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Abstract: Accurate localization of moving sensors is essential for many fields, such  
as robot navigation and urban mapping. In this paper, we present a framework for  
GPS-supported visual Simultaneous Localization and Mapping with Bundle Adjustment 
(BA-SLAM) using a rigorous sensor model in a panoramic camera. The rigorous model 
does not cause system errors, thus representing an improvement over the widely used ideal 
sensor model. The proposed SLAM does not require additional restrictions, such as loop 
closing, or additional sensors, such as expensive inertial measurement units. In this paper, 
the problems of the ideal sensor model for a panoramic camera are analysed, and a rigorous 
sensor model is established. GPS data are then introduced for global optimization and 
georeferencing. Using the rigorous sensor model with the geometric observation equations 
of BA, a GPS-supported BA-SLAM approach that combines ray observations and GPS 
observations is then established. Finally, our method is applied to a set of vehicle-borne 
panoramic images captured from a campus environment, and several ground control points 
(GCP) are used to check the localization accuracy. The results demonstrated that our 
method can reach an accuracy of several centimetres. 
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1. Introduction 

Imagery from mono or stereo cameras has been the main data source for many applied science fields, 
such as robotics, computer vision and photogrammetry. Many research studies related to Simultaneous 
Localization And Mapping (SLAM) based on mono cameras [1,2] and stereo cameras [3,4] have been 
presented in recent decades. At the same time, multi-camera rigs (e.g., panoramic cameras) have 
increasingly been used for a wide range of research and applications because of their advantages, 
including omni-directional imaging, rotation invariance, and long baselines. However, the applications 
of SLAM with panoramic cameras should be studied theoretically because they use a different sensor 
model than mono/stereo cameras. 

An ideal geometric sensor model of a panoramic camera has one projection centre, and all of the 
light beams satisfy co-linearity conditions or a pin-hole model and project the real world onto a 
spherical surface. This is a perspective transformation but is not projected onto a plane as in a 
mono/stereo camera. Geyer and Daniilidis give detailed projective geometry for a catadioptric sensor 
and emphasize the duality [5]. Another work given by Barreto and Araujo studies the geometry of  
the central catadioptric projection of lines and its use in calibration [6]. Spherical perspective 
transformation functions and homographies are also given by Mei et al. [7]. Kaess and Dellaert used a 
multi-camera rig (panoramic camera) for SLAM with an ideal spherical sensor model [8]. Paya et al. 
concentrated on the global description of each omni-directional image but still used the ideal sensor 
model [9]. Gutierrez et al. concentrate on the rotation and scale invariance of descriptor patches with a 
spherical camera model [10]. However, because of manufacturing constraints, it is almost impossible 
to guarantee that the projection centres of the individual lenses will be located at the same spherical 
centre. Thus, the rays will introduce a bias because the vertexes are moved from the mono-lens centre 
to the panoramic centre (additional explanations are provided in Section 2). In this paper, we will 
present the first general and rigorous sensor model for a panoramic camera to our knowledge.  

Motion and structure estimations from a moving vehicle with a camera or several cameras have 
different applications in different research fields. In computer vision, this topic is called structure from 
motion (SFM); in robotics research, it is called SLAM (this term is used in this paper). Two common 
solutions to the SLAM problem are filtering and bundle adjustment (BA) [11]. When computation 
costs and real-time performance are considered, filtering is the more commonly used method of 
SLAM, and most studies utilise Kalman [12–14] or particle [15,16] filters. BA is more accurate and 
theoretically rigorous than filtering because filter-SLAM marginalises the previous information, and 
BA-SLAM keeps the global optimum [11,17], proves that all of the corresponding rays intersect 
correctly, and avoids matching and model errors. In recent years, several articles have studied  
BA-SLAM [17,18]; however, because of error propagation and the assumption of Gaussian 
distributions, a longer trajectory will generate more uncertainties in both filtering and BA. If a global 
optimum must be obtained with high precision, more constraints should be added to eliminate the 
accumulated uncertainties. Common constraints include closet, GPS, IMU, ground control points 
(GCP), landmarks and georeferenced maps. 

