—Rayleigh Model 

First, a Rayleigh Model (Equation (7)) has been applied, which uses as input the C- 0
vvσ values 

simulated by the Dubois Model, as well as their respective values measured on the RADARSAT 2 VV 
polarized channel. This model provides adjusted transmissivity (Γ) and albedo (ω) values, which are 
derived by the specified non-linear regression method.  

Thus, the values obtained for these two variables are Γ = 0.91 and ω = 0.35, which indicate a very 
high transmissivity and a medium-low albedo or reflectivity. Figure 14 plots the best regression fit 
between measured and simulated canopy backscattering values, where a high coefficient of 
determination r2 = 0.88 (p-value = 4.23 × 10−14) is reached after six iterations of the model. 

Figure 14. Agreement between measured and simulated values using Rayleigh Model for the 
vertical polarization state 0

vvσ  (Error bars show individual error values).  

 
 

r2=0.88
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The results attained for these two variables may be in agreement with the considered canopy type, 
since olive groves are characterized by large gaps between rows of trees and by a low density of 
vegetation constituents, thus leading to this high transmissivity of the canopy. In turn, for reflectivity, 
which might be produced by volumetric scattering, its value is not as significant as it might occur for 
dense vegetation canopies. In this framework, it is not been possible to assess these results by means of 
direct methods, which in addition are spatially and temporally specific, and therefore they are only 
meaningful under these particular conditions. However, the knowledge of Γ and ω, and the 
corresponding system incidence angles, allow applying Equation (4), so that a raster layer of soil 
backscattering values can be produced for the observed vegetation canopies. In turn, this layer might 
be compared to a similar result obtained by inverting Equation (6), as both products represent the same 
phenomena, and are derived under the same experimental conditions. Instead, a different approach to 
verify the obtained values of transmissivity and albedo has been used, which is explained in the next 
section. 

3.5.2. RT Vegetation Scattering Models—Modified Xu and Steven Model 

Usually, WCM models, using Leaf Area Index as a descriptor of the vegetation canopy, do not 
specify which of the two variables addressed in this paper, i.e., true (LAItrue) or effective LAI (LAIeff), 
must be considered. Subsequently, in this section, the performance and sensibility of this type of 
models to these two biophysical variables is assessed. For this purpose, the values for these two 
variables specified in Section 3.3 (Table 1) and corresponding to the different sampling units, are 
integrated into the modified version of the Xu and Steven Model (Equation (6)), together with the soil 
contribution simulated values (C- 0

_ Duboisvvσ ) referred in Section 3.4.  
While there are some differences, these two reported cases are verified to converge properly. For 

LAItrue a coefficient of determination r2 = 0.83 (p-value = 1.56 × 10−8), has been reached after 14 
iterations, whereas an r2 = 0.89 (p-value = 3.24 × 10−10) has been achieved for LAIeff after seven 
iterations. The adjusted model parameters are A = 0.276 and B = 0.071 when true LAI is taken into 
account, while A = 0.405 and B = 0.115 when effective LAI is considered. These results indicate that 
in the first case (LAItrue) the olive grove canopy is very thin with a very low attenuation, while in the 
second case (LAIeff) these values are higher, which appear to be more realistic and according to this 
vegetation cover. Moreover, as the coefficient of agreement is better for effective LAI, the 
characterization of this type of canopy by means of this biophysical variable is proven to be more 
acceptable, and might also imply that the grouping effect of the vegetation constituents (or their 
geometrical properties), is better taken into account by this type of microwave scattering models, as it 
has been suggested in [51,53,54]. Finally, these statements are also confirmed by means of the 
corresponding regression fits between simulated and measured backscattering coefficients depicted in 
Figure 15a and 15b, where it is noticed that the simulated 0

vvσ  of the canopy using LAIeff exhibits a 
higher dependency with the measured 0

vvσ  (Figure 15(b)).  
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Figure 15. Regression analysis results between measured and simulated 0
vvσ values from 

the modified Xu and Steven model using, (a) True LAI, (b) Effective LAI. (Error bars 
show individual error values).  

 
(a) (b) 

Once parameters A and B are then derived, Equation (6) can be used for different inversion 
purposes. In this work, the methodology introduced in Section 2.3.1 by means of Equation (7) is 
addressed, i.e., extracting LAI values. Furthermore, our interest is focused in deriving LAI maps. This 
task can only be accomplished if a raster layer of soil backscattering values is supplied to Equation (7). 
This layer may be produced by inverting Equation (6). However it is preferred to follow a different 
issue using another source of information for this document, i.e., the soil contribution derived by the 
Rayleigh method (Equation (4)). Moreover, when comparing the results with known LAI values, the 
correctness of the values for the transmissivity and albedo of the layer can also be confirmed, as it has 
been referred in Section 3.5.1. Hence, applying Equation (7) to the values of the RADARSAT 2 image 
using this proposed methodology with the set of derived parameters in this section, LAI values can be 
mapped for the considered sites of this study. Figure 16 shows such a map describing effective LAI 
values for the olive grove parcels containing the sampling units. 

