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Abstract: In a wireless communication system, wireless location is the technique used to 
estimate the location of a mobile station (MS). To enhance the accuracy of MS location 
prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements 
and the angle of arrival (AOA) information to locate MS when three base stations (BSs) 
are available. Artificial neural networks (ANN) are widely used techniques in various areas 
to overcome the problem of exclusive and nonlinear relationships. When the MS is heard 
by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles 
(and the AOA line), based on various neural networks, to estimate the MS location in  
non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the 
performance of the algorithm for different NLOS error distributions. The numerical 
analysis and simulation results show that the proposed algorithms can obtain more precise 
location estimation under different NLOS environments. 

Keywords: time of arrival (TOA); angle of arrival (AOA); non-line-of-sight (NLOS); 
artificial neural networks (ANN) 

 

1. Introduction 

The purpose of a wireless location identification algorithm is to estimate the position of a mobile 
station (MS) in a wireless communication network. The need for determining the location of MS has 
become increasingly important in the past few years. A variety of wireless location techniques are 
known, including signal strength [1], angle of arrival (AOA) [2], time of arrival (TOA) [3], and time 
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difference of arrival (TDOA) [4]. The mobile positioning technique plays an important role in 
providing location-based services in wireless communication networks. With this new feature, it can be 
applied to several valuable location-based services. Applications of wireless location services include 
the E-911 wireless emergency services, location-based billing, fleet management and intelligent 
transportation system (ITS) [5]. Especially for E-911 services, an important issue is that the public 
safety officer know the caller’s phone number and accurate location. The separate accuracy 
requirements of the E-911 mandate were set for network-based technologies: within 125 m for 67 
percent of calls, and within 300 m for 95 percent of the calls [6]. Location-sensitive billing can offer 
different rates for subscribers at different locations, no matter where the wireless terminal is, such as at 
home, in the office, or on the road. By employing location price discrimination, it also promotes 
desirable usage behavior. Many fleet operators have already applied the location technology to track their 
vehicles, which can not only operate their fleets more efficiently, but improve their field service [5]. 
Another wireless location application is for the ITS. A wide variety of the advanced positioning 
technologies are incorporated in ITS to improve the efficiency and safety of transportation systems.  

The accuracy of MS location estimation highly depends on the propagation conditions of the 
wireless channels. The non-line-of-sight (NLOS) problem is always the dominant factor that greatly 
affects the precision of MS location estimation. The accuracy of MS location can be seriously 
degraded in the absence of a line-of-sight (LOS) signal component. Good positioning accuracy can be 
achieved if LOS propagation exists between the MS and each participating base station (BS). However, 
LOS paths are usually unavailable, especially in urban or suburban areas. This is due to the reflection 
or diffraction of the signals propagating between the MS and the BSs, NLOS propagation introduces 
both biases in time and angle measurements. It is necessary to remove NLOS errors before the time 
and angle measurements applied in MS location estimation. In the past few years there have been 
many researches and literatures discussing about the NLOS mitigation effects for location estimation. 
Because the NLOS delay has higher variance in comparison with LOS, so reference [7] proposed a 
decision framework to detect NLOS BS’s via time series of estimate. An NLOS identification method 
is presented in [8] based on sample statistics of the range measurements over a period of time and 
reconstructs the true ranges to estimate the MS location. The authors of this paper proposed several 
geometrical positioning schemes to reduce the NLOS effect if both TOA and AOA measurements are 
simultaneously available from two BSs [9]. We also extend these methods to the three BSs 
architectures in [10]. 

Hearability is a major point that adversely affects the deployment of a location scheme in cellular 
communication systems. How to “hear” the MS from the multiple BSs is very important to the design 
of wireless location systems [11]. Hearability is defined as signal availability for location purpose [12]. 
Hearability is also defined as a measure of the ability to receive signals from a sufficient number of 
BSs simultaneously at a sufficient power level [6,13]. In rural areas, each BS usually covers a fairly 
large area and it may occur that the hearability of an MS will be very poor for neighboring BSs. When 
the MS is close to its serving BS, it is difficult to be heard by other BSs. The lack of available BSs 
limits the coverage area of location-based service and influences the accuracy of all positioning 
methods. It causes the problem in some system, such as CDMA system, where the MS transmission 
power is controlled by the serving BS. The respective signal strength thresholds clearly show that the 
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coverage in rural areas is much smaller than that in urban areas [6]. The hearability in an IS-95 CDMA 
is extremely poor [12].  