Providing SLAM with global georeferencing information not only constrains the propagating 
uncertainties but also allows the extra spatial information to be used in more applications. Many 
researchers have studied SLAM with several types of geo-information, particularly maps and GPS.  
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In [3], 2D road maps are used as the geographic reference for global vehicle localization with 3 degree 
of freedom (3DoF) particle filtering. Miller et al. [19] presented a similar map-aided approach for 
visual SLAM with particle filtering but combined it with GPS data. In [20], a method to recover 
position and attitude using a combination of monocular visual odometry and GPS measurements was 
presented, and the SLAM errors were carefully analysed after filtering. However, the egomotions were 
obtained with two-frame homography, which introduces both model error and matching errors and 
impacts the filtering results. In [21], two stages of filtering were used to improve the GPS location 
accuracy using an inertial navigation system and wheel encoders, and the SLAM solution was 
improved with a 3DoF model. Schleicher et al. [22] presented a real-time EKF hierarchical SLAM 
combined with GPS data, but the altitude information provided by the GPS were not used.  

Figure 1. An overview of the results of our proposed method. The blue line in the middle 
represents the trajectory through the Kashiwa campus of the University of Tokyo, and the 
nearby green circles are the tie-points. The separate images in the route are from the 5 
mono-lenses. Green dots indicate correctly matched tie-points with good distributions, and 
red dots indicate mismatched points that have been excluded from the error detection steps. 
A 3D view of the results is shown in the top left corner; blue dots represent the position 
and posture after SLAM, and pink dots represent the GPS route. The two boxes in the 
bottom right are the zoomed area in which the GCPs are included. The light green 
corresponding rays intersect correctly in the right box, and the RMSE of the tie-points and 
check points both reach an accuracy of several centimetres with a grid scale of 0.2 m  
(left box). 
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Although homography and the 3DoF models without altitude information used by these articles 
reduce the computation cost greatly, they all presume a planar Earth surface and may introduce large 
errors in elevation. Furthermore, these methods all use filtering methods. To our knowledge, no article 
has studied GPS-supported BA-SLAM. However, GPS-supported BA-SLAM should have a higher 
accuracy than filter-SLAM because of the theoretical rigor of BA itself. In this paper, we study a  
GPS-supported BA-SLAM method in which a 6DoF model is embedded, a rigorous sensor model is 
applied as the geometric projection model, and GPS data are combined with ray observations as 
additional restrictions for global optimisation and georeferencing. Finally, several ground control 
points (GCPs) are measured manually to check the absolute accuracy of the GPS-supported BA-SLAM 
method. Figure 1 shows the results of using our GPS-supported BA-SLAM on the Kashiwa campus of 
Tokyo University. The green circles represent the ground features/landmarks, and the radius shows the 
error, which is very small (average 1.6 cm). The thick blue line in the middle represents the road route, 
which is approximately 1.8 km long. The error of the check points has an accuracy of several 
centimetres. 

The paper is structured as follows: Section 2 introduces a common dioptric panoramic camera and 
establishes a camera model that is more rigorous than the ideal model. Section 3 presents a stereo  
co-planarity (or epipolar constraint) that is more rigorous than the ideal co-planarity. Section 4 
addresses the bundle algorithm supported by GPS, and Section 5 presents the results of the mapping 
and localization experiments. All of these experiments were carried out using a vehicle platform that 
consists of a multi-rig camera and GPS receiver. Finally, we present the conclusions and future work 
in Section 6.  

2. Monocular Ideal Sensor Model vs. Rigorous Sensor Model of a Panoramic Camera 

2.1. Projection from Fish-Eye Lenses to Panoramic Camera 

As shown in Figure 2, the panoramic camera is composed of five separate fish-eye lenses. TS is the 
centre of the panoramic sphere. A two-step transformation is carried out to establish the relationship 
between fish-eye cameras and panoramic camera. In the first, the fish-eye image coordinates are 
transformed to the ideal plane camera coordinates, while the second transforms the plane coordinates 
to the uniform panoramic coordinates. Equation (1) describes how an image point ucwith a coordinate 
vector u in a separate lens is projected to us with a coordinate vector X = [x, y, z]T in the panoramic 
sphere. Kc is the transformation matrix from the image coordinate u in the fish-eye camera c to the 
corresponding undistorted plane coordinate and includes such parameters as radial distortion, 
tangential distortion and principal point offset [23]. Rc and Tc are the rotation matrix and translation 
vector from the coordinates of the ideal plane camera c to the panoramic coordinates, respectively. Kc, 
Rc, Tc are fixed values because of the advanced calibration, and k is the scale factor from the ideal 
plane to the panoramic sphere coordinate, which varies with different points and can be calculated 
associated with Equation (2) which describes that X is on the panoramic sphere with a certain radius R. 
It should be mentioned that the panoramic coordinate X for a certain image point, is the same both in 
ideal and rigorous sensor models: 

ccck TuKRX +=  (1) 
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(2)

