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Abstract: Combining a simplified on-board turbo-shaft model with sensor fault diagnostic 

logic, a model-based sensor fault diagnosis method is proposed. The existing fault 

diagnosis method for turbo-shaft engine key sensors is mainly based on a double 

redundancies technique, and this can’t be satisfied in some occasions as lack of judgment. 

The simplified on-board model provides the analytical third channel against which the dual 

channel measurements are compared, while the hardware redundancy will increase the 

structure complexity and weight. The simplified turbo-shaft model contains the gas 

generator model and the power turbine model with loads, this is built up via dynamic 

parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two 

types of sensor failures, such as the step faults and the drift faults, are simulated. When the 

discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic 

determines the cause of the difference. Through this approach, the sensor fault diagnosis 

system achieves the objectives of anomaly detection, sensor fault diagnosis and 

redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft 

engine, and two types of faults under different channel combinations are presented. The 

experimental results show that the proposed method for sensor fault diagnostics is efficient. 

Keywords: turbo-shaft engine; fault diagnosis; gas turbine sensor; simplified on-board 

model; dynamic parameters 
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1. Introduction 

With ever-increasing demands being placed on modern aero-engine control systems, the number of 

control variables and sensors is increasing [1]. The fault-tolerant control and health management of 

aero-engines depend on accurate and reliable sensor readings, while most sensors work in the harsh 

environment of high temperature and strong vibration [2,3]. Most aircraft engines have been enhanced 

by equipping the engines with a dual channel full authority digital electronic control (FADEC)  

system [4,5]. A single channel failure is accommodated in FADEC by utilizing the measurement on 

the other channel, but how to recognize the failed channel can’t be realized. Therefore, sensor fault 

diagnosis and isolation (FDI) plays a key role in enhancing safety, reliability and reducing the 

operating cost of aircraft propulsion systems.  

Wallhagen and Arpasi proposed using analytical redundancy sensor technology to improve the 

reliability of the engine control system in 1974 [6]. The fault indication and correction action (FICA) 

system was developed by Spang and Corley, and is widely available [7]. The FICA system had been 

applied in the FADEC plan of T700, JTDE and F404, but it cannot detect soft failures. A generalized 

likelihood ratio approach for detection and estimation of jumps in a linear system is proposed by  

Willsky [8]. In order to detect and isolate the control system, sensor and actuator faults, and provide 

analytical redundancy, NASA developed an analytical redundancy design for engine reliability 

improvement [9,10]. The fault indices are mainly the thresholds of amplitude and slope, and built-in-test 

(BIT) technology is also used for sensor fault diagnosis in engineering. 

The sensor fault diagnosis methods are generally divided into three categories: mathematical 

models-based, knowledge-based and signal processing-based [11–15]. Randal presented neural 

networks and multiple failures assumption methods for failure diagnosis of sensors and actuators [16]. 

Ogaji reported multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine [17]. Zhernakov 

described diagnostics and checking of gas-turbine engines parameters with hybrid expert systems [18]. 

Aretakis discussed identification of sensor faults on turbofan engines using pattern recognition 

techniques [19]. Bettocchi presented a method based on analytical redundancy techniques for sensor 

fault detection in gas turbines. According to this method I/O linear models are used for residuals 

generation permitting the identification of possible sensor faults. Merrill used a bank of Kalman filters 

for detection, isolation, and accommodation of sensor failures [20,21]. Kobayashi developed a fault 

detection and isolation (FDI) system that utilizes a bank of Kalman filters for aircraft engine sensor 

and actuator FDI in conjunction with the detection of component faults [22]. A baseline system and an 

enhanced system utilizing dual-channel sensor measurements for aircraft engine on-line diagnostics  

are developed by Kobayashi in 2008 [23–25]. The algorithm, support vector regression trained by  

self-tuning particle swarm optimization (SPSO-SVR), was proposed and used to diagnose sensor faults 

in 2009 [26]. 

The model-based approach needs a pre-established engine model to acquire the analytic third 

channel, so the model is built up based on aircraft engine component characteristics and pneumatic 

thermodynamic equations. Compared to the methods of knowledge-based and signal processing-based, 

it avoids the difficult problems of knowledge base maintenance and high robustness requirements of 

measurement data, and can be used to diagnose new sensor failures with no need of history experience 

or a priori knowledge [27,28]. Kalman filter is one of the most typical model-based methods for 
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sensor diagnostics on-line. However, the Kalman gain matrix calculation is iterative and requires 

higher performance of on-board hardware, therefore it is limited to on-line application on the ground. 

