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Abstract: One of the most critical issues of Wireless Sensor Networks (WSNs) is the 
deployment of a limited number of sensors in order to achieve maximum coverage on a 
terrain. The optimal sensor deployment which enables one to minimize the consumed 
energy, communication time and manpower for the maintenance of the network has 
attracted interest with the increased number of studies conducted on the subject in the last 
decade. Most of the studies in the literature today are proposed for two dimensional (2D) 
surfaces; however, real world sensor deployments often arise on three dimensional (3D) 
environments. In this paper, a guided wavelet transform (WT) based deployment strategy 
(WTDS) for 3D terrains, in which the sensor movements are carried out within the 
mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims 
to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of 
sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham’s line 
of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the 
literature and the performance of the proposed algorithm is compared with the Delaunay 
Triangulation (DT) method as well as a standard genetic algorithm based method and the 
results reveal that the proposed method is a more powerful and more successful method for 
sensor deployment on 3D terrains. 
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1. Introduction  

Optimal sensor deployment on 3D terrains is the problem of placing the sensors at the most 
appropriate spots in order to maximize coverage of a wireless sensor network (WSN). WSNs have a 
key role in today’s data acquisition networks where the sensors of a WSN are deployed on 
environments for detection and surveillance purposes. The sensors can vary from fire detectors, 
seismographs, cameras to vital sign sensors on soldiers in a battlefield and data gathered from the 
sensors is usually sank into a base station which is connected to a network backbone [1]. However, 
there are many environmental challenges which affect the performance of a WSN; that is, the limited 
number of sensors, and dependency in the determination of the best location of each sensor on the 
terrain and sensor characteristics. In order to obtain the most efficient quality of coverage (QoC) 
measure on a terrain, robust deployment strategies have to be taken into consideration, in the sense 
that, optimal sensor emplacement enables us to minimize the manpower, time and the number of 
sensors. Sensors are essentially battery operated and consume energy during the transmission, 
reception and sensing phases. In order to maximize the network lifetime, reliable methods for sensor 
deployment to reduce the energy consumption in WSN is a vital issue. 

Sensor deployment can either be stochastic or deterministic. In a stochastic deployment method, 
sensors are randomly deployed with a normal distribution scheme. However this is far from being 
effective because random deployment may cause sensors to be centralized or to be blocked by terrain 
features causing non line of sight (LOS) sensor spots. Hence this will ultimately decrease the 
probability of detection and sensing in the environment. With a deterministic method, sensors are 
deployed according to a predefined constraint such as; predetermined priority-regions on a field are 
equipped with more sensors in order to maximize the QoC. However, when the number of sensors is 
limited there will be coverage holes. Although both methods have their own advantages and 
disadvantages, they both fail to provide solutions to the problem of determination of the location 
coordinates of a predefined number of sensors which maximizes the coverage within a predefined 3D 
terrain. This is a kind of an NP-hard Minimum Set Cover (MSC) problem where the decision space 
grows exponentially with wider terrains. For example, within a map size of 1,024 × 1,024 pixels, there 
are 220 possible sensor locations. With 128 sensors, there are [220 (220-1) (220-2)….. (220-127)] possible 
sensor deployment schemes. Thus, the huge decision space necessitates a heuristic search algorithm.  

As a search algorithm, an elitist and a steady state genetic algorithm (GA) have been utilized to 
track the optimal placement schemes of sensors on a 3D region. The GA is an optimization technique 
which is based on an adaptive mechanism of biological systems [2]. Two widely used GA techniques 
are the Standard-GA (S-GA) [3] and the Steady State-GA (SS-GA) [4]. In S-GA, new offspring are 
born from the parents of an old population using the crossover and mutation operators (genetic 
operators) and these individuals become the new population. The new population gets old when the 
whole new population is created and the algorithm iterates until a termination condition is 
achieved [5,6]. The SS-GA is different from the S-GA that there is only one new child inserted into the 
new population at each generation. The performance of a GA is highly problem specific and depends 
on the utilized parameters. Therefore, modeling and determination of the parameters is crucial for 
finding an optimal solution for a problem. Hence, in this study various methods with a wide parameter 
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range have been evaluated and we have come up to the solution that S-GA and SS-GA methods both 
give satisfactory results and SS-GA overwhelms the S-GA in terms of number of iterations.  

