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Abstract: This paper is focused on the description of the physical layer of a new acoustic 
modem called ITACA. The modem architecture includes as a major novelty an ultra-low 
power asynchronous wake-up system implementation for underwater acoustic transmission 
that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature 
enables a reduced power dissipation of 10 µW in stand-by mode and registers very low 
power values during reception and transmission. The modem also incorporates clear 
channel assessment (CCA) to support CSMA-based medium access control (MAC) layer 
protocols. The design is part of a compact platform for a long-life short/medium range 
underwater wireless sensor network. 

Keywords: underwater sensor networks; wireless sensor networks; acoustic modems; 
wake-up; underwater MAC 

 

1. Introduction 

There is an increasing need for short-range, long-life, low-cost underwater communications systems 
that provide flexibility and maintenance-free installations. Typical applications for these requirements 
are water pollution monitors, offshore fish farms, autonomous underwater vehicle guidance, water 
parameter data-logging, and coastal surveillance applications, etc. These types of applications may 
require one or more of the following: short range underwater communications between collaborative 
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devices; short/medium range communications between sea bottom and surface; and longer range 
communications between the site and land. In these applications it is often desirable to eliminate or 
reduce the number of wires and connectors to a minimum to reduce cost and maintenance and  
increase reliability.  

There are important research projects on wireless sensor networks in marine environments  
such as [1–3], or for relevant ecosystems [4,5], and these point to the need for specific systems for 
environmental monitoring of water parameters in lakes, bays, ports, seas, and oceans. 

Practical solutions mainly use floating buoys with sensors attached to data bus cables for vertical 
measure profiling; and buoy wireless communication is achieved aerially using ISM frequency bands 
as in [6–10]. Although surface buoys are interesting, the development of underwater wireless sensor 
networks (UWSN) requires more flexible generic solutions using submerged or floating modems that 
can be adapted to many scenarios [11]. 

Acoustic communication is the current choice for distances over one meter when deploying a 
submerged sensor that communicates wirelessly. This approach offers greater reliability and range than 
radio frequency or optical alternatives [12]. An acoustic modem sensor, in the context given above, 
must be self-powered because replacement is difficult once deployed, and so an energy-efficient 
design is required to extend its life for months or even years. 

Current difficulties in finding an adequate underwater acoustic modem prompted us to design  
a flexible, ultra-low power, low-cost modem whose architecture is focused on long-life submerged 
sensoring nodes and which supports energy efficient communication protocols. The modem, called 
ITACA [13], provides transmission of digital data using coherent-FSK at rates of 1 kbps with  
an 85 kHz carrier frequency. The modem only requires 11 µW on stand-by and 24 mW in data 
reception mode—and this is currently the lowest reported power requirement. Range depends on 
transmission power. The objective is to reach short/medium distances with the lowest recorded power 
consumption, and in October 2011 a distance of 240 meters was experimentally achieved inside  
a small marina with a transmission power of 108 mW.  

The proposal presented in this paper is focused on designing an aquatic physical platform in an 
energy-efficient way that enables the efficient development of upper communication layers by 
supporting additional RTC (Real Time Clock) asynchronous wake-up and clear channel assessment 
(CCA) detection using both carrier frequency detection and the RSSI level.  

This paper is organized as follows. State-of-the-art related work is described in Section 2. Section 3 
describes the acoustic modem architecture block-by-block. Section 4 discusses energy analysis while 
Section 5 concludes the paper.  

2. Related Work 

Although most terrestrial wireless sensor networks are based on electromagnetic wave propagation, 
the extrapolation of this technology to an underwater environment as shown in [14] is not promising 
due to the huge electromagnetic wave attenuation and, consequently, the high power level required to 
achieve acceptable transmission ranges between modems. A more interesting option in terms of price, 
power consumption, and network reliability is the use of acoustic modems.  
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Some approaches use common microphones and speakers to perform the conversion of electric 
signals into acoustic signals, and vice versa [15,16]. However, the efficiency of these transducers is 
quite low and an alternative should be explored to produce the conversion. The transduction from 
electrical energy to mechanical energy can be efficiently accomplished by piezoelectric materials such 
as those found in relatively cheap piezoelectric based echo-sounder devices.  