To overcome such problems, a simple and efficient approach should be adopted. 

This article aims to apply the simplified on-board model as an analytical third channel for sensor 

fault diagnosis of turbo-shaft engines. This system is referred to as the sensor FDD system, and its 

structure is composed of the simplified on-board turbo-shaft engine and fault detection and diagnosis 

logic. Considering the measurement noises and modeling errors, sensor dual channel threshold and 

analytic thresholds are designed that are used for the logic. When the difference among the triplex 

channels violates a tolerance level, the logic determines the cause of the difference. Due to its 

simplicity, the sensor fault diagnosis system can be executed with the computing power currently 

available on line. 

This paper is organized as follows: in Section 2, the simplified on-board turbo-shaft model for 

sensor fault diagnosis, which contains gas generator model and power turbine model with loads, is 

described. In Section 3, the pre-processes for measurements are presented, sensor fault diagnostic 

thresholds are calculated, and diagnostic logic is designed based on the simplified model. Experiments 

are carried out in Section 4, and the results show that compared to the SPSO-SVR method, the one 

proposed in this paper is useful to diagnose sensor faults of turbo-shaft engines. Finally, our work is 

summarized in the last section. 

2. Turbo-Shaft Engine Model 

The engine model accuracy directly determines the validity of the model-based method for sensor 

fault diagnosis. A dynamic coefficient approach is used to build up a simplified turbo-shaft on-board 

engine that satisfies the sensor fault diagnosis requirements. Taking into account of the structure and 

characteristics of turbo-shaft engine, the model is divided into a gas generator model and the power 

turbine model with loads. 

2. 1. Definition of Dynamic Parameters 

A similar normalized gas generator speed ngc of turbo-shaft engine corresponds to a fuel flow Wfc 

that is constant in the steady-state. The speed will change and the engine works in the dynamic 

operation when the actual fuel flow Wfc is not match to the demand one. While Wfc is bigger than the 

demand flue flow, the gas generator power is greater than the needs’ power of the compressor and 

accessories, then gas generator speed increases. 

The change of fuel flow ∆Wfc, which influences the acceleration of ngc, is defined as follows: 

1

1 ( )fcs gc

fc fcsfc

W n

W W W

 

  
 (1)  

The dynamic parameter of gas generator speed at the time point i, denoted as Kng(i), is expressed: 
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where ∆t is sampling time (in the paper ∆t = 0.12). Subscript c means that the parameter has been 

similarly normalized. Define the dynamic parameters of power turbine inner temperature T45c and 

power turbine output power Nec respectively as Equation (2), which are denoted as KT45(i) and KNe(i): 

4545

45
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( )

( )
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c i T iT
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W i
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where T45cs and Necs are the steady state parameters of T45c and Nec, which can be interpolated by 

scheduling of ngc to T45c, ngc to Nec. 

2.2. Simplified Gas Generator Model 

A simplified gas generator model above idle is established via the steady interpolation table and 

dynamic parameters. The inputs of the model are Wf, atmospheric temperature T1, and atmospheric 

pressure P1, and the outputs are ng, T45. The detailed program to calculate ng is as follows: 

Step 1. Give the initialized parameters of gas generator model, such as ng(0), T45(0), P3(0), and 

similarly normalize the model parameters based on T1 and P1. 

Step 2. Calculate the increase of fuel flow via Equation (2), and judge whether the operation 

conditions of the gas generator are in steady state or dynamic operation. 

Step 3. Interpolate Kng by ngc, and compute the acceleration of gas turbine speed at this moment: 

g fc cngK Wn    (5)  

Step 4. Calculate ngc(i+1) with integral of gcn , and do a similar inverse transformation: 

( 1) ( )gc gc gcn i n i n t     (6)  

Then return to step 1 to iterate. 