2.2. Ideal Panoramic Sensor Model 

The common ideal panoramic sensor model Equation (3) is the perspective transformation between 
an arbitrary 3D point ps with coordinate vector XA in the object space and the corresponding panoramic 
point us with coordinate vector X obtained from Equation (1), which passes through the panoramic 
center Ts. R and T are the rotation matrix and translation vector, respectively, and λ is the scale from 
the panoramic coordinate to object coordinate: 

)(T TXRX −= Aλ  (3) 

Figure 2. Representation of a panoramic camera consisting of five mono cameras. The 
dashed line on the left indicates an ideal ray corresponding to ideal sensor model that 
passes through the panoramic centre TS, a point on the panoramic sphere us and the object 
ps. In reality, us is imaged from the mono camera, and the projection centre is Tc; the real 
ray is represented by the solid line corresponding to our rigorous sensor model and passes 
through Tc, us and pc. Two errors are introduced by the ideal model: one is the ray direction 
bias, and the other is the position offset of the landmarks. 

 

However, Figure 2 shows that two system errors occur. First, the rays are moved forcibly. The ray 
Tcus, which passes through the centre of the separate lens (shown by the solid line) is regarded as Tsus 
which passes through the panoramic centre (shown by the dashed line). This observation indicates that 
the ideal panoramic camera model is incorrectly constructed for the biased ray. The biased rays cause 
the second error that the real 3D point pc is translated to an incorrect position ps. However, the 
projection centres of the separate fish-eye cameras and the panoramic centre are very close, and the 
angle between Tcus and Tsus is very small, which may ensure that the system errors are limited to less 
than one pixel within a certain distance. 
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2.3. Rigid Panoramic Sensor Model 

According to the analysis presented above, a rigorous sensor model should express the correct rays. 
The ray through Tc and uc in a separate camera coordinate can be rigorous, but it loses the meaning of 
panoramic imaging. Thus, we construct the rigorous camera model under the uniform panoramic 
coordinate, which means that the co-linearity through Tcus is constructed: 

)()( TXRTXT A −=−+ T
cc λ  (4a) 
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In Equation 4(a,b), Tc = [Tx, Ty, Tz]T
 is the translation vector between Tc and Ts and X represents the 

panoramic coordinate vector as in Equation (1). The vector λ(X – Tc) thus presents the true ray Tcus but 
in the mono camera coordinate system. The coordinate origin of the ray should be moved to the 
panoramic centre by adding a translation Tc. Now XA represents the coordinates of the correct 3D point 
pc. The rigid perspective model under the panoramic coordinates is then constructed after rotation and 
translation with R and T, respectively. Formulation (4b) is the algebraic form of (4a) in which the 
unknown λis eliminated. Please note that the panoramic coordinate X  obtained from Equation (1) 
should be consistent with Tc, which is different from different mono-lenses. 

In this paper, the rigorous sensor model (Equation 4(b)) will be used as the basic measurement 
equations for our GPS-supported BA-SLAM. For a BA method, the ray measurement equations 
(Equation 4(b)) are sufficient, and a motion model is not needed. However, BA requires initial values 
for the six unknown translation and rotation parameters. Rigorous co-planarity conditions will be 
introduced below to supply the initial values. The idea is similar to [24], in which epipolar constraints 
are used for stable estimation of camera trajectory. 

3. Ideal Co-Planarity vs. Rigorous Co-Planarity of a Panoramic Camera 

3.1. Ideal Panoramic Co-Planarity 

Co-planarity, also called epipolar constraints, is a well-known geometric relationship between 
stereo-image pairs that reflects the two camera positions and the corresponding image coordinates in 
one plane. As described above, extra velocity and angular velocity are not needed as parameters of a 
motion model because a filter framework is not used and BA only needs the initial position and 
orientation vectors as inputs. The co-planarity will supply sufficient parameters for the image 
association and the initial values for BA.  