In this paper, first two deployment strategies are investigated i.e., the random deployment method 
and the Delaunay triangulation method [7]. With these two strategies, optimal solutions could not be 
achieved, thus a genetic algorithm based deployment strategy has been developed, in which each 
sensor is moved to a new position which bears an attractive force to change the current position of a 
sensor within the area of interest. The attractive force is estimated by taking the wavelet transformation 
of the coverage matrix of the area of interest (AoI) and the result is the pixel which has the minimum 
energy level and deserves to carry a sensor. To evaluate the attractive force and determine the energy 
bearings of pixels, WT of QoC matrix is used in an image segmentation sense. The main reason for 
choosing a wavelet transform approach for segmentation of the QoC matrix is that, it is able to analyze 
signals with non-stationary spectra and gives better and faster results than other transforms [8]; and to 
the best knowledge of the authors of this article, this is the first study which utilizes a WT based 
approach for deploying sensors on 3D terrains.  

Moreover, most of the sensor deployment algorithms in the literature deal with two-dimensional 
(2D) zones and do not propose strategies to handle coverage in three-dimensional domains, which is 
more realistic and a requirement for both civilian and military applications. The deployment of sensors 
to achieve desired QoC levels is basically more challenging on 3D terrains compared to 2D terrains. In 
3D environments, a LOS algorithm is needed in order to determine whether a point on the terrain is 
blocked by any obstacle or not, thus the complexity of the problem increases. In this paper, 
Bresenham’s LOS algorithm has been employed owing to its faster computation, in the sense that it 
does not require interpolation calculations and requires less number of calculation points [9].  

The paper is organized as follows: In Section 2, related work on sensor deployment methods which 
are developed for 3D terrains is reviewed. In Section 3, some preliminaries and problem model are 
presented and in Section 4, the proposed algorithm is explained and performance evaluations are 
presented. The paper is concluded in Section 5. 

2. Related Work 

The studies on sensor deployment, especially for 3D terrains, usually take into account that the 
number of the sensors is constant. With a given number of sensors, the goal is to achieve maximum 
sensor coverage, thus maximum network utilization, minimum energy consumption or both.  

Wang et al. [10] propose a genetic algorithm-based sensor deployment method, which deals with 
the problem of maintaining sensing coverage by a small number of sensors and low energy 
consumption in a wireless sensor network consisting of directional sensors [10]. They consider the 
priority-based target coverage problem and try to find a minimum subset of directional sensors that can 
monitor all targets, satisfying their prescribed priorities. Jia et al. propose a coverage control scheme 
based on elitist non-dominated sorting genetic algorithm (NSGA-II) in which a small number of sensor 
nodes are kept active to decrease the energy consumption [11]. They consider a large number 
of sensors with adjustable sensing radius that are randomly deployed to monitor a target area.  
Bakhtari et al. presented an implementation of a surveillance system in which multiple active-vision 
sensors are utilized [12]. In their implementation the position and orientation of a single target are 
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tracked along its unknown trajectory. An optimal subset of dynamic sensors which moves in response 
to the motion of the target, are used for data-fusion process. Tezcan and Wang propose a new 
algorithm which tackles the coverage and orientation problem for video sensor networks [13]. Their 
aim is to find the most beneficial orientations for all multimedia sensors to maximize multimedia 
coverage in the 2-D case for improving quality of the information sensed from the region of interest, 
simultaneously minimizing the negative effect of occlusions and overlapping regions in the sensing 
field. Mittal and Davis propose a method to maximize the visibility from static sensors in a dynamic 
scene in which moving objects may occlude each other [14]. They determine the optimum number and 
placement of cameras in the scene for various scenarios.  

There are various deterministic sensor deployment examples in the literature. One of the most 
successful deployment methods is to place each sensor in the middle of a Delaunay triangulation or the 
middle of Voronoi polygons of sensor coordinates [7]. To deploy a minimum number of relay nodes, 
Senel and Younis utilize the Triangular Steiner Tree approximation [15]. Another localization method 
is proposed by Chen et al., which first splits the target region into sub-grids [16]. By deploying sensor 
nodes which reside on the vertex of each grid, the blind nodes are determined by comparing their 
Received Signal Strength Indicator (RSSI) values in order to deploy minimum number of sensors. For 
the case of mitigating the coverage holes after an initial random deployment, Chizari et al. [17] 
propose a divide-and-conquer algorithm based on a Delaunay triangulation method and propose a new 
sensing coverage method, which provides more detailed QoC information than its predecessors about 
the uniformity of coverage, which has a remarkable influence on network efficiency. However, this 
method fails to prove whether the triangulation-based deployment leads to optimal solutions or not. 
Stochastic deployment approaches usually make assumptions on the probability distribution of the 
sensor deployment onto the terrain. Fekete et al. [18] propose a random distribution of sensors inside a 
geometric region according to the boundary detection algorithm. In their approach they suggest the 
idea that the boundary nodes would have lower degrees than that of the interior ones and provide a 
degree threshold to differentiate interior and boundary nodes. Also in [19], Wang and Zhong propose a 
polynomial-time approximation algorithm to find a solution to the problem of deploying minimum 
number of sensors on a bounded 3D field. A grid distribution and a greedy heuristic are introduced to 
determine the best placement of sensors.  