The calculation method of T45 is similar to that of ng. Taking the current gas generator speed as an 

index, we search KT45 and T45cs from the interpolation tables and then calculate the T45c by the 

expression that follows: 

4545 45 T fcc csT T K W    (7)  

2.3. Simplified Power Turbine Model with Loads 

Combining the load characteristics with the rotor dynamics equation, the simplified power turbine 

model with loads is built up via the steady interpolation table and dynamic parameters. The inputs of 

the model are ngc, ∆Wfc, T1, P1, and load angle α, the outputs are Ne and power turbine speed np. The 

calculation procedure for Ne is the same as that of T45. The following equations solve for the parameter 

Nec: 

fNe cNec Necs WK    (8)  
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The process of calculating np contains two stages: one from the ground idle to flight idle, the other 

from flight idle to maximum state. In the first stage, dynamic operation of a power turbine model with 

loads is assumed with the load angle α and torque ∆M as constants, α = 0. The acceleration of np 

satisfies the following equation: 

pPtM J n    (9)  

where JPt is the rotation inertia of the power turbine shaft. np can be acquired by the integral of pn , and 

np(0) is the initial value of np: 

0
(0)

t

p pp n n dtn     (10)  

In the second stage, the state of the turbo-shaft engine is determined by the load angle. Power 

demands of power turbine shaft are changed with α, and can be interpolated from the load 

characteristics map: 

( , )pNv f n  (11)  

When the power turbine shaft power is not balanced, np will change based on the following rotor 

dynamic equation: 

p pPtJNe Nv n n   (12)  

The term np can be obtained from associated Equations (10–12). In order to evaluate the accuracy of 

simplified on-board turbo-shaft engine, experiments were carried out under the condition of T1 = 300.5 K, 

P1 = 102.4 kPa. Figure 1 represents the comparison ng of the model and actual turbo-shaft engine, and 

Figure 2 shows the comparison of np of the model and turbo-shaft engine. 

As seen from Figures 1 and 2, gas generator speed and power turbine speed calculated by model 

could track those of the actual engine. The relative steady errors of ng and np between engine model 

and actual engine are no more than 0.5%, respectively, while the dynamic errors are less than 2%.  

Figure 1. Outputs of ng by the model and turbo-shaft engine. 
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Figure 2. Outputs of np by the model and turbo-shaft engine. 

0 25 50 75 100
0

20

40

60

80

100

120

Time(s)

 Np by model

 Np by engine

 
 

 

3. Sensor Fault Diagnosis Based on Simplified On-Board Model 

The objective of on-board diagnosis for sensors is to detect and isolate faults as early as possible. 

Figure 3 represents the structure of the on-board diagnosis system composed of the simplified  

turbo-shaft engine and fault detection, diagnosis logic. It utilizes the simplified model as an analytical 

third channel for the turbo-shaft engine application. When the discrepancy among the triplex channels 

exceeds a tolerance level, the sensor fault diagnosis logic determines the cause of the difference.  

Figure 3. Sensor fault detection, diagnosis, and recovery principle. 
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3.1. Pretreatment for Measurements 

The data acquired by sensors can’t be directly used for engine health management or control, as the 

sensor measurements involve not only the useful signals but also measurement noise and other 

interference information, which will result in sensor fault diagnosis failures. Therefore, it is necessary 

to undertake a pretreatment process involving outlier elimination and smoothing of the original data. 

For this we use a statistical method to discriminate and eliminate outliers, the framework of which 

is as shown in Figure 4. Two low-pass filters are introduced in the program, and their outputs are the 

smooth estimates of the measurements. The dashed box in the figure produces the updated value of the 

sample variance, which can be used to obtain the threshold for determining outlier at the next time. 

The detailed procedure of outlier discrimination and elimination is given out as follows. 
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Step 1. Smooth the sensor measurement by five near points at k:  

2 1 1 2

5

k k k k k
k

y y y y y
y       
  (13)  

Step 2. Calculate the sums of squares of these five sensor measurement, and then acquire  

smooth value: 
2 2 2 2 2

2 2 1 1 2

5

k k k k k
k

y y y y y
y       

  (14)  

Step 3. Define the variance 2

kS  as follows: 

 
2

2 2

k k kS y y   (15)  

Step 4. Check out the next sensor measurement, if it does not belong to the range 

,k kk ky KS y KS    , then is denoted as outlier, where K equals to 5. 

Step 5. Eliminate the outlier and replace it with the following value: 

1
1

2

k k
k

y y
y 




  (16)  

Figure 4. Framework of outlier discrimination and elimination. 
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Gas turbine speed is directly influenced to the power of turbo-shaft engine, hence, the experiment to 

validate the proposed method is focused on the parameter ng. Figure 5 shows the simulation of outlier 

discrimination and elimination for the parameter ng.  

