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Abstract: Ripeness classification of oil palm fresh fruit bunches (EF@uring harvesting
is important to ensure that they are harvested during optinstage for maximum oil
production. This paper presents the application of colsfoni for automated ripeness
classification of oil palm FFB. Images of oil palm FFBs of typagP Yangambi were
collected and analyzed using digital image processingnigales. Then the color features
were extracted from those images and used as the inputs fdicial Neural Network
(ANN) learning. The performance of the ANN for ripeness sifisation of oil palm FFB
was investigated using two methods: training ANN with fidatures and training ANN
with reduced features based on the Principal Componenty8isa(PCA) data reduction
technique. Results showed that compared with using fulfea in ANN, using the ANN
trained with reduced features can improve the classifica@zuracy by 1.66% and is more
effective in developing an automated ripeness classifieoilopalm FFB. The developed
ripeness classifier can act as a sensor in determining thectail palm FFB ripeness
category.
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1. Introduction

Quiality is the most important factor for agricultural an@doproducts because high quality products
are significant for success in today’s highly competitivekea In agricultural applications, the quality
of a product—especially fruits—is often classified by theixture, shape and color. These features
are usually observed using human'’s vision particularlyetedmining the ripeness of fruits. However,
the method of human grading is tedious and may be erronedus.|8ads to extensive researches on
automated fruit grading using sensor-based technologigs &s image sensors. It is believed that the
use of non-contact image sensing technology combined wiihst computing and decision processes
provides automated, non-destructive and cost-effectiethod to determine the quality of agricultural
and food productsl].

Oil palm fruit is one of the major agricultural products peutarly in Malaysia. It produces palm
oil, which is the basic ingredient in manufacturing of sqag@ndles, margarine, shortenings, domestic
frying oil and snack food. An oil palm fresh fruit bunch (FFB)ay contain up to 2000 fruits with an
individual weight of 3—30 g and 2-5 cm in siz23)]. Oil palm FFB of typeElaeis guineensis common
in Malaysia. The fruit color varies from very dark purple tange depending on its gene and ripeness.
The oil content for different stages of FFB ripeness alseegaand it is generally stated as oil-to-bunch
ratio [2]. As the oil content of FFB is a function of its degree of ripsa #], it is crucial that the FFBs
are harvested at the optimum ripeness.

According to P], it is practical to observe the number of loose fruits on ¢gneund to determine
whether the FFB on the tree is ripe. Hitam and Yusfjfdiscussed two methods of expressing the
number of loose fruits. One of them is the number of loosedran the ground before the FFB is cut,
and the other is the number of loose fruit sockets on the huiitte latter is feasible for short trees
since the harvester could clearly see the FFB, while thedommethod is often used for tall trees. The
observation of loose fruits for ripeness prediction of @lrp FFB on tall trees has been practiced until
today. However, this method may be inaccurate because fagse might fall under a different tree
and can be stuck in the fronds, washed away by heavy rainkenthy animals in the estate. The
probability of harvesting FFBs that are not ripe will inceea Moreover, this method is time consuming
and laborious, which could lead to higher harvesting andycton costs.

Malaysian Palm Oil Board (MPOB) has established fifteensda®f FFB in the grading of oil palm
in palm oil mills: ripe, underripe, unripe, overripe, emptgtten, long stalk, unfresh/old, dirty, small,
pest damaged, diseased, dura, loose fruit, and BjetNost studies focused on the grading of two,
three or four ripeness stages: unripe, underripe, ripe gadipe. These studies employed color vision
inspection in assessing fruit ripeness. For example, MPd&atified purplish black fruits as unripe,
reddish black as underripe, red as ripe, and reddish orangesaripe §].
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Images in red, green and blue (RGB) color space were usedatgzanthe color of oil palm fruits.
Ismail et al. [7] found that the ranges of color intensity for all ripenestegaries were almost the same.
The only attribute that could differentiate between ripeegary and others was the average of red value.
However, a later study by Ghazali al. [8] discovered that the red components for unripe and underrip
categories were almost the same. Thus, red component wabledb distinguish between unripe and
underripe categories, and could not be an attribute fongps classification.