Artificial neural networks (ANNs) have been widely applied in various fields to overcome the 
problem of exclusive and nonlinear relationships. Recently, different kinds of neural networks have 
been applied for localization. Three networks are used, by utilizing distance measurements [14], i.e., 
multi-layer perceptron (MLP), radial basis function (RBF) and recurrent neural networks (RNN), for 
indoor location estimation in wireless sensor networks (WSN). Another algorithm is also applied in 
WSN; the mobile device estimated position is obtained by constructing the relationship between the 
signals arriving from several access points with known Bluetooth architecture position [15].  
A fingerprint (FP) localization methodology was applied in an experimental indoor environment, 
where the statistics received signal strength indicator (RSSI) information for determining the position 
is used for the neural network [16]. Similarly, a neural network has also been applied to wireless local 
area networks (LANs) [17], in which a network model is proposed to perform localization utilizing  
RSS measurements related to a known position. Another paper proposed a technique to estimate  
user location in a wireless LAN inside buildings and with different types of neural networks for 
comparison [18]. Discriminant-adaptive neural network (DANN) is proposed in [19] and with RSSI 
value for localization. 

Back-propagation neural network (BPNN) is the most representative training model for the  
ANN [20]. Depending on the given numbers of known input vectors and its corresponding output 
vectors, BPNN can be used to train a network until it can approximate a function. During the training 
period, the procedure of the BPNN repeatedly adjusts the weights of the connections in the network 
using the gradient descent method, so it can minimize the measure of the differences between the 
actual output vector of the network and the desired output vector. Then the BPNN model can yield the 
desired output vector that is similar to the actual output vector. However, BPNN generally converges 
slowly and could easily be trapped in a local minimum. To avoid these disadvantages, various training 
algorithms have been proposed to speed up the training phase. Conjugate gradient algorithms are the 
most popular iterative methods for solving very large linear systems of equations [21–23]. Resilient 
back-propagation (Rprop) is an algorithm with good convergence speed, accuracy and robustness to 
the training parameter [24]. The Levenburg-Marquardt (LM) method has the most efficient convergence 
during the back-propagation training process because it can be thought of as a combination of two 
methods: steepest-descent method with stable but slow convergence, and Gauss-Newton method with 
opposite characteristics [25]. By considering both effectiveness and efficient, in this paper various 
neural network training algorithms, namely, conjugate gradient, Rprop and LM are applied to 
determine the MS location.  

In most rural areas, it is difficult for an MS to detect more than three BSs for location purposes. We 
had proposed a novel positioning algorithm, based on Rprop, to estimate the MS location if both TOA 
and AOA measurements are simultaneously available from two BSs [26]. In most practical situations, 
three BSs can be heard by the MS in cellular communication systems. This paper extends the  
Rprop-based algorithm to various training algorithms for MS location estimation when three BSs are 
available. From a geometric point of view, the position of MS is estimated from the intersections of the 
three circles if TOA measurements are provided from three BSs. The MS location is also given by the 
intersections of three circles and a line if both TOA measurements from three BSs and the AOA 
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information at the serving BS are available [10]. In time-based location system, the signal propagates 
with a longer path from BS to the MS, and the extra distance corresponds to a positive error over the 
true range between the MS and BS. The true MS location should be constrained to the area enclosed by 
the overlap of the three circles given by the three TOA measurements. These discrete intersecting 
points within this area are defined as feasible intersections. At the beginning of the training, the 
feasible intersections are fed into the network at the input layer. During the training period, the neural 
network was employed to establish the functional relationships between these feasible intersections 
and the MS location. After training the neural network, the input data comes from the feasible 
intersections, pass through the various types of trained neural networks, and then the output is the 
prediction of MS location. The proposed algorithm can be applicable to all positioning techniques. No 
matter there are circles generating from signal strength and time-based schemes, or the lines generating 
from AOA, we can use the intersection of both circles and lines to estimate MS location. Simulation 
results show that the proposed algorithm always provides much better location estimation than the 
other existing methods.  

The remainder of this paper is organized as follows: in Section 2, we introduce the MS positioning 
methods using existing methods. BPNN and other training algorithms are described in Section 3. In 
Section 4, we propose the algorithm based on various neural network training methods to estimate the 
position of an MS. Next, Section 5 discusses the simulations performed to compare the proposed 
algorithm with the other methods. Finally, the conclusions are given in Section 6. 