Figure 5. Simulation results of outlier discrimination and elimination. 
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From the figure we can see that there are two outliers identified, and both of them are replaced with 

the new values within the rational range. Exponential smoothing is used to reduce the measurement 

noise in the paper. 

The control system should maintain the parameter ng to the reference under the gas turbine mode, 

for which proportional plus integral (PI) controller is used. When proportional gain Kp = 200 and 

integral gain KI = 600, the step response for a 1% step input under the steady state of ng% = 85% is 

shown in Figure 6(a). In order to discriminate and eliminate outliers, the sensed data ng gn  is held for 

two time steps to determine the variances in Equations (14–16). If we still select PI controller, the 

control system will become unsteady. Therefore, proportional-integral-derivative (PID) controller is 

designed, we set Kp = 80, KI = 400, and KD = 0.7. The overshoot of the 1% step response is less than 

10%, the steady state is attained in 0.5 s, and the steady-state error is no more than 2%, as shown in 

Figure 6(b). 

Figure 6. The response to step input by (a) PI controller with no delay; and (b) PID 

controller with delay. 
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3.2. Sensor Fault Diagnosis Principles 

The sensor fault detection and diagnosis logic compares the triplex channels (yA, yB, ym) and 

determines a root cause when an anomalous signature is detected in these channels. The duplicate 

channels (yA, yB) are the sensor measurements from the turbo-shaft engine, and ym is the output from 

the model. There are multiple comparisons that are carried out by the logic. The first comparison is a 

cross-check between channels A and B. There are a total of three engine parameters (ng, T45, np) which 

are measured by three dual-channel sensors. For each measured parameter, the residual is defined  

as follows: 

| |i i

A B

i

i y y
r




  (17)  

where σi indicates the standard deviation of the i
th

 sensor measurement uncertainty. The residual in 

Equation (17) is called the dual-channel residual. The dual channel residual for each sensor is 

compared against a corresponding threshold τ
i 

DR, If the dual channel residual does not exceed the 

threshold, the redundant measurements on both channels are acceptable. Otherwise, at least one of the 
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dual channels is faulty. When a dual channel fails, the sensor measurement is replaced with the model 

output. The process can only determine whether at least one channel of the dual-channel sensor is 

faulty, but not which channel is faulty. Therefore, the other two sensor fault indicators are introduced, 

and the comparison of the dual channels against the model output is given out as follows: 

| |

| |

i i
i A m
A

i

i i
i B m
B

i

y y

y y

r

r











 (18)  

The residual in Equation (18) is called the analytical residual. The analytical residual computed for 

each channel of each sensor is compared against the threshold τ
i 

AR. The simplified model generates the 

expected output values of the engine operating without any faults. If an analytical residual exceeds a 

threshold, it indicates the existence of an anomaly. 

The sensor fault diagnosis logic can fulfill the following functions: (1) sensed data is detected;  

(2) sensor fault diagnosis; (3) faulty sensor recovery; or (4) anomaly detection. A flow chart of the 

sensor fault diagnosis logic is given in Figure 7. 

Figure 7. Dual-channel sensor fault detection, diagnosis, and recovery logic. 
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The sensor fault detection, diagnosis, and recovery logic indicates that a sensor fault is detected 

when one of the dual-channel residuals in Equation (17) exceeds the threshold, but all analytical 
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residuals in Equation (18) remain below the threshold. In this condition, the identity of a faulty dual 

channel sensor is determined, but the identity of its failed channel cannot be determined, and the faulty 

sensor cannot be isolated too. 

The logic indicates that a sensor fault is isolated when the dual channel residual of a particular 

sensor exceeds the threshold, and also, this sensor’s analytical residual exceeds the threshold in either 

one or both channels. If the threshold violation of the analytical residual occurs only in one channel, 

the channel that caused this violation is identified as the faulty one. If the threshold violation occurs in 

both channels, both channels of this particular sensor are considered faulty. Thus, the identity of a 

faulty sensor and the identity of its failed channel are determined. When both channels of sensor 

measurement are faulty, the faulty sensor signal used for control system is replaced by the model 

output. If the dual-channel residual of a particular sensor doesn’t exceed the threshold, and this 

sensor’s analytical residual exceeds the threshold in either one channel, some other type faults might 

happen, otherwise, turbo-shaft control system works normally.  