Moreover, there are various heuristic deployment strategies in the literature. For example, in [20], 
the Artificial Bee Colony (ABC) algorithm is applied to the dynamic deployment of sensor nodes in 
order to increase the coverage area of the network. A Simulated Annealing (SA) method and a Tabu 
Search (TS) method are proposed in [21] and [22], respectively. In [23], Kulkarni and 
Venayagamoorthy propose a sensor deployment strategy based on bio-inspired algorithms, particle 
swarm optimization (PSO) and bacterial foraging algorithm (BFA) for image segmentation. Their 
study reveals that bio-inspired algorithms perform multilevel image segmentation faster than the 
exhaustive search for optimal thresholds. In another study, Topcuoglu et al. propose a method for 
deployment of sensors on a 3D terrain with a hybrid-evolutionary algorithm [24]. In this study, authors 
take into account multiple objectives, however their model is particularly based on sensors which 
require defining the conic field of (camera) view analysis of each deployed sensor. On the other hand, 
in the proposed work, the usage of generic omni-directional sensors is assumed, where the sensing 
region is specified as a cube. This puts our study to be a generic model for every type of sensors.  
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In this paper, in order to mitigate the coverage holes after the initial deployment of a number of 
sensors, a wavelet transformation based mutation operator is utilized, which effectively gives better 
coverage results. Also, as stated above, most of the studies on sensor deployment problem take into 
account 2D terrains which is not sufficiently accurate for outdoor applications whereas in this study 
different types of 3D terrains ranging from rough and undulating ones to smooth ones are considered. 
Also according to the literature mentioned above, we apply more real-world-like input factors such as 
sensor coverage capabilities, terrain and sensor features, etc. 

3. Preliminaries 

The primary objective of this study is to maximize the overall QoC of a WSN when deploying a 
specific number of sensors on a 3D surface. Some GA approaches are empirically tested for the search 
of an optimal deployment scheme. By starting with the same initial population the search performance 
of an S-GA and an SS-GA have been evaluated. In this section, firstly the problem model and 
preliminaries are given, secondly the results for two widely used deployment methods are shown and 
lastly the proposed deployment algorithm is presented.  

In order to make fair comparisons and evaluate the performance of the deployment methods, the 
algorithms are run with the same parameters such as the interested terrain, the sensor types, coverage 
calculation algorithm, LOS algorithm, initial population etc. Afterwards, the convergence speed with 
regard to QoC rate is analyzed. 

3.1. The Problem Model 

The sensor deployment is a challenging task, in the sense that different terrains (and also  
sub-regions of a terrain) may exhibit coverage holes after an initial deployment scheme. In this study, 
three different 3D terrain types are used, i.e., rough terrains, undulating terrains to smooth terrains. 
Examples for the 3D terrains which are used in this study are shown in Figure 1. 

The problem takes into account a terrain which is denoted as T, where N sensors will be deployed. 
The terrain has a size of ܯ ൈ  pixels. As an initial setup, every pixel in the terrain is numbered with ܯ
Equation (1) and denoted as ௡ܲ and when ௡ܲ is given, the Cartesian coordinates (x, y) are calculated 
with Equation (2) and Equation (3) respectively: 

௡ܲ ൌ ሺݕ െ 1ሻ ൈ ܯ ൅ ݕ (1) ݔ ൌ ሺہ ௡ܲ െ 1ሻ/ۂܯ ൅ 1 ݔ (2) ൌ ௡ܲ െ ܯ ൈ ሺݕ െ 1ሻ (3) 

where ہ .  denotes the floor operator. The terrain T is divided into N sub-regions. The pixel length of ۂ
each sub-region ls is calculated with the formula, ݈௦ ൌ උܯ/√ܰඏ where M denotes the pixel length of 
each dimension of terrain T. Ti denotes the sub-region number with i=1,2,…N. The number of  
sub-regions is equal to the number of sensors and each sub-region is assigned with only one sensor for 
an initial deployment. The start and end coordinates of every sub-region in the x axis, xs and xe, are 
determined by Equation (4) where ڿ .  is the ceiling operator. The start and end coordinates of every ۀ
sub-region in the y axis, ys and ye, are determined by Equation (5) where mod() defines the modulo 
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3.2. The Sensing Model 