The optimum ripeness of oil palm FFB is indicated by the amaifroil extracted from the fruit
bunch. Therefore, Choorgj al. [9] investigated the correlation between the color of oil pafaits and
their oil content. It was reported that there was a positoreatation between both attributes. Underripe
fruit has the lowest oil content, ripe fruit has the highetcontent and the oil content deteriorates
when the fruit reached overripe stage. Similar results \aése reported in other studies of correlation
between the color of oil palm FFBs and their oil contert6-{L2]. Hudzariet al. [11] studied the
relationship between FFB color, light intensity, and oihtent for three ripeness stages; unripe, ripe and
overripe. They found that as light intensity becomes higter RGB pixel values increase. Thus, they
converted RGB image to Hue, Saturation, and Intensity (H®I)l constructed a hue histograh3f15)].
Tanet al. discovered that in four different sides of an FFB, thereendifferences in dominant hue
peaks 14]. This could be due to the uneven color of the FFB that reduitem different amount of
exposure to sunlight. However, statistical evaluatiomsdtbthat there was a good correlation coefficient
between the dominant hue peak and the FFB oil content. I&halilreported a high correlation between
hue value and oil content$]. They conducted an experiment with FFB that were on tredsancluded
that unlike RGB intensities, hue value was not affected leytiriances of lighting intensity. Therefore,
hue value is an important attribute for detecting FFB catcany light intensity.

Principal component analysis (PCA) has been widely usedctmmaplish the task of pattern
recognition or data reduction for multivariate dai#,[L7]. For instance, in a work to develop a classifier
for polarimetric synthetic aperture radar images, Zharth\&@n implemented PCA to reduce 19 features
from an image to 13 features. These features were then usedim-hidden-layer back-propagation
neural network for classificatiorl}]. In oil palm study, Junkwort al. [18] used PCA and Euclidean
distance to identify four ripeness classes of oil palm FFBre€ features represented by three RGB
values were analyzed using PCA to obtain a plot of two priacgomponents. From the plot, four
centroid values that indicated four ripeness classes wlergified, and the Euclidean distances between
the centroid values and the plot of other samples were uselssify the oil palm FFB. This method
yielded 75% correct classification for RGB images.

Jamilet al. and May and Amaran developed intelligent oil palm FFB gngdyy using neuro-fuzzy
and fuzzy logic, respectively. Jamgt al. [19] trained RGB values for 45 FFB images by using
Hebb algorithm to identify the best-fit value to representBRélor of FFB images. Then the color
classification was conducted in four steps: fuzzificatioie evaluation, aggregation of the rule outputs
and defuzzification. The neuro-fuzzy techniques yielde@%s3correct classification. Meanwhile, May
and Amaran 20] developed an automated oil palm fruit grading system us$irzgy logic algorithm,
which gave 86.67% correct classification. More studies @edint classification techniques can be
done to enhance the classification accuracy of automatquhloil FFB system. For instance, artificial
neural network (ANN) classifiers have been successfullyl@mented for various classification tasks
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of other different agricultural products. These includassification of the quality for San-Fuji apples,
cherries, lyokan oranges, and bea2d [

The objective of this work is to develop an algorithm for auadic intelligent grading of oil palm
FFB based on color vision in a natural light environment. Ther measurement was based on hue
distribution of oil palm FFB image. The feasibility of apptg PCA for data reduction and ANN
intelligent system for oil palm FFB ripeness classificatieere investigated. The results were presented
and discussed.

This paper consists of four sections. Current oil palm hstimg methods and previous studies
involving color vision for ripeness classification of oil lpa FFB are discussed in this section.
Section 2 presents the setup of the proposed classificatgirms and explains the steps involved in
developing an oil palm FFB ripeness classifier. Then thenege classification results obtained are
presented and discussed in Section 3. Lastly, Section 4uescthe findings of the research work.

2. Materials and Methods

The intelligent grading system consisted of a camera fogarecquisition and a computer for data
storage, image pre-processing and ANN classification. et is illustrated in Figuré. A Vivotek
IP8332 Network Bullet Camera (0 Lux, 1.0 M pixels, F1.8) waedi to acquire the image of oll
palm FFB. This camera was chosen due to its ability to adappistantly changing outdoor lighting
conditions. Matlab Image Processing Toolbox was used togs®each captured image. An ANN
system was trained and tested using the Matlab Neural NketWamibox.

Figure 1. Oil palm FFB grading system.