3.3. Sensor Fault Threshold Selection 

Sensor fault threshold selection directly affects the results of sensor fault diagnosis. In order to 

make the system able to detect the sensor fault with little amplitude changes, the threshold range needs 

to be set more smaller, while it will result in misdiagnosis. Therefore, a rational threshold selection is 

necessary for improving the accuracy of sensor fault diagnosis. In this paper, the threshold is selected 

by the statistical characteristics of sensor measurement noise and the model errors.  

The engine outputs measured by sensors with dual-channels A and B are expressed as follows: 

1

2

A m

B m

y y y v

y y y v

  

  
 (19)  

The parameters ym and ∆y separately represent the turbo-shaft engine model output and the 

modeling errors. The parameters v1 and v2 are the zero-mean, normally distributed white noise that 

corrupts the measurements on dual-channels, and independent each other, denoted as v1~N(0,σ
2
), 

v2~N(0,σ
2
). The probability density function of dual-channel random residual ∆v = v1 – v2 is as:  

  1 1 1

2

241
( ) ( )

2

v

f v f v f v v dv e 










      (20)  

The function f is the probability density function of the parameters v1 and v2. From the Equation (20), 

we can see ∆v = σ~N(0,2). Then the probability density function and the distribution function of  

dual-channel residual r are respectively in the following form:  

2

4
1

( ) (0 )
r

f e rr




     (21)  

( ) ( ) ( )
2 2

r r
F r     (22)  
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The function Φ is the distributing function of standard normal distribution function, In order to 

make sure as less misdiagnosis rate as possible, the following equation (3 2) 99.7%F   is satisfied, 

and τDR = 4.5 in the article. 

The threshold of the analytic residual is determined not only by the measurement noise but also by 

the modeling errors. The analytic residual can be expressed in the following form: 

1

2

A

B

v y

v y

r

r











 (23)  

Considering the random variables v1/σ, v2/σ follow the standard normal distribution, and 3σ criterion, 

the threshold τAR and τBR can be calculated via following equations: 

3

3

AR

BR

y

y










 


 

 (24)  

From Section 2, we have obtained the modeling errors under steady state and dynamic state. Then 

both of dual-channel threshold and analytic threshold can be computed. Tables 1 and 2 show statistical 

results of sensor measurement noise under four operation conditions, and the corresponding thresholds. 

Table 1. Statistical results of sensor ng for the turbo-shaft engine. 

State  Standard deviation σ Maximum bias  τDR τAR, τBR 

Flight idle 0.045 0.15 4.5 14 

85% of ng 0.070 0.25 4.5 10 

99.6% of ng 0.082 0.25 4.5 9 

Dynamic operation 0.069 0.23 4.5 32 

Table 2. Statistical results of sensor T45 for the turbo-shaft engine. 

State Standard Deviation σ Maximum Bias  τDR τAR, τBR 

Flight idle 0.085 0.27 4.5 9 

89.0% of ng 0.113 0.32 4.5 8 

100.1% of ng 0.095 0.33 4.5 8 

Dynamic operation 0.114 0.32 4.5 21 

4. Experiments on a Turbo-Shaft Engine 

The capability of sensor the FDD system based on a simplified on-board model to detect, diagnose 

and recovery a biased sensor is evaluated. A bias is injected into channel A or B of a single sensor ng at 

a time, and the health condition of the engine is set to the nominal health. There are two types of sensor 

faults to be simulated: the step fault, and the drift fault. In the presence of a sensor bias, the closed-loop 

system is trimmed at a cruise operating condition. When any of the signals (dual-channel residuals and 

analytical residuals) exceed a threshold for 20 consecutive time steps (sampling time 0.12 s), a 

threshold violation is declared. Based on the threshold violations occurring from the engine, the fault 

diagnosis logic gives out the sensor fault diagnosis result.  
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Experiments on one channel with a step fault and a drift fault under the steady-state of ng% = 85% 

are carried out. The magnitude of 2% step fault was injected into channel A at 15s in Figure 8(a). The 

dual-channel residual r  grows about 28.7, and the analytic residual rA about 21.2, bigger than their 

thresholds τDR and τAR at 15 s, as shown in Figure 8(c). However the analytic residual rB does not 

violate its threshold τBR. Therefore channel A fault can be determined by the logic, and the diagnostic 

root cause is consistent with the sensor fault set. The SPSO-SVR method for sensor fault diagnosis  

in [28] is used for comparison, and the input and output of SPSO-SVR estimator are [Wf(k−1), Wf(k)] 

and ng(k), respectively. The SPSO-SVR steady estimation error is more than the simplified model one, 

so does the analytic residual threshold. The dual-channel residual 'r  grows about 28.7, the analytic 

residual 
'

Ar  decreases to 12 at 15 s, and the analytic residual 
'

Br  keeps 17, as shown in Figure 8(b). 