2. Existing Methods 

2.1. Case 1: Three TOA Measurements Are Available 

2.1.1. Taylor Series Algorithm (TSA) 

Taking into account the constraint on hearability, the number of BSs is three. As shown in Figure 1, 
the coordinates for BS1, BS2, BS3 are given by )0,0(),( 11   =YX , )0 ,() ,( 222 XYX = , and ) ,( 33 YX , 
respectively. The distances between BS i  and the MS can be expressed as: 

22 )()( iiii YyXxtcr −+−=⋅=  (1) 

where c  is the signal propagation speed, ),( yx  and ),( ii YX  are the location of the MS and BS i , 
respectively. If ),( vv yx  is the initial estimated position, let xvxx δ+= , yvyy δ+= . By linearizing the 
TOA equations using Taylor series expansion and retaining the first two terms, we have: 

zA ≅δ  (2)
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The least-squares (LS) estimation can be solved by: 

zAAA TT 1)( −=δ  (3)
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Figure 1. Geometry layout of the three circles. 

 

The recursive process starts with an initial guess for the MS location, and then repeats the 
computations in the iteration. Depending on the initial estimate of the MS location, the convergence is 
not guaranteed [27,28].  

2.1.2. Linear Lines of Position Algorithm (LLOP) 

This scheme utilizes the reduced linear equation derived from the original nonlinear range 
equations. Rather than circular lines of position (LOP), the linear LOP (LLOP) equation passes 
through the intersections of the two circular for TOA measurements. The linear equations can be found 
by squaring and subtracting the distances obtained by Equation (1). The MS location is determined  
by [29]:  
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Again, the LS solution to Equation (4) is given by: 

hGGG TT 1)( −=φ  (5)

2.1.3. Range-Scaling Algorithm (RSA) 

Range scaling algorithm (RSA) is proposed, based on a nonlinear object function, to solve an 
optimization problem under three TOA measurements [13]. It does not need to make a distinction 
between the NLOS and the LOS BSs. Since the NLOS error is always positive, the constrained 
nonlinear optimization algorithm utilized the bound of the NLOS error from the geometry obtained by 
the cell layout and range circles for only three BSs. This algorithm utilizes the relationships drawn 
from the geometry of the BSs and the bound on the NLOS error to compute the value of the scale 
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factors. The scale factor can be estimated by scaling the NLOS-corrupted range measurements to 
approach the true TOA value.  

2.2. Case 2: Three TOA and One AOA Measurements Are Available 

2.2.1. Taylor Series Algorithm (TSA) 

Denoting θ  as the angle between a line passing MS and its serving BS and another reference line 
(for instance the x-axis):  

)(tan 1

x
y−=θ  (6)

The observed timing and angular measurements can generate a set of nonlinear equations. The 
process starts of TSA with an initial location guess and can achieve high positioning accuracy. This 
method is recursive and the computational overhead is very intensive [27,28]. 

2.2.2. Hybrid Lines of Position Algorithm (HLOP) 

This scheme applies the original nonlinear range equations to produce a linear LOP, rather than 
a circular LOP, to locate the MS. The method takes the advantage of simpler computation of MS 
location. Combining the linear LOPs and the AOA line, the MS location is determined by [30]. 

2.2.3. Hybrid TOA/AOA Algorithm (HTA) 

When AOA information is available, RSA can be extended to the hybrid TOA/AOA algorithm 
(HTA) [30]. HTA is based on a constrained procedure, which can reduce the NLOS errors by using 
bounds on the range and angle errors inferred from the geometry. In addition, the objective function 
has to be minimized to provide the MS location estimation.  

3. The Traditional BPNN Algorithm and Other Neural Network Algorithms 

3.1. BPNN Algorithm 

The ANN is an information processing system inspired by the ability of human brain to learn from 
observations and generalize by abstraction [31]. The system employs a set of activation functions and 
input-output of sample patterns, and it does not require a priori selection of a mathematical model. 
Actually, the neural network can be trained for totally different applications, and it has been used in 
diverse fields. A BPNN is one of the most frequently utilized ANN techniques for learning both linear 
and nonlinear functions [20]. An ANN is composed of nonlinear computational units called neurons. 
Basically, BPNN is a neural network that uses a supervised learning method and feed-forward 
structure for computer learning and modeling.  