The sensing model utilized in this study is a probabilistic model which allows a realistic modeling of 
sensor coverage probability [7]. In this model the sensed phenomenon is defined at location p for the 
sensor s with a predefined sensing range as sr and an uncertainty sensor detection range defined as ur 
where ur <sr. If the sensed phenomenon p lies before the range (sr–ur) and sensor s is not occluded by 
any obstacle (there is LOS between s and p), then it is certainly sensed. When p lies within (sr–ur) and 
(sr + ur) and if there is LOS between s and p, then the detection probability can be expressed as  
exp(-α.distβ). When p lies out of the range (sr + ur) or if there is a non-line of sight (NLOS) then it is 
certainly not sensed. In this paper, we have utilized the well known Bresenham LOS algorithm for 
LOS detection. Owing to its integer computation, it yields faster computation, does not require 
interpolation calculations and requires a lesser number of calculation points [9]. Although Bresenham's 
algorithm is generally used in computer graphics for line drawing on 2D surfaces, we have modified it 
to be used for LOS determination on 3D spaces. Figure 3 shows a simple LOS scenario. As shown in 
the figure, the height of any corresponding pixels does not cut the virtual line drawn from a sensor s 
and a phenomenon p, hence there is a LOS between s and p.  

Figure 3. Determination of LOS between a sensor and a phenomena. 

 

The sensing probability Oq(s,p) of the probabilistic sensing model with ∆(s,p) denoting the 3D 
Euclidian distance between p and s can be expressed as follows:  

௤ܱሺݏ, ሻ݌ ൌ ۔ۖەۖ
ۓ                  1, ∆ሺݏ, ሻ݌ ൑ ሺݏ௥ െ ௥ሻݑ ܽ݊݀ ݂݅ ,ఈ.ௗ௜௦௧ഁିܱ݁ܵܮ ሺݏ௥ െ ௥ሻݑ ൏ ∆ሺݏ, ሻ݌ ൑ ሺݏ௥ ൅ ݀݊ܽ   ௥ ሻݑ ,0                   ܱܵܮ݂݅ ∆ሺݏ, ሻ݌ ൐ ሺݏ௥ ൅ ௥ሻݑ ݎ݋ ݂݅  (6) ܱܵܮܰ

ݐݏ݅݀ ൌ ሺ∆ሺݏ, ሻ݌ െ ሺݏ௥ െ ௥ሻሻ/2ݑ ൈ ௥ݑ (7) 

The overall map of sensing probabilities of each location constitutes the so-called QoC matrix. The 
values of α and β reflects the environmental characteristics of the terrain. By carefully adjusting these 
variables, various sensor and terrain types can be defined. 
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3.3. The Discrete Wavelet Transform 

Wavelets, which are used for representing data or other functions, group data into various frequency 
components to work on each component separately at each scale. Compared to traditional 
transformation methods, wavelet analysis has advantages in analyzing physical situations, especially 
when the signal contains discontinuities and sharp spikes [25]. Wavelets are utilized in the fields of 
applied mathematics, electrical engineering, image processing, etc. 

Two-dimensional implementation of the discrete wavelet transform (DWT) is commonly used in  
image-processing applications. The DWT provide spatial (or temporal) and frequency information  
(i.e., space-frequency or time-frequency analysis) simultaneously and is widely used in the analysis of 
transientor time varying signals. WT approach is able to analyze signals with non-stationary spectra 
and gives better and thus faster results than other transformations.  

Any two dimensional signal f(x, y) of size M × N is decomposed by using  2D discrete wavelet 
transform is given in Equation (8): 
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where ),,(W 0 nmjϕ are the approximation (scaling) coefficients at level j0 and ),(,,0
yxnmjϕ are the 

scaling functions; ),,(W nmji
ψ are the detail (wavelet) coefficients at scales 0jj ≥  and ),(,, yxnmj

iψ are 
the corresponding wavelet functions with },,{ DVHi =  representing horizontally, vertically and 
diagonally sensitive wavelets. While ),,(W 0 nmjϕ represents an approximation to f(x,y) and embodies 
the energy compaction of the given signal, ),,(W nmji

ψ represent the highpass or the detail 
components which characterizes the signal’s high frequency information with horizontal, vertical and 
diagonal directions, respectively [25]. At each level of the standard DWT, the size of approximate 
coefficients and detail coefficients decreases by a factor of 2 resulting in a perfectly non-redundant of 
O(n) representation of a given signal. The sparse representation with energy compaction makes the 
standard DWT widely accepted for signal compression. In our implementation, the 2D fast DWT is 
employed using 1D digital filters based on the separable 2D scaling and wavelet functions and 
downsamplers. The scheme for taking the fast DWT is depicted in Figure 4. One-level decomposition 
filterbank shown in the figure can be iterated on ),,(W 0 nmjϕ by binding it to the input of another 
filterbank to provide multilevel decomposition. 