Some alternatives have been explored to properly excite piezoelectric materials for effective 
acoustic communication [17]. However, an ultra-low consumption solution is still needed for a modem 
architecture to obtain a balance between cost, consumption, and medium range distance rates for both 
peer-to-peer connections and dense networks.  

Communication over long link distances has already been achieved with modems, including 
commercial models such as the Tritech (up to 8 km) [18], the WHOI modem (1–10 km) [19], or UCSD 
(greater than 1 km) [20]. These modems can also be used for short or medium distances. However, 
their consumption is too high for deployment as reliable autonomous sensor networks using power 
supplied by small batteries for periods of months.  

The lowest consumption is achieved in [21] and [22]. The development of energy efficient 
enhanced modems should take into consideration the physical layer and the medium access control 
(MAC) layer from the very early design stages. A modem whose physical layer consumes little, but 
which must support a complex or non-energy efficient MAC protocol loses all the benefits gained.  
For example, stand-by power consumption in modern microcontrollers can be very low. In more detail, 
‘sleep mode’ reduces power consumption to a minimum by turning off the central processing unit 
(CPU) and attached peripherals. Therefore, exploring ‘sleep mode’ is an interesting approach for 
saving energy in underwater MAC policies. However, as messages cannot be sent or received by the 
wireless interface in sleep mode, the microcontroller needs to wake up and resume normal activity. 

In this line of work, designs [21] and [22] present types of wake-up systems to maintain the 
microcontroller in sleep mode as often as possible. Strategies to wake-up (WU) a modem can be 
grouped into synchronous or asynchronous strategies. Synchronous WU strategies are based on time-
sharing and synchronization, while asynchronous WU strategies depend on external stimuli.  

Synchronous WU strategies need very simple additional hardware. Time synchronization can be 
achieved by using a real-time clock or even a timer. This hardware is widely available and usually 
dissipates very little power—and is even integrated as an on-chip peripheral in several state-of-the-art 
microcontrollers. Synchronous WU strategies are based on the premise that two modems that want to 
communicate will switch on their wireless interfaces at the same time by keeping their corresponding 
internal clocks synchronized. WU time-driven protocols achieve energy efficiency through the 
accuracy of their clock synchronization. In event-driven communication, which starts when some 
specific event is recognized, a wireless interface tends to remain active more time than strictly needed 
to complete packet transmission. Generally speaking, synchronous WU strategies consume more 
energy than the minimum required to transmit or receive. For example, some researchers have 
compared the STEM synchronous WU strategy [23] with an asynchronous wake-up strategy [24].  

Asynchronous wake-up modem consumption has been compared with the utopian lowest possible 
consumption level in [24] and [25] and the conclusions are that asynchronous WU systems are optimal 
for reaching this low consumption level. 
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However, asynchronous WU strategies need specific hardware. A modem must be able to react to 
certain stimuli. For example, an acoustic asynchronous triggered wake-up (AAW-U) circuit is needed 
for an acoustic signal to reactivate the modem. This circuit must dissipate as little power as possible 
since it remains always active. Asynchronous wake-ups are close to the optimal case of opening the 
wireless interface only for packet transmission or reception in both time-driven and also event-driven 
protocols, and this represents an advantage over synchronous wake-up strategies that are mainly 
energy efficient with time-driven protocols. Within asynchronous wake-up strategies, when a modem 
wants to transmit a packet before sending a payload, the transmitter must wake the receiver or 
receivers by emitting a WU signal. Thus, a receiver can remain inactive, or asleep, and become active 
only when a WU signal is detected. Moreover, a receiver can also transmit in a multi-hop network as it 
is possible to coordinate reception with sensing and transmission, or coexist with synchronous 
programmed wake ups. In any case, a flexible physical platform where different communication 
polices can be configured depending on the application requirement is an important advance in UWSN 
deployment, especially if its architecture is coherent with limited power constraints. 