BPNN consists of an input layer, an output layer, and usually one or more hidden layer(s). It is well 
known that a single hidden layer is sufficient to approximate a continuous function with arbitrary 
precision. To compute the net input to the neuron, each input connected to the neuron is multiplied by 
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its corresponding weight to form a weighted sum, which is added to the bias associated with neuron j . 
Given a unit j  in a hidden or output layer, the net input jnet  to neuron j  is given by:  

∑ +⋅=
i

jiijj fwnet ϑ  (7)

where ijw  denotes the weight from neuron i  to neuron j , if  is the output of neuron i  from the 
previous layer, and jϑ  is the bias of neuron j . In each neuron, the weighted inputs from other neurons 
as well as a bias term are summed up, and then transferred to the activation function. A bias term can 
be treated as a connection weight from a special neuron with a constant activation value. We use an 
activation function to transform the output variable, so it will fall into an acceptable range. 
Theoretically, any differentiable functions may be used as an activation function. The most commonly 
employed forms of activation functions are linear, logistic (sigmoid) and hyperbolic tangent. In this 
paper, the activation function of the hidden and output layers is treated as linear transfer function.  

The training procedures of BPNN are composed of initialization, a forward pass, and a backward 
pass. The training process of neural network is obtained through the use of a training pattern, which 
consists of a set of input vectors with a corresponding output vectors. At the beginning of training, the 
set of training patterns is given to the input layer of the network. In the forward pass, the training 
pattern is applied to the input layer and its effect propagates through the network. During the forward 
pass, the synaptic weights of the network are all fixed. On the other hand during the backward phase, 
the weights are adjusted in accordance with an error-correction rule. The actual output of the network 
is subtracted from the desired output, which is a part of the training, to produce an error signal. This 
error signal is than propagated backward through the network, against the direction of synaptic 
connections. The weights are adjusted so as to make the actual output of the network move closer to 
the desired output. The error function F  is defined as: 

∑
=

−=
m

l
ll OTF

1

2)(  (8)

where m  is the number of output vector, lT  is the actual output vector of the network, and lO  is the 

desired output vector. The gradient of the error function with respect to the weighting vector is: 

k
k w

Fg
∂
∂=  (9) 

where k  is the iteration index, kw  is the current weighting vector. Then, the update of the weighting 

vector in error back-propagation is given by: 

kkk gww ⋅−=+ ε1  (10) 

where 1+kw  is the next weighting vector, and ε  is the user-selected learning rate parameter. If the 
learning rate is set too high, the algorithm may oscillate and become unstable. However, if the learning 
rate is too small, the algorithm will take too long to converge. The major drawbacks of traditional 
BPNN are the slow learning process, and it has a tendency to be trapped into a local minimum. 
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3.2. Other Neural Network Algorithms 

Different faster training algorithms have been presented in MS location estimation, such as 
conjugate gradient, Rprop and LM. Here the above algorithms will be analyzed to find out which 
algorithm can provide the better NS location estimation. 

3.2.1. Conjugate Gradient Algorithms 

The basic BPNN adjusts the weights in the steepest descent direction. The error function decreases 
very rapidly along the negative direction of the gradient. However, it would not produce the fastest 
convergence. So this may be very crucial to the learning rate given by the user. Conjugate gradient 
algorithms update weights along conjugate directions and produce generally faster convergence than 
that of the steepest descent. In the conjugate gradient algorithms, the step size is adjusted for each 
iteration. In the first iteration, the algorithms initialize the net by searching in the steep descent 
direction (negative of the gradient):  

00 g−=ρ  (11) 

where 0ρ  is the initial search gradient, and 0g  is the initial gradient. Then, we find the optimal 

distance to move along the current search direction by a line search:  

kkkk ww ρε ⋅+=+1  (12) 

where kw  is the current weight vector, 1+kw  is the next weight vector, kε  is selected to minimize the 
error function along the search direction, and kρ  is the current search direction. In the next iterations, 

the search direction is determined as a combination of the new gradient and the weighting value of 
previous search direction.  

1−⋅+= kkkk g ρβρ  (13) 

where kg  is the current gradient, 1−kρ  is the previous search directions, and the weighting value kβ  
can be computed in several various versions of the conjugate gradient algorithms, such as scaled 
conjugate gradient (SCG), conjugate gradient with Fletcher-Reeves updates (CGF) and conjugate 
gradient with Polak-Ribiere updates (CGP). The details are as follows. 