Figure 16. Effective LAI map derived by means of the proposed inversion procedure. 

 

r2=0.83 r2=0.89
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In a temporal framework, these documents might be systematically generated and used for 
environmental or agronomic monitoring, such as analysis and management of radiation and energy 
exchanges, as well as for subsequent measurement of the canopy photosynthesis [55]. In [56], it is 
pointed out that this variable and its distribution are fundamental for analyzing the canopy 
evapotranspiration, or for assessing the precipitation intercepted by leaves [57].  

Finally, the results of this inversion process have been analyzed by comparing inverted values 
against field measured values. For this purpose, eleven LAIeff and LAItrue field observations not 
included in the regression analysis have been used as reference values. These reference values are also 
distributed regularly throughout the 8 sampling units. 

In Figure 17, inverted true LAI values (blue bars) are observed to be almost constant with values 
near to 1. It is found as well, that the modeling procedure for this particular variable does not account 
for variations within the canopy, e.g., observations P7, P23, P24 and P41, which means that the true 
LAI and the referred model may not be really suited for this purpose, as it has already been pointed out.  

Figure 17. True LAI, measured vs. inverted values.  

 

However, for effective LAI values, generally, the trend between measured and inverted values is 
verified to be quite satisfactory. However, some discrepancies may still be appreciated, as it might be 
the case for observation P7 (Figure 18), although for the remaining ten observations remain closer.  

Figure 18. Effective LAI, measured vs. inverted values. 

 

Therefore, this achieved result confirms again the good performance of effective LAI, which 
reveals to be a more pertinent variable compared to true LAI for characterizing the vegetation canopy 
by means of microwave scattering models. Furthermore, transmissivity and albedo values obtained by 
the Rayleigh model for these particular sites and at this specific time are proven to be also acceptable. 
Nevertheless, the statements and results issued from this work must still be verified using a higher 
number of observations, both for assessing the vegetation microwave scattering models and for 
analyzing the achieved results. As a final remark, in the case of effective LAI, using the full dataset of 
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available observations for the adjustment of Equation (6), the coefficient of determination (r2) rises 
from 0.89 to 0.91, which may lead to a better definition of the model parameters A and B, and 
therefore deserve in an improvement of the inversion procedure.  

4. Conclusions  

In this paper, a methodology for characterizing vegetation canopies by means of microwave 
scattering models and optical means has been assessed. For this purpose, soil surface information has 
been acquired by classical methods, while the biophysical values of the vegetation layer have been 
derived by the hemispherical photography technique, which has not been extensively used for 
providing ancillary data in the field of radar systems applications.  

For the soil dielectric surface simulation, the Dubois Model achieves the best results (r2 = 0.88). 
Given the soil surface conditions exhibited by the sampling units of this study and the properties of the 
radar system, the vertical polarization state at this particular band (C- 0

vvσ ) appears to be the most 
appropriate for modeling the soil behavior for these types of soil surfaces, while the horizontal 
polarization state for these radar parameters does not deliver suitable results. In this sense, a full 
polarimetric mode might not be necessary for this type of landcover or canopies when the radar 
parameters, such as frequency and incidence angle, are well controlled. Nevertheless, the 
crosspolarized coefficient has not been assessed, and it might certainly supply valuable information. 
Therefore, a dual mode configuration might be the most appropriate.  

Regarding the canopy biophysical variables, this study has distinguished between effective and true 
LAI’s. Accordingly, a modified version of the Xu and Steven Model has been applied and analyzed, 
which shows a good capability for assimilating true and effective LAI’s derived from the suggested 
technique. For this model, effective LAI is proven to return a better coefficient of determination  
(r2 = 0.89). Therefore, the knowledge of the variables related to canopy architecture improve the 
application of these type scattering models, and the sensor used for acquiring this information 
(hemispherical photography) provides suitable values for the involved biophysical variables. 
Furthermore, the convenience of an inversion procedure for generating thematic documents that 
represent the spatial distribution of LAI values is analyzed. For the observed canopies, under 
homogeneity conditions, the discrepancies between inverted and measured values are minimal, which 
confirms that the behavior of this type of model is appropriate under certain conditions of homogeneity.  

As a concluding remark, this work proves that the suggested approach has the potential of retrieving 
biophysical parameters from SAR data. Nevertheless, additional efforts must be still done in order to 
extend this methodology to wider areas, other vegetation canopies typologies and biophysical 
variables. Furthermore, these new studies must be performed in a multitemporal framework, with a 
radar multifrequency dataset, as well as with other measuring sensors for deriving common sets of 
values for physical and biophysical variables, so that the results can in turn be compared and assessed.  
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