However, very little work has been done on asynchronous AAW-U. The main reference found was 
in 2006 [21], although this wake-up circuit draws 500 µW when waiting for a valid incoming wake up 
signal. Currently, there are terrestrial WU circuits that dissipate less than 100 µW in stand-by mode.  
State-of-the-art asynchronous wake-up systems for WSN dissipate 52 µW [26], 11 µW [27] and  
12.6 µW [28], although the final energy saved depends on range the work presented in [25] shows a 
theoretical analysis of RFID for underwater WU. The study shows that modem power consumption is 
close to an optimal consumption boundary when the RFID asynchronous WU is used. In the present 
paper, the authors go one step forward by implementing an AAW-U circuit based on RFID technology 
and testing it in a seawater environment.  

Finally, clear channel assessment (CCA) is an additional capability for incorporation into a physical 
modem design. CCA is a physical layer mechanism that is essential to CSMA/CA MAC protocols. 
The advantages of using CCA to support medium access control algorithms have been reviewed  
in [29]. Before transmitting, a modem will listen to the channel to set it as either free or occupied [30]. 
The solution described in the paper takes advantage of both carrier frequency detection and the 
received signal strength indicator (RSSI) to detect energy in the communication channel. The solution 
is power-consumption aware because it does not require additional hardware and is implemented 
within the AAW-U module. 

The overall architecture presented below is designed under consumption constraints and is intended 
to be a flexible platform for the development of underwater wireless sensor networks.  

3. ITACA Acoustic Modem Architecture 

The first description of the ITACA modem was given in [13]. However, the design has been 
improved with enhanced features such as AAW-U, CCA, and RSSI measurement. ITACA architecture 
is built around a microcontroller (MCU) and several integrated peripherals that only consume 12 mW 
in normal operation and less than 3 µW in stand-by mode. Figure 1 shows the overall ITACA block 
diagram architecture. 
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The Humminbird transducer has been characterized by measuring relevant parameters in this 
frequency band: transmitting sensitivity is 115 dB (re 1 µPa/V @ 1 m); receiving sensitivity is −154 dB 
(re 1 V/µPa @ 1 m) and the Humminbird transducer beam geometry is shown in Figure 3. 

3.2. Modulation 

ITACA reached 1 kbps with 1 kHz bandwidth (84.5 kHz frequency is used for symbol ‘0’ and  
85.5 kHz for symbol ‘1’), which is clearly higher than other FSK solutions such as [17,21,22] or [33]. 
Moreover, 1 kHz bandwidth is not far from more complex modulation techniques, such as [34] 
(QPSK, 550 bps), [19] (PSK, 300–5 kbps), although ITACA has a lower power consumption than 
rModem and WHOI. Finally, there are high consumption modems that reach 16 kbps [18] or  
75 kbps [35] and are very suitable for image transmission. Comparisons are shown in Table 1. 

Table 1. Modulation and data rate comparison. 

 [34] 
rModem 

[19] 
WHOI 

[33] 
AquaModem 

[21] 
USC 

[17] 
UCSB 

[33] 
AquaNode 

[22] 
NCSU ITACA 

Modulation QPSK FHFSK/PSK MFSK FSK FSK FSK FSK FSK 
Data rate (bps) 550 80/5,000 133 600 80 48 31 1,000 

Coherent binary FSK modulation algorithms are very simple. The frequency of the transmitted 
signal changes according to the bit to be transmitted. This task can be performed using an internal 
peripheral counter and algorithm execution time is negligible. 

Figure 4. PLL block diagram. 

 

However, demodulation algorithms are more complicated because phase-locked-loop (PLL) is 
needed. Figure 4 shows the proposed block diagram demodulation system. It is formed of three main 
blocks: a phase detector; a low pass filter; and a controlled oscillator. When the loop is locked, the 
‘output’ net provides the demodulated signal. The phase detector is based on an XOR gate and filtering 
in a lead-lag low-pass filter. It is an energy-efficient HW-SW solution because both the external phase 
detector and the low pass filter relieve the microcontroller from the most consuming tasks in 
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demodulation. Because no multiply-accumulate unit is needed, ultra-low power microcontrollers can 
be used. For example, the inexpensive c8051f920 Silabs microcontroller [36] is an 8-bit-microcontroller 
that offers very low power consumption. 