Figure 2 shows two stereo panoramic images with a baseline ssTT ′ . We write B = [BX BY BZ] and the 
corresponding rays Tsus as V1 = [X1 Y1 Z1] and ssuT ′′  as V2 = [X2 Y2 Z2]. The vectors B, V1 and V2 satisfy 

the epipolar constraints as follows: 

0)( 21 =×• VVB  (5) 
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In Equation (5), 
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 are the coordinates of the corresponding points 

and R is the rotation matrix between the two images. 
If Equation (5) is expanded by the third line of the determinant, Equation (6) can be deduced, in 

which a, b and c are determined by the values of V1 and R. Equation (6) represents a 3D plane that 
passes through the coordinate origin. Combined with Equation (2), the panoramic sphere equation, we 
conclude that the epipolar line of ideal panoramic stereo images is a large circle through the 
projection’s centre. Equation (6) can be used as a geometric constraint for image matching and  
outlier elimination: 

ax2 + by2 + cz2 = 0 (6) 

3.2. Rigorous Panoramic Co-Planarity 

We can see that Equation (5) is not rigorous because the actual rays do not pass through the centres 

ss TT ′,  of the panoramic spheres but rather through the projection centres of the separate lenses cc TT ′, . 
Thus, the vectors B, V1 and V2 all have errors. Because the monocular rigorous camera model is 
constructed in uniform panoramic coordinates, we construct the co-planarity in the same coordinates. 

First, the actual corresponding rays V1 and V2 should pass through the projection centres of the 
separate cameras as in Equations (7) and (8). In addition, B should be the baseline between the 
separate lenses but be in the uniform panoramic coordinates, as in Equation (9): 
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In Equations (7–9): 
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 are the panoramic projection centres and offsets of two stereo images from the 

mono-lens to the panoramic camera, respectively. 
If the vectors B, V1 and V2 are calculated as Equations (7–9), Equation (5) will be a rigorous model 

for stereo panoramic co-planarity. We can also calculate the epipolar line by expanding Equation (5): 

ax2 + by2 + cz2 = d (10)
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In Equation (10), the constant term d is determined by R, and the offsets between the panoramic 
centre and the projection centres of the separate cameras do not equal zero. Thus, the epipolar line is 
not a large circle around the panoramic sphere. However, d is typically a very small value, which 
makes the epipolar very similar to a large circle. 

In this paper, the rigorous panoramic co-planarity Equations (7–9) is used to calculate the  
relative translation B and the orientation R between stereo images and as a geometric constraint to 
eliminate outliers. 

4. GPS-Supported Visual SLAM with the Rigorous Camera Model 

This paper focuses on accurate global localization in large-scale outdoor environments using  
GPS-supported vehicle-borne panoramic imagery. The GPS-supported BA method has been used for 
aerial triangulation for many years, but to date, it has not appeared in the field of SLAM research to 
our knowledge. Filtering has been the only method used to combine these two observations. In this 
paper, we combine GPS data with image observations in a BA framework, and three carefully 
designed steps, accurate data association, segmented BA and GPS-supported BA are used to form an 
integral workflow (Figure 3). 

Figure 3. The main workflow of GPS-supported BA-SLAM. 

1. Feature extraction and 
matching [20,21]

Data association: from mono-
image to unconstrained global 
3D

3. image association by (11) 
and  second outlier 
elimination with histogram 
voting 

1. block BA by (3)

2. Ego-motion estimate 
between stereo pairs by (4) 
and first outlier elimination  
with RANSAC

4. Third outlier elimination 
with 3-image BA by (3)

Segmented BA: local optimum 
and connection

2. block connection by (12)

GPS supported BA-SLAM: global 
optimum and geo-referencing

1. preprocessing of GPS 
observations  with CORS 
RTK

2. GPS supported BA by (3) 
and (14)

3. solving by (15-17) and 
manual GCP checking

Triple-step outlier elimination:

 

4.1. Data Association 

Data association is a key point in SLAM. The data should be verified so that all mismatched 
features are eliminated correctly and so enough information remains. We introduce a three-step outlier 
elimination process to ensure that all of the matched features are correct.  
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Figure 4. A 3D view of successfully matched tie-points (green). The points excluded by 
RANSAC (the first outlier elimination step) and histogram voting (the second step) are 
shown in red, and those excluded by BA (the third step) are shown in blue. The blue rays 
represent features that cannot intersect precisely, such as feature 267. Feature 267 may be 
regarded as correctly matched (right-middle images), but the lack of information about 
features in the window may introduce a bias of one or more pixels, which causes a slight 
intersection error (left-middle image). In contrast, feature 245 has a better texture and 
intersects precisely. 