In this study, the overall QoC is regarded as a measure of signal level provided by the neighboring 
sensors in each location (pixel). In order to determine the coverage holes in a sub-region we take the 
DWT of the sub-QoC matrix. The minimum value in the resulting approximation matrix of the wavelet 
transform gives the least energy bearing pixel point which corresponds to an area in the sub-region. 
This fact is used to relocate the sensor by moving it towards the least covered region. 
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Figure 4. The analysis filterbank for 2D fast wavelet transform for one-level decomposition. 

 

3.4. Random and DT based Sensor Deployment 

In random deployment, N sensors are scattered onto random coordinates of the terrain and the 
correspondent QoC is evaluated with the probabilistic sensing model. At each iteration, the coverage 
value and the sensor positions are recorded. This scheme is repeated several times and the QoC value 
is determined by taking the average. Although a Gaussian distribution can enable equally distributed 
sensors in a region, random deployment is far from being an optimal solution. 

The second deployment method which is evaluated in this paper is the Delaunay Triangulation (DT) 
based approach. The DT-Score algorithm proposed in [7] is adapted to be used on 3D terrain  
height-maps. DT is the dual graph of Voronoi diagram and an example of a Voronoi Diagram and its 
corresponding DT is given in Figure 5. The DT based deployment approach utilizes the idea of placing 
the next sensors to the uncovered regions. Before deploying a sensor, each candidate position is 
generated from the current sensor positions and a new sensor is placed into the middle of the largest 
empty circle in a DT. The algorithm is repeated until all the sensors are placed. One disadvantage of 
the algorithm is that the DT always yields to non-covered regions on the boundaries of the terrain. In 
order to overcome this disadvantage, at the very beginning of the deployment, sensors are manually 
deployed on the edges of the terrain. This ensures to accumulate the probability of the coverage of all 
the pixels in the region. 

In Figure 6, the performance evaluation results of the random deployment and the DT based method 
are shown. It can be inferred from Figure 6 that the DT based deployment approach is much more 
effective than a random deployment method in terms of QoC. However, DT based approach does not 
exhibit an optimal search strategy. This is evident from the coverage results achieved by applying the 
GA based deployment strategies for the same terrain, which are presented in Section 5 . 
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Figure 5. Voronoi regions and corresponding Delaunay triangulation. 

 

Figure 6. QoC results for random deployment strategy and Delaunay triangulation strategy. 

 

4. The Proposed Methods 

The GA is proven to be a robust and optimal search technique for various applications since it was 
first proposed by Holland [2]. It is based on the adaptive mechanism of biological systems. The 
structure of a GA is simple and straightforward: it iterates through fitness assessment, selection and 
breeding, and population reconstruction. The primary difference between the versions of GAs is in 
how the parents of a population are selected and how the breeding takes place. To breed, two parents 
are selected from the original population. The features of the parents are copied and recombined 
(crossovered) with each other and the results are mutated to form two children. This process is 
repeated until the child population is fulfilled. In order to avoid premature convergence, mutation 
operators are used to escape from local optima. The original technique for GA selection was called 
roulette wheel selection. In this selection method, individuals are selected in proportion to their fitness. 
Hence, if an individual has a higher fitness, its probability to be selected is higher. Elitism is another 
simple and yet successful concept in GAs. By deploying an elitist approach, the fittest individual or 
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individuals from the previous population, which are called elites, are directly injected to the next 
population. This algorithm also has similar exploitation properties.  

An alternative to a traditional S-GA approach is to use a SS-GA approach, where there is only one 
new (the fittest) child inserted into the new population at any generation. The idea is to iteratively 
produce a new child (or two), calculate their fitness, and then reintroduce them directly into the 
population itself, killing off some preexisting individuals to make room for them. The SS-GA has two 
important features. First, it uses less memory than S-GA because there is only one population at a time. 
Second, it is fairly exploitative compared to a traditional approach: the parents stay around in the 
population, potentially for a very long time. This problem can also be tackled with applying an 
appropriate mutation scheme. 