Scaled Conjugate Gradient (SCG)  

Most conjugate gradient algorithms perform a line search for each iteration along conjugate 
directions, which requires great deals of computational effort. By using a step size scaling mechanism, 
SCG avoids the time consuming line-search method per learning iteration, however, it makes the 
algorithm faster than other second order conjugate gradient algorithms. The SCG, developed by [21], 
is a well known optimization technique and does not require user-specified parameters. SCG belongs 
to the class of conjugate gradient methods, which shows super linear convergence ability on many 
problems.  
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Conjugate Gradient with Fletcher-Reeves Updates (CGF) 

Fletcher-Reeves version of conjugate gradient used the norm squares of both previous and current 
gradients to calculate the weights and biases. For Fletcher-Reeves version of conjugate gradient [22], 
the constant kβ  is computed according to the following normalized factor: 

11 −−

=
k

T
k

k
T
k

k gg
ggβ  (14) 

Conjugate Gradient with Polak-Ribiere Updates (CGP) 

This version of the conjugate gradient was proposed by Polak and Ribiere [23]. The search direction 
of each iteration is computed by: 

11

1

−−

−Δ=
k

T
k

k
T
k

k gg
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where T
k

T
k

T
k ggg 11 −− −=Δ .  

3.2.2. Rprop Algorithm 

The Rprop algorithm provides faster training time and convergence rate and has the capability to 
escape from local minima. Rprop is a first-order algorithm and its time and memory required is only 
linear proportional to the number of parameters to optimize [24]. Rprop is able to provide a very 
efficient hardware implementation in [32]. The Rprop algorithm is probably the easiest one to adjust 
the learning rule. Although there are a large number of adjustable parameters for Rprop, majority of 
these parameters can be set by default values. The slight variations in any of these parameters would 
not affect the convergence time. Rprop is an efficient training scheme which performs a direct 
adaptation of the weighting factors based on local gradient information. The principle of Rprop is to 
eliminate the harmful effects of the partial derivative magnitudes to calculate the weight. In the Rprop 
training algorithm, only the sign of the derivative is considered to determine the direction of the 
updated weight. The magnitude of the derivative has no effect on the weight updated. 

3.2.3. LM Algorithm 

Although BPNN is an algorithm with steepest descent, it often failed to converge. The LM 
algorithm not only has the fastest convergence but also train a neural network 10–100 times faster than 
the BPNN algorithm. Another advantage of this algorithm is especially useful when a very accurate 
training is required. It is an approximation to the Newton’s method [25] and like the Quasi-Newton 
methods, the LM algorithm can approach the second order training speed without having to compute 
the Hessian matrix. Therefore, it is a widely used advanced optimization algorithm that outperforms 
the steepest descent algorithm. Hence, the LM algorithm provides a good compromise between the 
speed of Gauss-Newton and the guaranteed convergence of the steepest descent methods. Thus LM is 
much faster and more powerful than the gradient descent algorithm. 
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4. Proposed Location Algorithm Based on Neural Network 

4.1. Case 1: Three TOA Measurements Are Available 

According to the viewpoint of geometric approach, distance measured from each BS can form a 
circle, centered at the BS. Then the MS position is estimated by the intersection of the circles from 
multiple TOA measurements. Each of the following three equations describes a circle for TOA, as 
shown in Figure 1: 

Circle 1: 2
1

22 ryx =+  (16)

Circle 2: ( ) 2
2

22
2 ryXx =+−  (17)

Circle 3: ( ) 2
3

2
3

2
3 )( rYyXx =−+−  (18)

If there is no NLOS error and measurement error, the three circles will intersect at the same point, 
which is the true MS location. However, NLOS propagation may occur in most environments and 
cause three circles to intersect at three points. Because NLOS error is always positive due to the excess 
path length, the TOA measurements always appears as a positive bias, greater than the true values. 
Figure 1 shows a scenario in which the true MS location should be inside the overlapping area of the 
three circles. As mentioned earlier, these discrete intersections (U, V, W) defined as feasible 
intersections. The feasible intersections must satisfy all the following inequalities simultaneously:  

2
1

22 ryx ≤+  (19)

( ) 2
2

22
2 ryXx ≤+−  (20)

( ) 2
3

2
3

2
3 )( rYyXx ≤−+−  (21)

The detailed steps of the training process are as follows: 

(1) Utilize three feasible intersections to establish an input data set for training purposes.  
(2) The training process with a training set composed of input patterns together with the required 

output pattern.  
(3) The network has the following input-output mapping: 

Input: three feasible intersections ( ,U ,V W ). 
Output: desired MS location. 