3.3. Power Amplifier 

Piezoelectric transducer excitation has been previously carried out mainly using three power 
amplifier types: class-B [34]; class-D [19,21,33]; and class-AB [37]. Although the class-B amplifier 
architecture uses just one power transistor, it is clearly inefficient because only positive voltages are 
used (50% of the input signal) and this leads to low efficiency. The use of commercial class-AB 
amplifiers can avoid the drawbacks of class-B amplifiers, but they suffer large power losses due to the 
simultaneous interaction of both transistors. Class-D amplifiers decrease the overall cost and increase 
power efficiency [19,21,33]; however, there are some drawbacks, such as the need for a complex 
impedance-matching net, the presence of greater electro-magnetic-interference (EMI), and a maximum 
frequency that is limited by the amplifier itself. Moreover, commercial class-AB and class-D 
amplifiers were originally designed for audio applications (low impedance and frequencies below  
20 kHz), which is clearly out of specification for echo sounder transducers in both frequencies and 
impedances (300 Ω @ 85 kHz).  

Consequently, we have decided to design a custom HW-SW power amplifier stage that maximizes 
the power that is transferred to the load and the efficiency. The objective is to avoid a simultaneous 
activation of both output push-pull stage transistors (Q1 and Q2) during transitions. If Q1 is completely 
shut down before Q2 becomes active and vice-versa, power losses will decrease and efficiency will  
be increased.  

Figure 5. Digitally controlled push-pull B-class amplifier stage. 

 

For that purpose, the amplifier shown in Figure 5 sets push-pull transistors that are independently 
activated or de-activated using two output pins on the MCU. The solution has been labeled as  
‘push-pull class-B-based digitally controlled amplifier’ (D-PP-B). This architecture is especially suitable 
because harmonic distortion is not critical in frequency shift modulation applications. 
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MCU when needed. Although the use of this kind of system was theoretically analyzed in [25], in this 
paper the AAW-U system proposed is tested with a set of experiments in several scenarios.  

AAW-U is carried out by an ITACA modem using as a core an off-the-shelf commercial peripheral 
designed for RFID tags: an AS3933 from Austria Microsystems [41]. Among its configurable 
parameters, it can work in the 65–95 kHz band, with simple carrier detection or carrier detection  
plus 16–32 bit pattern recognition. The operating supply voltage is 3.3 V—the same as the  
Silabs C8051F920. This wake-up peripheral has an ultra-low power consumption of only 2.7 µA. 

The circuit has been completed with a specially designed matching net formed by a 3-stage  
T-structure band-pass filter with passive inductors and capacitors. This circuit was originally designed 
to be triggered using magnetic coupled signals with a coil antenna for RFID systems. Therefore, a net 
must be specially designed that matches both impedances and suitably couples the acoustic incoming 
signal to the RFID based WU circuit. We have found that this T-structure with inductors and 
capacitors is the most suitable structure given that capacitors avoid any circuit bias modification, and 
inductors mimic coil-antenna magnetic coupling.  

WU Transmitter 

When a modem needs to establish communication with another modem, it starts by sending  
a modulated on-off keying (OOK) WU signal. RF researchers generally use on-off-keying (OOK) 
signal modulation in the wake-up operation in order to save energy [26–28]. Moreover, OOK 
transmission can be made compatible with FSK (without additional hardware) by switching modem 
power amplifier output on-off according to the transmitted symbol (1–0). Bit synchronism is achieved 
by Manchester coding. It is obvious that OOK underwater transmission is very limited, but our system 
uses this transmission only for the WU signal, and not for payload or protocol control messages.  

WU Receiver 

The WU signal can be configured to be just ‘carrier frequency’ or use 8-bit or 16-bit patterns. 
Receiver power consumption is 10 µW. The WU pattern is pre-programmed into the modem as an 8 or 
16-bit array. Thus, the modem will only respond to this programmed WU pattern.  