4.1. Representation of Individuals  

In this study, it is shown that S-GA and SS-GA methods produce better and more satisfying sensor 
deployment schemes. For both methods, integer representations of sensor pixel positions are used. As 
shown in Figure 7, one individual gene of a population represents one deployment scheme. As an 
example, with given 64 sensors, the terrain is divided into 64 equal sub-regions. For the terrain shown 
in Figure 2, sensors are deployed at 52nd pixel of sub-region-1, 5th pixel of sub-region-2, …, 48th 
pixel of sub-region-64. By applying Equations (1–5), it is also possible to convert the pixel numbers to 
Cartesian coordinates.  

Figure 7. Individual representation of sensor deployment. 

Sub-region number  1 2 3 ….. 63 64 
Pixel number  P1 P2 P3 ….. P63 P64 

4.2. Fitness Function 

The fitness function evaluates how well each parent (deployment of N sensors) covers the terrain. In 
other words, while each sensor has predefined coverage parameters, each sensor has an amount of 
coverage within a circle in its periphery. As stated in Section 3.1, if the sensed pixel p, is within the 
sensing range, sr and if there is LOS between two pixels, it is certainly sensed and the pixel p that 
corresponds to the coverage matrix is set to 1 because it is sensed with a probability of 100%. If the 
sensed phenomenon p lies within (sr − ur) and (sr + ur) then the sensing probability can be expressed 
as exp(-α.distβ). If the distance between s and p lies far beyond (sr + ur), the sensor cannot sense the 
phenomenon on pixel p. The fitness function can be expressed as follows: 

ሺ݅ሻܨ ൌ 1ܲ ෍ ൬ ෍ ௤ܱ൫ݏ௝, ௞൯௉௞ୀଵ݌ ൰ே
௝ୀଵ  (9) 

where F(i) denotes the fitness value of the parent i; and j denotes the sensor number (or the sensor in 
sub-region j), P is the number of pixels in the whole map and Oq(s,p) denotes the sensing probability 
which is bound to the distance between s and p. Since sensor j has coverage on a few pixels in its 
periphery, only those pixels within the coverage range contribute to the inner summation of  
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Equation (9). In our implementation if the same pixel is covered by more than one sensor, only the one 
with the highest sensing probability is used in the calculation of F(i). Ultimately the fitness value 
represents the percentage of the coverage amount (which we named as Quality of Coverage-QoC). 

4.3. Recombination 

In this study we have utilized the single point crossover technique because of its simplicity and ease 
of use. It is straightforward, in the sense that it does not expose any calculation burden on the 
algorithm. In addition, as stated in Section 4, the success of the algorithm depends highly on the 
mutation operator instead of recombination.   

In this method, a random crossover index Pc between [1, N] is determined, which represents the 
point of the crossover between two parents and after recombination two new children are born.  
In addition, 20 individuals survive in the population at each generation. In S-GA 20 new children are 
born whereas in SS-GA only one child is determined to be injected into the population. This 
population size is determined to be the best empirically. With smaller population sizes, the GA 
converges prematurely and with larger sizes the computational time grows exponentially. 

4.4. Mutation 

The mutation operator in our study is based on moving a sensor to a new pixel position within its 
sub-region. Two deployment strategies arise in our study: a simple deployment strategy (SDS) 
(random walk mutation) and a WT based deployment strategy (WTDS) (guided walk mutation). The 
SDS is straightforward that if the sensor is to be mutated, it is put to a randomly new pixel position 
that is within its periphery. The decision that a sensor will be mutated is given with a comparison of a 
constant Pm , which denotes the probability of mutation. When the program iterates, a random number 
is generated. If this random number is less than or equal to Pm, the gene (sensor location) will be 
mutated. Pm is determined empirically and when it is selected to be 0.1, the algorithm performs 
the best.  