Matlab Image
Processing

Toolbox

“\I Matlab Neural | Ripeness
e ,E Network Toolbox class

, computer

Oil palm FFBs of type DxP Yangambi were sourced from Feldai@ddgtural Services Sdn. Bhd.
(FASSB). For this work, researchers managed to get 80 FFBsef;uwith equal numbers for each
ripeness class. A FASSB's trained grade inspector segrgdhé fruits into four ripeness categories:
unripe, underripe, ripe and overripe. Rotten, empty anelcitefd FFBs were discarded. At most, four
color images were captured for each FFB at different aredéiseobunch. The total images taken from
80 FFBs were 208 images. Each image was at the size ofx48@0 in a 24-bit RGB format. All
the captured images were stored in a computer for furthergsing. Then the images were randomly
divided into 3 sets; 120 images were categorized as thdrgaset, 28 images were grouped as the
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validation set, and 60 images formed the independent tedilsenore than 60 images could be used as
test set due to the limited number of FFBs that could be oéthin

Four sample images from different ripeness categoriesten@rsin Figure2. It can be seen that the
unripe fruits are in deep violet to black. As the fruits ripéimey turn red. The overripe oil palm FFB
shows that most of the outer fruits are gone, and the innésfave orange in color.

Figure 2. Oil palm FFB images for four ripeness categoriea) Unripe; ©) Underripe;
(c) Ripe; d) Overripe.

Secondly, the images were processed using digital imagepsing technique to obtain color features
of the fruits. In this method, the images were segmentedwiigarts, which were fruits area and spikes
area. This segmentation process is further clarified ini@eeét 1.

Thirdly, after the fruits area was obtained for each imag&rdeatures were extracted. In this work,
hue for each fruit pixel was calculated and a hue histogrgmesenting the feature vector for each
image was obtained. This feature vector represented tteameder for ripeness classifier. A detailed
explanation of color feature extraction is explained intiec2.2.

Lastly, an ANN classifier was developed to classify the rgs=nof oil palm FFB. Two methods were
investigated; one of them used all features as the inputpeteas, whereas the other used reduced PCA
features as the input parameters. These methods are damifszction 2.3.
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2.1. Image Segmentation

Image segmentation is a process that divides the imagedgtorrs R2]. As seen earlier in Figurg,
there are two distinct regions in each of the oil palm FFB iesagvhich are spikes and fruits. The fruits
region was of interest in this research. Therefore, the envags partitioned into two regions to obtain
the fruits region.

In this work, oil palm FFB images were segmented based orterlng method used by Jaffat?].
K-means clustering was implemented for image segmentatidrra*b* color space. At first the
RGB image was converted into two-dimensional image with @d bB* color planes. Then the most
representative number of clusters was determined for eidglalon FFB category, so that each cluster
represented either the fruits or the spikes by trying witb 8 tlusters. Three clusters were found to be
sufficient to distinguish between the spikes and the fritsnce, the mean values of three colors were
obtained from each image based on different ripeness agtefoil palm FFB. From all the images, five
discriminating color mean values were identified. Theseaeswere used as color markers to classify
every pixel in an image by calculating the Euclidean distametween each pixel and each color marker.
The smallest distance indicated that it closely matcheddhar marker. In this process, a binary mask
image was formed to obtain the fruits’ segmented image; rihiest pixels were labeled as “1” and the
spikes’ pixels were labeled as “0”. After that, the binaryskavas conceptually placed on top of the
original RGB image by multiplication to produce a segmeniedge. Examples of segmented images
are shown in Figuré.

Figure 3. Segmented images of oil palm FFB&) fruits and p) spikes.

2.2. Color Features Extraction

Color is an important feature in determining the ripenesaodil palm FFB. Compared with RGB or
CIExy values, hue measurement has shown to be a good disationifor oil palm colors23]. Thus, in
this work, the RGB image was converted to HSI color model toeex the hue values. This color model
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has been an ideal tool in depicting humans color interpogtaMathematically, the hue valuis given
by [22],

-1 L[(R-G)+(R—-B)] _
COS  R=G)2+(R—B)(G—B)]'/2 if B<d
H = o
1
360 — cos™! 3[(R=G)+(R-B)] t BeC

[(R=G)?+(R-B)(G-B)]'/?

where R, G and B are the red, green and blue components of the RGB image fas fregion,
respectively. After obtaining the hue values, a hue histogof 100 bins was obtained. The histogram
distribution was indicated as a feature vector for each enaherefore, for the whole dataset wikh
samples and hue values, a matriX of Nxq was obtained as,

T11 T2 T1q
X1 Taz - Tag

X=1 _ _ (2)
IN1 IN2 -+ INg

In this work, out of 100 bins that represented the hue valoly, 59 values represented the color of
fruits. These values were used as the features for ANN inputs

2.3. Development of Oil Palm FFB Intelligent Ripeness Gfass

ANN has been widely used to map input patterns with theirrddsoutputs. Its application is wide,
ranging from data classification to data prediction and desiaalization P4-26]. No pre-defined rules
needed to be set for an ANN, as it is able to learn and generatm “experience” or a set of presented
examples27]. The set of examples is called a training set.