Figure 8 illustrates the modem architecture embedding an AAW-U circuit. The analog reception 
stage has been designed to both filter and amplify incoming FSK signals; as well detecting incoming 
WU signals. WU signals and FSK data are sent on the same channel frequency range (which depends 
on the transducer). FSK incoming signals are adapted through the circuit in Figure 7; while WU 
incoming signals are decoded by the WU circuit that is directly connected to the transducer matching net. 

Figure 8 shows that when the WU circuit is configured to recognize a pattern, the WU signal must 
include three elements: a carrier, a preamble, and a Manchester coded 8 or 16-bit array. These elements 
take 1ms, 7 ms and 12 to 16 ms respectively. Detection is performed by both an envelope-detector and 
a correlator embedded in the wake-up core IC. During the whole detection process, the MCU remains 
asleep, and the VGA is inactive at minimum possible power consumption. Eventually, following a 
positive WU signal recognition the IC will cause an external interrupt in the MCU. The interrupt handler 
manages MCU mode operation change; and no additional transducer is needed with this solution.  
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transmission, mechanisms such as CCA can be adapted to provide more flexibility to the MAC layer 
implementation. CCA can reduce collisions by listening to the channel before starting transmission.  

IEEE 802.15.4 exploits three clear channel assessment (CCA) methods that are based on:  
detection of in-channel energy above a given threshold (referred to as mode 1); detection of  
an IEEE 802.15.4 compliant signal (referred to as mode 2); and a combination of modes 1 and 2 
(referred to as mode 3) [30]. 

The CCA feature has been implemented as a physical-layer mechanism and an MCU software 
routine. Physically, CCA requires carrier frequency (CF) detection or RSSI observation, both of which 
are supported by the already implemented WU circuit without additional hardware. 

The WU peripheral integrates a frequency detector based on a zero crossing counter. This counter 
counts the zero crossings of the input signal within a pre-defined time window. Additionally, the 
counted value presents some configurable tolerance. Our experiments have shown that with a suitable 
configuration, the peripheral detects incoming signals from 60–100 kHz. If CF is detected in this 
range, the peripheral enables an internal automatic gain control amplifier. Because 85 kHz is within the 
detectable frequency range, the solution is viable for detecting if the channel is occupied by either an 
FSK or OOK transmission. After CF detection, the gain of the amplifier is set to the maximum and the 
AGC reduces this level according to the received signal input level. After 1.06 ms, the AGC algorithm 
is complete and a stable RSSI value can be read from the corresponding register. The CCA implemented 
routine reads the RSSI value for eight symbols to obtain an average value above 2 dB.  

Because the frequency range is wider than the modem transmission frequency, the CCA mechanism 
reads the RSSI value to obtain a more precise detection. The RSSI value is read by an MCU software 
algorithm executed before transmission. Figure 9 shows that the minimum RSSI read value is 2 dB.  

Figure 9. RSSI read for different input voltage signals. 

 

Figure 9 shows the relationship between RSSI registered values and signal µVrms. Signal strength 
is measurable above 100 µVrms, which corresponds to the wake-up module sensitivity. This level can 
be improved to 80 µVrms, thereby enabling an internal 3 dB additional amplifier. 



Sensors 2012, 12 6850 
 
4. Experimental Analysis 

4.1. Energy Efficiency 

The highest measured power consumption in full operational mode was 24 mW, and this represents 
the lowest consumption published until now. This figure is for both the analog reception amplifier and 
the MCU consumption. In [21] the reported value is similar (25 mW), but the RX consumption 
reported in previous works was generally higher than 200 mW [19–22,33–35]. 

The transmission distance reached depends on transmission power amplification. The ITACA 
modem has been tested with 12 mW, 48 mW, and 108 mW. In October 2011, the modem reached  
240 meters with 108 mW in a small marina shown in Figure 10. This short/medium range is useful for 
the off-shore and coastal monitoring applications that are currently funding the modem development. 
Overall modem consumption in transmission will be 108 mW + 12 mW (MCU consumption). This is 
the lowest reported value for short range links. 