In WTDS, the next position of the sensor is determined with the help of WT. When a sensor is to be 
mutated, each sensor is moved to a new pixel position which bears an attractive force to change the 
current position of the sensor within the sub-region. The attractive force is estimated in two different 
ways, i.e., by taking the wavelet transform of the coverage matrix of either the corresponding  
sub-region or of a region in the neighborhood of the sensor to be mutated. The resulting approximation 
matrix of the WT embodies compact energy (coverage) distribution in that region. The location of the 
pixel which has the minimum energy level in the approximation matrix corresponds to an area with the 
least sensor coverage in that region and that area enforces the sensor to change its location towards it. 
In the first approach, the new sensor stays in the same sub-region whereas in the second approach the 
new sensor location may be in another sub-region. This process is illustrated in Figure 8. In Figure 8(a) 
the QoC matrix for a region of 8 × 8 pixels is shown. According to this figure, the sensor sits on pixel 
coordinate (8, 7). In Figure 8(b), the gray-scale representation of the QoC matrix is given. The white 
pixels denote the fully covered pixels and the black pixels correspond to 0% coverage. Total QoC for 
this region is 71% on average. The WT of the QoC matrix for this region is taken with 2 levels. The 
resulting approximation matrix of the WT is shown in Figure 8(c) where one can see that the top-right 



Sensors 2012, 12                            
 

 

5128

pixel has the least energy level, that it attracts the sensor towards the corresponding area of size 4 × 4 
pixels on that region. The sensor is then randomly moved to one of these pixel locations. In Figure 8(d,e), 
the resulting QoC matrix is shown where the QoC is increased to 74%. 

Figure 8. Process of WTDS with guided walk mutation (a) The QoC matrix of the  
sub-region before mutation; (b) The grayscale representation of the QoC matrix; (c) The 
approximation matrix after WT; (d) The QoC matrix of the sub-region after mutation;  
(e) The grayscale representation of the QoC matrix after mutation.  

 
(a) (b) (c) 

 
(d) (e) 

4.5. Summary of the Parameters 

In Table 1, the definitions and values of the parameters used for evaluating the proposed algorithm 
are listed.  

Table 1. Summary of parameters. 

Parameter Description Value 
M Map length 64 
N Number of sensors 64 
sr Sensing range 6 
ur Uncertainty sensing range 1 

α and β Environmental characteristics 0.8 and 0.4 
Pc Crossover point 14 to 54 
Pm Mutation probability 0.1 

Psize Population size 20 
Sh Sensor Height on Surface 

5. Numerical Results 

As stated above, in order to maximize the quality of coverage within a given terrain and a constant 
number of sensors, numerous versions of GAs are examined in order to find optimal sensor 
deployment schemes. We have come experimentally to the decision that S-GA and SS-GA methods 
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with a population size of 20 raise more effective solutions than any other GA methods. Roulette wheel 
selection and an elitist approach are followed in order to sustain the best population of individuals.  

Moreover, in order to evaluate the performance of the proposed mutation method, it is compared 
with a simple deployment strategy (SDS). In SDS, the mutation is realized by assigning a sensor to a 
new random pixel position within its periphery (1 to 5 pixels). On the other hand with the proposed 
WT based deployment strategy (WTDS), the sensor to be mutated is guided to a new pixel position 
which is determined by finding the least energy levels in its sub-region or in its surrounding region. 
Ultimately, the performances of six different methods which are listed in Table 2 are evaluated. 

Table 2. Evaluated GA methods. 

Algorithm Description Explanation 

SDS-GA 
Simple sensor deployment strategy with a 
standard genetic algorithm approach 

20 children born in each generation. 20 best are 
selected for the next population. Mutations are 
totally random. 

WTDS1-GA 
Wavelet transformation based sensor 
deployment strategy with a standard 
genetic algorithm approach 

20 children born in each generation. 20 best are 
selected for the next population. Mutations are 
WT guided. The location of a mutated sensor is 
in its current sub-region.  

WTDS2-GA  
Wavelet transformation based sensor 
deployment strategy with a standard 
genetic algorithm approach 

20 children born in each generation. 20 best are 
selected for the next population. Mutations are 
WT guided. The new sensor location may move 
to another sub-region after the mutation. 

SDS-SGA  
Simple sensor deployment strategy with a 
steady state genetic algorithm approach 

20 children born in each generation. Best child 
replaces worst parent. 
Mutations are totally random. 

WTDS1-SGA 
Wavelet transformation based sensor 
deployment strategy with a steady state 
genetic algorithm approach 

20 children born in each generation. Best child 
replaces worst parent. 
Mutations are WT guided. The location of a 
mutated sensor is in its current sub-region. 

WTDS2-SGA 
Wavelet transformation based sensor 
deployment strategy with a steady state 
genetic algorithm approach 

20 children born in each generation. Best child 
replaces worst parent. 
Mutations are WT guided. The new sensor 
location may move to another sub-region after 
the mutation. 