In this work, the employment of multilayer perceptron (MLkural network—a commonly used
ANN architecture—as the ripeness classifier was investdjad MLP neural network usually consists
of three different layers: input layer, hidden layer andpotitayer. Each layer comprises a humber
of neurons, which are also known as processing elements (Pdiled descriptions of MLP were
documented elsewher@1-29]. Figure4 shows the structure of a three-layer MLP architecture. The
PEs in the input layer of an MLP does not compute any procdssy dnly buffer the input signals to
the PEs in hidden layer. In the hidden layer, each PE sumseuprdducts of input signals with their
weighted connectiond/;;. Mathematically,

1=1

wherenet; is the output forjth PE.net; is then further processed to produce a new ouyputy the
following equation;

y; = f(net;) (4)

wheref is the activation function that determines the processisgle each PE. The output of PEs in the
output layer is computed similarly as Equation (4). In thiwky the logistic sigmoid (logsig), hyperbolic
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tangent sigmoid (tansig) and linear (purelin) functionseveelected. Respectively, these functions are
as given below,

1
f5) = 1 ®
es — e~
flo) = S ©
f(s)=s (7)

Figure 4. Structure of MLP neural network.

Neurons

"

Inputs \ Outputs
X; —
—b
Xz Ripeness
class
: —
XN —p —

Input Output
Layer Layer

Hidden
Layer

To determine the most optimum MLP model, various combimetiof transfer functions for hidden
and output neurons as listed in Taldlevere applied. The number of output neurons represented the
output coding for the ripeness class of oil palm FFB. For CAD combinations, each output neuron
value was represented in binary, “1” or “0”, whereas for CH &f, each neuron was represented either
as “1”, “2”, “3” or “4”. The representations of the output dads for all ripeness classes are given in
Tables2-4.

The number of optimum hidden neurons was determined expatatly from training processes of
the MLP classifiers. The MLP neural network training stavtgtth having only one hidden neuron and its
performance was recorded. Then, the number of hidden ngimdahe MLP was incrementally added,
one at a time until there was no longer improvement in the MeRgumance. This is known as the
network growing approach. In this work, 15 hidden neuronsevieund to give optimum performance.



Sensor012 12 14187

Table 1. Properties of each investigated MLP neural network.

Combination Transfer Function Transfer Function No. of

Label (Hidden Neuron)  (Output Neuron)  Output Neurons
CA logsig logsig 4

CB tansig logsig 4

CC logsig logsig 2

CD tansig logsig 2

CE logsig purelin 1

CF tansig purelin 1

Table 2. Output coding representations for CA and CB combinations.

. MLP Output
Ripeness Class
1 2 3 4
Unripe 1 0 0 O
Underripe 01 0 O
Ripe 0 01 O
Overripe 0 00 1

Table 3. Output coding representations for CC and CD combinations.

. MLP Output
Ripeness Class 5
Unripe 0 0
Underripe 0 1
Ripe 1 0
Overripe 1 1

Table 4. Output coding representations for CE and CF combinations.

Ripeness Class MLP Output

Unripe 1
Underripe 2
Ripe 3
Overripe 4
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All of the MLP networks based on the combinations of tran$éerctions shown in Tabld were
trained, validated and tested. In a training process, MU o kept updating the trained-weights in
the input and hidden layers after every training cycle torimup its performance. The validation set was
used to validate MLP performance by terminating the trajmprocess when there was no improvement
in the validation performance based on the validation se¢ dest-performed MLP model was selected
based on the highest classification accurdtg.@) of the test set obtained from the percentage of
correct classification in the set bftest data, using,

) x 100%] (8)

h.c.a = maz|(
test

To develop an optimum intelligent ripeness classifier, tvathnds were experimented for each MLP
combination and were then compared. The first method, MA] tidefeatures as the MLP input. There
were a total of 59 input features used in method MA. The secoethod MB used pre-processed data
as the MLP input. In method MB, the PCA method was proposecdh aspat preprocessing algorithm.
PCA was employed to reduce the dimensionality of the dateetdyaing the hue measurements of oil
palm FFB. This technique was considered because the eedrdata could have correlated components
that might affect MLP learning. PCA managed to eliminatesthoorrelated components while keeping
as much variation in the information of the input data as jpdssFurther information about the theory
and applications of PCA can be obtained elsewh&@ [The full-feature data for the training set were
reduced tan principal components by using the PCA approach. The optimunas determined based
on the highest classification accuracy of test data. Theessas of both methods are illustrated in
Figureb.