Figure 10. Aerial view of the small marina experimental scenario. 

 

When no data is transmitted, the modem remains in sleep mode awaiting a wake-up event. 
Consumption is reduced to less than 3 µW from the stand-by MCU mode, and 8.1 µW from the WU 
peripheral. This is the lowest consumption reported until now. It has been demonstrated that this solution 
represents a 97% energy savings when compared with the state-of-the-art modem with asynchronous 
wake-up capability [25].  

4.2. AAW-U Reliability 

Underwater applications are diverse and range from the single communication of a pair of modems 
to dense networks. Wake-ups can be caused by a single carrier frequency detection or additional 
pattern recognition. Both possibilities are configurable in the WU system and with equal consumption 
levels. Although single carrier frequency detection can be useful for peer-to-peer or broadcast 
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communication, pattern recognition is very desirable in clustering or tree topologies with more than 
two nodes per receiver. For example, when a submerged node, formed by the modem and several 
attached sensors, wants to transfer data, it will send a selective wake-up only to its target—thereby not 
waking neighboring nodes.  

To evaluate system reliability, two experiments were made to measure false wake-up events caused 
by noise or neighboring transmissions. Firstly, we wanted to determine if false wake-ups can occur 
within the simplest configuration of single carrier frequency detection when subjected to real 
environmental noise. Experimentally, the modem remained submerged 24 h in a marina (Figure 10). 
There was no registered wake-up. Moreover, this experiment is extensible to pattern recognition 
because in addition to single carrier frequency detection, the probability that noise could compose  
a valid preamble plus a Manchester coded pattern is practically negligible.  

Secondly, having discarded false wake-ups due to environmental noise in a real scenario, false 
wake-ups were measured in a controlled scenario when subjected to OOK pattern transmissions. In this 
experiment, two modems were submerged during 24 h in a water tank. One of these modems was 
constantly sending WU signals with 16 different 8-bit array valid patterns. The receiver modem should 
only recognize one of these patterns.  

Two cases have been evaluated with this experiment. Firstly, the number of false wake-ups was 
evaluated, which is the number of MCU interruptions that occur when the programmed pattern was  
not transmitted. These errors lead the modem to become active when it was not required and, 
consequently, waste power. Secondly, the number of non-detected transmissions of the programmed 
WU pattern was evaluated. This condition can lead to communication failure as the microcontroller is 
not correctly woken. 

Two scenarios were set. In the first experiment, the WU pattern is never sent. This scenario 
characterizes false waking probability. In the second scenario, the detectable WU pattern is transmitted 
periodically. Results are shown in Figure 11. 

Figure 11. Results obtained emitting different patterns (0x00, 0x7F, 0x55, 0X0F, 0X01, 
0X21, 0X51, 0XFF, 0X80, 0XAA, 0XF0, 0X81, 0X88, 0X92). Non-emitted patterns (left): 
reception pattern configuration different from emitted patterns. Detection pattern errors 
(right): no detection of actually emitted patterns. Aliasing evaluated with all eight patterns. 
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The wake-up circuit topology itself can lead to some pattern aliasing: more than one pattern can 
cause positive pattern detection when only one was configured. The inner flexibility of the correlator 
causes this aliasing effect for those patterns whose Manchester encoding is confusing when compared 
to the preamble structure. For example, the worst case has been measured for 0xff pattern and these 
results are included in Figure 11 in the ‘Aliasing’ column. An 0xff pattern, combined with the 
preamble (see Figure 8), can be easily confused by the correlator with an 0x00 pattern and vice-versa. 
In fact, 0x00 patterns caused a false wake-up when the 0xff pattern was configured. Since 16 different 
patterns were emitted and 0x00 was always false detected, it means that Figure 10 shows around 6% 
false wake-up detections. 

If all these aliasing patterns are avoided, the performance of the WU system increases. The worst 
case observed with non-aliasing was 0x88-bit array. No false wake-ups were reported but, in this case, 
non-detections occurred at a rate of 0.6% (Figure 11 non-aliasing column). 