In Figure 9(a), the comparison of three standard GA approaches, SDS-GA,WTDS1-GA and 
WTDS2-GA is presented. As apparent from the figure, after 200 iterations, the SDS-GA approach 
prematurely converges. Also the maximum QoC rate after 1,500 iterations, achieved with SDS-GA is 
73.3%. WTDS-GA methods give better QoC results than SDS-GA, that the maximum QoC rate that 
can be achieved with WTDS1-GA and WTDS2-GA are 74.5% and 75.4%, respectively. Since the 
mutations in WTDS-GA methods are guided, the search for the best sensor locations gives improved 
QoC results, albeit after about 500 iterations, WTDS1-GA approach also prematurely converges. 

After detecting that a fully elitist GA approach results in convergence problems, a steady state 
approach is pursued both with SDS and WTDS based mutations where at each iteration, only the best 
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child replaces the worst parent in the population. As shown in Figure 9(b), steady state method gives 
better results and the convergence is due after 1,500 iterations. With SDS-SGA method, the maximum 
QoC rate that can be achieved is 74.2%. WTDS1-SGA gives better QoC which is 75.9% and  
WTDS2-SGA gives  better QoC results than any other deployment methods by rate of 76.3%. It is also 
noteworthy that a 2–3% increase in the QoC rate may seem insignificantly small. However, as stated in 
Equation (9), the QoC value represents an average amount, where any increase in this amount yields to 
a much better coverage. In addition, the final deployment of sensors can be seen in Figure 10(a). It can 
be inferred from the figure that with WTDS2-SGA, although each sub-region does not necessarily has 
a sensor inbetween its boundaries, the final positions of sensors are almost uniformly distributed 
around the terrain. It can be observed from Figure 10(b,c) that the proposed WTDS2-SGA method 
successfully reduces coverage holes on the terrain. 

Figure 9. Comparison of the proposed methods (a) three standard GA methods (b) three 
steady state GA methods. 

(a) (b) 

Figure 10. Final deployment results of WTDS-SGA method (a) optimally deployed 
sensors on the terrain; (b) the coverage matrix after first generation (black regions 
represent coverage holes); (c) the coverage matrix after last generation. 

 
(a) (b) (c) 

In our application, we have taken the sensor height from the ground, Sh as zero, since we are 
dealing with sensors which are to be camuflated on the field for military purposes. Increasing the 
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height of the deployed sensors to a reasonable height (e.g., 0.1sr) will increase the sensor coverage 
with ~1.5% increase in QoC since some of the nonLOS phenomena locations with respect to a given 
sensor may become LOS due to raised sensor height. If the height of the sensor nodes are adjusted 
separately from eachother, it may be possible to get better QoC results. Nevertheless, as stated about 
the sensors are to be deployed just on the surface in the current work.  

6. Discussion 

As stated in Section 1 and Section 2, the optimal sensor deployment problem has NP-Hard 
complexity which necessitates heuristic approaches to be used. Although there are interesting and 
successful deployment methods, the Simulated Annealing [21] and Tabu Search [22] methods have 
relatively less time complexity and the ABC method [20] produce better results especially for dynamic 
environments. However, majority of them are proposed for 2D environments and lack LOS issues.  

In this study we utilized different types of GAs and determined the coverage holes with WT which 
is a novel technique for this application. A drawback in our approach is that, the coverage and LOS 
calculations for 3D environments are more complex and computational time increases for larger 
terrains. Also our work aims to deploy stationary sensors. Evaluation of our method for dynamic 
environments and mobile sensors is an open issue. In addition, bio-inspired models have proven to be 
useful for solving deployment problems [26]. However, like many of the bio-inspired studies our study 
is also based on simulations. The performance of the algorithms have to be proven by empirical  
real-world scenarios. 

7. Conclusions and Future Work 

The deployment of limited number of sensors on 3D terrains to achieve maximum sensor coverage 
is a non-trivial task and studies of deploying in 2D environments are extensive, but methods for 3D 
environments are scarce. In the scope of this paper, we have focused on searching for optimal solutions 
with GAs. A wavelet transform-based guided walk mutation algorithm has been proposed in order to 
maximize the QoC levels. The performance results reveal that the proposed algorithms outperform the 
random deployment, the DT based deployment and the standard GA deploymentapproaches. Among 
the two approaches proposed for the mutation phase, the one which does not restrict more than one 
sensor deployment in a sub-region provides better QoC. 

This study represents a novel and robust sensor deployment approach on 3D terrains for static 
sensors. Finding optimal solutions of sensor coverage for the sensors that can be placed at different 
heights on a mobile platform and equipped with communication facilities will be the next step.  
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