Basically, the procedures of PCA for this work are as followsrst, the hue measurements were
normalized so that they have zero mean and unity variancen ffte covariance of each combination of
variables was calculated and stored into a covariancexmagibelow,

s s;p o Sy
o | (9)
SN1 SN2ttt s
The eigenvectorf\=[a;, a,, ..., 8,] of 3 were calculated and arranged in ascending order of

eigenvaluesh\=(\;, Aq, ..., A;). Suppose thax=(X;, Xy, ..., X;)’ denote an observation of the hue
values and/=(Y4, Yo, ..., Y,)' is the derived set of the hue values, then

y = A'X (10)

In this work, the firsim uncorrelated principal components (PCs) were accountaasiag 30|

3:1 Ai
where the total variation was considered as the new featitesfed into an MLP for classification. The

total variations with their corresponding number of PCssdr@wvn in Tableb.
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Figure 5. Two experimented methodsa)(Method MA; (b) Method MB.
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Table 5. Total variation with its corresponding number of PCs.

Total variation 0.2 0.0482 0.06 0.0014 0.00031 0.00019 @QG6

Number of PCs 2 5 10 15 20 25 30
Total variation 0.00008 0.000046 0.00003 0.000017 0.08000
Number of PCs 35 40 45 50 55

3. Results and Discussion

Table 6 shows the results of the method MA. The results show that lygudifferent forms of
transfer functions in input and output neurons, the peréomoe of each combination was different due
to the different form of mapping in the ANN. The CC combinatiadicated the highest performance
of 91.67%. The combination that implemented the logistigrid function for both input and output
neurons managed to classify the ripeness of oil palm FFB valies0 features were used. Thus, this
indicated that for a problem of 59 inputs and 4 ripeness caieg} 4 output neurons were able to give
the highest classification accuracy. This could be due tiindisbinary output representation for each
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ripeness class, making it easier for the MLP to learn anedifitiate the mapping, in comparison to 2
output neurons. Also, each of the 4 neurons has to solve foowear range of output.g., between 0
and 1) in comparison to the case of 1 output neur@n Eutput ranges within 1 and 4). The difference
in the performance of ANNs with different numbers of outpatirons could be well explained in the
different numbers of unknownsé€., different numbers of neuronal outputs to be solved foryvelt as
the different ranges of output value that each neuron casilplgproduce. For instance, with 1 output
neuron, it is a 59-to-1 problemé., 59 inputs and 1 output), where the output ranges from 1 i®@44
classes of ripeness). With 4 output neurons for example,at39-to-4 problem where the ANN has to
solve for 4 output values, each being between 0 and 1. Somdéhewesults have revealed that different

numbers of output neurons with different ranges of outpluescontribute to the mapping complexity
of an ANN, and hence affecting its performance.

Table 6. Oil palm FFB ripeness classification accuracy for method MA.

Combination Label Classification Accuracy (%)

CA 88.33
CB 88.33
CC 91.67
CD 90.00
CE 85.00
CF 86.67

In method MB, the number of features was reduced from 59 huasurements to 12 different
numbers of PCs. These numbers were determined based onaheattation obtained by the method
explained in Section 2.3. The performance of MLP for eversnbmation and every number of PCs

are shown in Tabl&¢. The CC combination with 5 PCs yielded the best performarfc@1ldb7%
correct classification.

Table 7. Oil palm FFB ripeness classification accuracy for method MB.

No. of PC (Features) and Performance (%)
2 5 10 15 20 25 30 35 40 45 50 55

CA 65.00 86.67 88.33 85.00 80.00 78.33 78.33 75.00 75.00 766/43.33 60.00
CB 66.67 90.00 86.67 85.00 83.33 80.00 73.33 71.67 70.00 77163.33 56.67
CC 78.33 91.67 90.00 88.33 81.67 83.33 80.00 75.00 71.67 68.33 65.000060
CD 80.00 90.00 88.33 86.67 81.67 81.67 76.67 68.33 70.00 3685.00 66.67
CE 78.33 86.67 81.67 83.33 80.00 76.67 76.67 71.67 70.00 06%6.00 66.67
CF 78.33 88.33 86.67 81.67 7833 75.00 71.67 68.33 70.00 065%6.00 63.33

Figure6 illustrates the overall MLP performance for method MB. Whiea number of features was
reduced from 59 to 55, the MLP’s classification accuracy e&sed to less than 70%. The accuracy
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started to increase as the number of PCs was reduced uatitihed more than 80% at 5 to 15 PCs. This
is due to elimination of correlation in the data, whose @xist may confuse the MLP learning process.
Yet, MLP was unable to classify the oil palm FFB images cdlyeghen there were only 2 PCs because
there might not be enough information for the MLP to learn.