(4) The feasible intersections and the true MS location are used to train the network until it 
establishes the desired relationship.  

(5) During training, neural network repeats and adjusts the weights of the connections in the 
network, and the objective is to minimize the difference between the actual MS location and 
the desired MS location.  

(6) After training, the feasible intersections are input data passing through the trained neural 
networks to predict the MS location. 
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are put in one subset. Thus, there will be three subsets for three different numbers of feasible 
intersections. 

3. The three input data subsets with various measurement numbers are separately trained in the 
neural networks. 

The training set was composed of the following mapping relationship: 

Input: K  feasible intersections ( 5 ,4 ,3=K ). 
Output: desired MS location. 

5. Simulation Results 

We performed computer simulations to examine the performance of the proposed location 
algorithm. The coordinates of the BSs are respectively set to BS1: (0, 0), BS2: (1,732 m, 0), and BS3: 
(866 m, 1,500 m) [13]. The MS location is chosen randomly in accordance with a uniform distribution 
within the region formed by the points BS1, I, J, and K as shown in Figure 3. Before we apply the 
neural network to estimate MS location, we must set the parameter first, such as the numbers of hidden 
neurons, and training iterations (epochs). To avoid constructing worse network models, the parameter 
setting for network architectures must be determined carefully; otherwise it would cause more 
computational cost and produce worse results. To determine the optimal configuration of the neural 
network, trial-and-error methods are used to determine the parameter settings for network 
architectures. We attempted to keep finding the optimal parameter and maintaining gook performance 
both at the time. Regarding the NLOS effects in the simulations, three error models for NLOS 
propagation are adopted in this paper, namely, the uniformly distributed noise model [13], circular disk 
of scatterers model (CDSM) [13,33] and biased uniform random variable model [30]. 

Figure 3. Cell layout showing the relationship between the true ranges and inter-BS distances. 
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The former NLOS propagation model is called the uniformly distributed noise model [13], in which 
the TOA measurement error is assumed to be uniformly distributed over ),0( iU , for 3 ,2 ,1=i , where 

iU  is the upper bound of the error. Among various training methods for neural network, single hidden 
layer is the most widely used. It is well enough to model arbitrarily complex nonlinear functions. 
Positioning accuracy is measured in terms of root-mean-square (RMS) error between the actual MS 
location and the desired MS location. The important factors influencing the performance of the neural 
network are the number of training iterations (epochs) and the number of neurons in the hidden layer. 
In Figures 4 to 11, each abbreviation used is as follows: SCG: Scaled Conjugate Gradient, CGF: 
Conjugate Gradient with Fletcher-Reeves Updates, CGP: Conjugate Gradient with Polak-Ribiere 
Updates, Rprop: Resilient back-propagation, LM: Levenburg-Marquardt. 

The most major problem during the training process is the possibility of overtraining. Generally, an 
over-trained neural network are able to output highly accurate values for the training set input patterns, 
but may not be better to new data outside the training set [34]. If the network is under trained there is 
likely to be with large errors for both training and test data. Overtraining may lead to good 
performance for the training data but large errors in the test applications. For interpolation and 
extrapolation tests of networks, each experimental cycle was performed with the number of N  epochs 
(ranging from 200 to 3,000). To avoid overtraining, test data was used to check whether the network is 
not biased by the training data. The first 2/N  training iterations are used as the training data of the 
network and the last 2/N  training iteration are for the test data to conduct the estimation accuracy 
analysis. Figure 4 shows the variation of RMS for both training data and testing data when iU  is  
300 m. At the beginning of training period, the error decreases rapidly. After the number of epochs 
increases more than 1000, the performance cannot improve obviously. The trained model display very 
good prediction performance with the training and test data. Hence, overtraining does not occur for the 
proposed methods.  