There are no residuals exceed themselves’ thresholds and no sensor faults are determined, but it is not 

consistent with the truth and the misdiagnosis is produced. 

Figure 8. One channel sensor ng step fault under the steady state of ng% = 85%.  

(a) Triplex channel outputs; (b) Step fault indication by SPSO-SVR; (c) Step fault 

indication by simplified model. 
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In Figure 9(a), the magnitude 0.02%/s drift fault is introduced into channel A from 15 s. The  

dual-channel residual r exceeds the τDR about at 30 s, and one of the analytic residual, rA, violates its 

threshold τAR at 75 s, as shown in Figure 9(b). Channel A fault is recognized about 2 s after 75 s. 

Figure 9. One channel sensor ng drift fault under the steady state of ng% = 85%.  

(a) Triplex channel outputs; (b) Drift fault indication. 
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Two experiments on dual channel with drift faults under the steady-state of ng% = 85% are carried 

out. The faults with different drift velocities are introduced into dual channels in Figure 10(a), channel 

A is 0.04%/s, and channel B 0.02%/s. As can be seen from Figure 10(b), three fault indicators exceed 

their thresholds about at 80s, dual channel faults is determined 2.4 seconds later via the logic. Both of 

the channels are isolated, and the sensor signal will be replaced with the model output. In Figure 11(a), 

we can see that the same drift faults occur in the dual channel, and both analytic residuals violate their 

threshold while the dual channel residual is still below its threshold. An anomaly is detected, but which 

sensor is fault can’t be recognized by the fault indicators in Figure 11(b).  

Figure 10. Dual channel fault with different drift velocities under the steady state of  

ng% = 85%. (a) Triplex channel outputs; (b) Drift fault indication. 
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Figure 11. Dual channel fault with the same drift velocities under the steady state of  

ng% = 85%. (a) Triplex channel outputs; (b) Drift fault indication. 
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Sensor fault diagnosis logic for turbo-shaft engines is validated under the steady state from the 

above experiments. Modeling errors of dynamic operation are much more numerous than those of 

steady state. In order to evaluate the ability of sensor fault diagnosis logic under dynamic operation, 

the following experiment is designed. When the gas generator speed increases from 81% to 95%, the 

step fault is injected into the channel A in Figure 12(a). 
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Figure 12. Channel A with the step fault in the dynamic operation. (a) Triplex channel outputs; 

(b) Step fault indication by SPSO-SVR; (c) Step fault indication by simplified model. 
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Sensor misdiagnosis will happen under the steady state of ng% = 81% by SPSO-SVR, which can be 

obtained the same process as Figure 8(b). The SPSO-SVR dual-channel residual 'r  grows about 70, 

analytic residual 'Ar  about 50, bigger than their thresholds 'DR  and 'AR  at 15 s. However the analytic 

residual 'Br  does not violate its threshold 'BR , as shown in Figure 12(b). Therefore channel A fails 

according to the logic, and the diagnostic root cause is consistent with the sensor fault set. As can be 

seen from the Figure 12(c), the same determination can be obtained. 

5. Conclusions 

The sensor FDD system based on a simplified on-board model described in this paper is proposed 

and developed to diagnose turbo-shaft engine faults on-line. A simplified on-board model for  

turbo-shaft is designed, and it contains two segments: gas generator model and power turbine model 

with loads. The sensor fault diagnosis system utilizes dual-channel sensor measurements and also the 

output of a simplified on-board engine model as the analytical third channel. Through the comparison 

of triplex channels, the system diagnoses two types of faults in sensors.  

The sensor fault detection, diagnosis, and recovery logic is designed, and the sensor FDD system is 

evaluated extensively at a cruise operating condition using simulated fault cases. Compared to the 

SPSO-SVR method, the proposed one exhibited its capability to identify a faulty dual-channel sensor 

and its failed channel at a reasonable fault level. The sensor FDD system based on a simplified  

on-board model can be used under the steady state and dynamic operation. The diagnostic capability of 

the sensor fault diagnosis system establishes a benchmark for on-line diagnostics. Any improvement 

made through the application of advanced diagnostic techniques can be evaluated against this benchmark. 
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