Figure 6. MLP performance based on number of features.
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To find the optimal number of features, MLP performance wathér investigated for 5 PCs to
15 PCs. The results are shown in TaBland Figure?/. It was found that at CD combination of 6 and
12 PCs, the MLP performance was 93.33%, which indicateditfteelst performance.

Table 8. Oil palm FFB ripeness classification accuracy for method 14816 PCs).

5

No.of PC (Features) and Performance (%)
6 7 8 9 10 11 12 13 14 15

CA
CB
CC
CD
CE
CF

86.67
90.00
91.67
90.00
86.67
88.33

90.00 88.33 88.33 90.00 88.33 86.67 86.67 90.00 0908%.00
90.00 88.33 86.67 88.33 86.67 86.67 90.00 90.00 38885.00
91.67 91.67 88.33 90.00 90.00 90.00 91.67 91.67 38838.33
93.33 90.00 88.33 90.00 88.33 90.003.33 88.33 88.33 86.67
86.67 85.00 86.67 86.67 81.67 85.00 81.67 85.00 08533.33
86.67 88.33 88.33 88.33 86.67 81.67 83.33 86.67 08580.67
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Figure 7. MLP performance based on number of features (5-15 PCs).
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In comparison to method MA, method MB reduced the number atuies by finding the minimum
number of features required for an MLP to give the best diaasion accuracy. It is proven in this work
that even though the features were reduced, MLP based oroth®tB managed to classify oil palm
FFB images with higher classification accuracy than methéd BY reducing the number of features,
the number of input neurons for MLP is reduced. Thus, the MidPigecture becomes simpler. This
could reduce memory requirement for execution of the taslkpaiavide faster classification.

As discussed in the Introduction section, conventionalpalim FFB harvesting method involves
observing the number of loose fruits and the color of the F&Base. Such method is subjective and
tends to be erroneous. Besides, it takes so much time fovadtar to count loose fruits before deciding
whether to cut off an oil palm FFB. By using the proposed dfesgion system that employed MLP and
PCA, the subjective and time-consuming judgment of humadigg could be solved.

Even though there have been similar image sensor studidagsifg the ripeness of oil palm FFB,
most of them implemented laboratory setup and used coedrbijhting when capturing the FFB images.
The classification accuracy of such methods reached up & 108]. Meanwhile, Jamikt al. predicted
that the classification accuracy would drop when the setup teebe changed to outdoor environment
due to variance in illumination. Later, they came up with anoefuzzy technique to grade oil palm FFB
in outdoor environment and reported a classification aocyuoh only 73.3%. In comparison, for FFB
images captured in outdoor environment, this proposed worgloying a simple MLP gives a higher
ripeness classification accuracy of 93.33% than the newroyfapproach. Therefore, the proposed
approach would be beneficial for automated ripeness deaikiang harvesting process in determining
whether an FFB should be cut off from an oil palm tree.
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4. Conclusions

The algorithm for the ripeness classification of oil palm Fr&s been successfully implemented.
The performance of MLP has been investigated for classicgturpose by using data with either full
features or reduced features. In the first method, all 59 hemsorements from segmented fruit images
were used as the features to characterize the oil palm FFBegs. MLP managed to classify the
ripeness of oil palm FFBs with 91.67% correct classificatibm the second method, PCA was used
to obtain a number of principal components that represethtechew features to be fed into MLP. By
using only 6 features, MLP managed to classify the ripenéssl @alm FFB with 93.33% correct
classification. Results indicated that even though theufeatwere reduced, the best classification
performance improved by 1.66%. This method seems effeictiveproving MLP performance. Besides,
training with reduced features decreases the computatiomaby reducing the number of MLP inputs.
In conclusion, the developed ripeness classifier can saraecalor sensor for automated oil palm FFB
ripeness classification, in order to expedite the accuipémess grading during a harvesting process.
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