Figure 4. Variation RMS error of convergence versus the epochs.  
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The number of hidden neurons is determined through experimentation. If there are too few 
hidden neurons, it will cause a bigger error. Increasing the number of hidden neurons can alleviate 
this situation, but it will also affect the speeds of convergence simultaneously, and the computing 
would be almost no help in reducing NLOS errors after exceeding a certain number of neurons. 
The general rules for choosing the number of neurons in the hidden layer are: (i) 0.5(·p + q),  
(ii) p, (iii) 2·p + 1, (iv) 3·p + 1, where p and q are the input and output hidden neurons, 
respectively [35]. Figure 5 shows the RMS error obtained with different number of hidden layer 
neurons. One can see the RMS error converged to the same minimum value for various hidden 
layer neurons. The main factor of affecting the accuracy of MS location is not the numbers of 
hidden-layer neurons. Because of the satisfactory prediction performance, the number of hidden 
neurons is set to )(5.0 qp +⋅ . In order to avoid increasing the computation load, we use the 
proposed algorithm with )(5.0 qp +⋅  hidden neurons and 1,000 epochs for both training and 
testing data in the following simulations. From Figures 4 and 5, we can find out that the positioning 
precision of the SCG, Rprop, and LM algorithm is better than CGF and CGP algorithm, especially in 
harsh NLOS environments. Based on the ability of estimating the neural network structure stated 
above, we apply the SCG, Rprop and LM algorithms to predict MS location after training period. 
Figure 6 shows the effect of various methods used with upper bound of NLOS error on the average 
location error. It is clear that as the upper bound of NLOS error increases, the average location error 
increases. Because of the square range-differencing operations involved, LLOP can mitigate the NLOS 
error. In comparison with LLOP’s reasonably results, TSA leads to less accurate results. The proposed 
algorithm is significantly more effective in radiolocation accuracy than TSA, LLOP and RSA, 
especially in severe NLOS conditions. It can be observed that the proposed algorithm can reduce the 
RMS errors effectively and estimate the MS location accurately. 

Figure 5. RMS error versus the number of the hidden-layer neurons. 
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Figure 6. Average location error versus the upper bound of NLOS errors. 
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are scatterers surrounded the MS, and while the signals travel between MS and BSs, they undergo a 
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Figure 7. Average location error versus the radius of scatterers. 
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Under highly NLOS conditions, the average location errors of TSA and LLOP are at least two times 
larger than the proposed algorithm. The proposed algorithm is less sensitive to the increasing in NLOS 
magnitude compared to the TSA, LLOP and RSA. The proposed algorithm can provide a more 
accurate MS location estimation and reduce the errors caused by the effect of NLOS propagation. As 
shown in Figure 8, the improvement in location accuracy using the proposed algorithm can also be 
seen in the cumulative distribution functions (CDF) curves of the location errors. The radius of the 
scatterers is set to be 200 m. Compared with the other traditional methods, the accuracy of MS location 
was indeed improved with the proposed algorithm. It is clear that TSA and LLOP predict the MS 
location with poor accuracy and the proposed algorithm always achieves the best performance. 

When three TOA and one AOA measurements are available simultaneously, the final NLOS 
propagation model based on a biased uniform random variable is employed [30]. The measured error 
of TOA between the MS and iBS  is assumed to be  ,iii qup ⋅+=η  where ip  and iq  are constants and 
u  is a uniform random variable over [0, 1]. Similarly, the measured error of AOA, is modeled as 

βα ⋅+= wf , where α  and β  are constants. The error variables are chosen as follows: =1p 50 m, 

32 pp = =150 m, 321 qqq == = 200 m, ,5.2 °=α  and °= 5β .  
 

Figure 8. Comparison of location error CDFs when NLOS errors are modeled as CDSM. 
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Figure 9. RMS errors reduction versus the number of epochs. 

 

Figure 10. RMS errors with different number of neurons in the hidden layer. 
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proposed algorithm compared to the other existing methods. The performance of the proposed 
algorithm is always significant better than TSA, HLOP and HTA. 

Figure 11. The CDF of location error of various methods for the biased uniform random 
variable model. 

 

6. Conclusions 

This paper presents a novel positioning algorithm based on neural network to determine MS 
location in NLOS environments. In this paper, we develop algorithm which make use of the feasible 
intersections of three TOA circles (and one AOA line) to provide improved MS location accuracy in 
the presence of NLOS errors. During the training period, various neural network algorithms are trained 
to establish the nonlinear relationship between these feasible intersections and MS location. After 
training, the proposed algorithm can reduce NLOS errors and obtain a more accurate MS location 
estimate. In order to evaluate the performance for the proposed algorithm, different NLOS models 
have been employed. Simulation results show that the proposed algorithm can provide enhanced 
precision in the location estimation of an MS for different levels of NLOS errors. 
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