The non-emitted column shows the results when the configured pattern in the receiver is not 
emitted. Neither false wake-ups nor non-detected pattern were reported. Of course, this condition is 
extrapolated for those patterns with no aliasing effect. Finally, pattern recognition can be reinforced by 
switching the acoustic interface to FSK communication. However, the advantage of our solution is low 
consumption with selective wake-up support.  

4.3. CCA Mechanism Evaluation 

Similar to IEEE 802.15.4 CCA mode 3, ITACA modem combines carrier sense with an energy 
above threshold. RSSI signal level measured by the AAW-U HW module is read during 8 bit cycle 
time (8 ms)—8 symbols to FSK modulation—using an SW routine executed by the MCU. Channel is 
assessed as clear if all the RSSI read values are below a predefined threshold level (10 dB). 

The reliability of the proposed solution has been tested in a 24-h experiment. The experiment 
consisted of monitoring the activity of two modems. One modem emitted a FSK modulated signal 
during 50 s and released the channel during 50 s in an endless loop. On the other side, a second modem 
tried to emit information every 5 s. In case of a positive CCA (clear channel), the modem transmitted  
a packet and reported the transmission. Otherwise, the modem did not transmit a packet and reported  
a non-possible transmission. Table 2 shows reported data. 

Table 2. CCA experimental data. 

Node_2 messages sent 7,978 
Node _2 attempts 15,653 
CCA failures 111 (0.7%) 

Test results differentiated two cases: Node 1 silence and Node 1 transmissions. During Node 1 silence, 
Node 2 transmitted packets during every attempt. However, when Node 1 was occupying the channel 
with a transmission, Node 2 reported only a 0.7% rate of channel-clear-assessment errors. The proposed 
mechanism therefore presented a reliability ratio of 99.3%. 

There is one restriction to this solution and this relies on the FSK modem sensitivity (30 µV). 
Minimum wake-up peripheral sensitivity is 80 µV. Consequently, there is a gap in the incoming signal 
voltage between 30 µV and 80 µV in which the CCA algorithm could report a clear channel and  
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a collision could occur. This collision scenario depends on modem distance and transmission power.  
For example, for a 108 mW transmission power and a distance under 240 meters, incoming signal 
strength would still be above 80 µV. However, signal strength beyond 240 meters decreases below  
80 µV and the CCA algorithm will be affected by this sensitivity gap. However, this solution is very 
suitable for short/medium distances because no new hardware, nor RSSI estimation algorithms, nor 
extra power consumption is needed to implement the mechanism. In summary, the modem 
architectural design has been successfully tested and will be used to develop UWSN for off-shore 
monitoring, seabed to surface coastal links, and mooring applications. 

5. Conclusions  

This paper presents an ultra-low power and low-cost acoustic modem that enables the deployment 
of maintenance-free, long-life submerged nodes. The ITACA modem architecture combines a typical 
microcontroller-based core with energy-efficient mechanisms. One of the most power hungry elements 
of an acoustic modem is the processing requirement in reception phase (demodulation). The proposed 
solution uses coherent-FSK modulation and a combination of hardware and software that requires only 
24 mW for receiving data. Moreover, with 108 mW of transmission power, the modem has been tested 
to transmit data at 240 m—which implies an overall consumption of only 120 mW. Although the 
modem achieves a mere 1 kbps data rate with a carrier of 85 kHz—forced by the piezoelectric 
transducer used in the current implementation, this relatively low transmission speed is sufficient for 
sensor pay-loads containing temperature, pressure, and conductivity measurements.  

A key novelty is the adaptation of RFID technologies to acoustic transmission. This idea has 
facilitated the design of an asynchronous wake-up mechanism that consumes only 8.1 µW and enables 
the recognition of 8 or 16-bit patterns without MCU activation. This asynchronous wake-up design has 
been tested for non-detections and false positives with excellent results. The distance covered by the 
WU with OOK modulation was also 240 m. Finally, the system incorporates clear channel assessment 
(CCA) at both carrier frequency detection and RSSI level. The CCA mechanism has been tested 
experimentally and provides a reliability of 99.7%. 
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