 

The data association begins with feature extraction and matching with GPU-SIFT [25,26]. The 
RANSAC method [27], which is embedded with geometric constraints Equation (5), is used first for 
outlier elimination in each stereo model, and then, the relative motion estimate (6DoF) is obtained. 
Secondly, the corresponding 3D points in the adjacent stereo models are used to calculate the unknown 
scale between stereo models, and only one point is needed for solving the scale [24]. However, there 
may be rays that cannot satisfy the multi-intersection. Since redundant observations are provided by 
many 3D points, a histogram voting method is introduced for error elimination, and per 3D point votes 
once for a certain scale, which is similar to [28] but solves for the optimal scale. After the relative 
6DoF are regularised to a uniform scale, all of the images are then associated to the coordinates of the 
first image according to Equation (11): 

]|[]|[
]|[]|[

00

,1,111,1

ΟETR
TRTRRTR

=
+= −−−−− iiiiiiiiii  (11) 
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In Equation (11), Ri,Ti represent the rotation and translation of the i-th image to the global 
coordinates, respectively, and R0,T0 represent the first image. 

After the outlier elimination in the first two steps, the large errors are all removed correctly; these 
errors are shown as red points in Figure 4. However, there are still some small errors that will impact 
the accuracy of the next processes, which are shown as blue points in Figure 4. The error elimination is 
carried out a third time to eliminate these points. We only execute rigid BA for 3 images according to 
Equation (4b) to ensure that all of the false correspondences are eliminated when the 3 rays do not 
intersect precisely. For example, tie-points with intersection errors greater than 0.03 m will be removed.  

Figure 4 shows the results of the three-step outlier elimination method. The green points are those 
remaining after correct intersection of three rays. The red points are those excluded by the first two 
outlier elimination steps, and the blue points are those excluded by the third step. Figure 4 shows that 
the third step can eliminate slight errors caused by matching accuracy because of a lack of texture. 

4.2. Segmented BA-SLAM 

The biggest problem with a large-scale BA for SLAM is the accumulation of position and 
orientation uncertainties because of error propagation, which will prevent the iteration from 
converging because BA requires accurate initial values. In contrast, filtering methods, extended 
Kalman filtering and particle filtering always give a possible solution. 

As described in several articles as [29,30], the segmentation method is used to divide the entire strip 
into several blocks for rapid convergence. For example, 100 images are examined as a block, BA is 
carried out using Equation (4b) and a local optimum is obtained for each block. The adjacent blocks 
are then connected as a whole. For example, the translation and rotation vectors of the second block 
will be transformed to the first block according to: 

2)],(|[]|[ 1111 BLOCKiiiii ∈+ΔΔΔ= TTRRRTR λ  (12) 

In Equation (12), 111 ,, TR ΔΔλ  represent the difference of the scale, rotation and translation parameters 
between the two blocks, which can be calculated as a well-known 3D transformation according to the 
corresponding landmarks in two blocks: 

)( 11112 XTRX +ΔΔ= λ  (13) 

In Equation (13), X1, X2represent the corresponding landmarks from the first and second blocks, 
respectively, which were obtained by multi-intersection. A larger dataset of X1, X2 will provide a more 
robust solution, and we set the adjacent blocks with five overlapping images. After all of the blocks 
have been connected, a global BA result of the local optima can be obtained. Similar to global BA, 
segmented BA cannot reduce the accumulation of uncertainties. As in Equation (13), the errors of X1 
will be propagated to X2 according to the error propagation law. 

4.3. GPS-Supported BA-SLAM 

After the segmented BA-SLAM, GPS will be introduced to obtain georeferencing information and 
reduce the accumulated uncertainties. The 6DoF of all the images are then translated to global 
coordinates with a polynomial interpolation according to GPS values, and looked as the initial values 
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for GPS-supported BA. The GPS observations are preprocessed with CORS (Continuously Operating 
Reference Station)-supported [31] RTK [32] technology and can reach an accuracy of up to 0.1 m in 
good conditions. Generally, with one GPS receiver mounted on a vehicle, the GPS observation 
equations associated with 6DoF of a camera can be constructed as: 
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In Equation (14), XG, YG, ZG and XS, YS, ZS are the GPS observations and camera positions at each 
exposure time, respectively. R is the rotation matrix, and U, V, W represents the translation between 
the camera projection centre and the antenna centre of GPS receiver, which can regarded as fixed 
values because of the calibration that was performed in advance. When combined with (4b), the  
GPS-supported BA with the rigorous sensor model is obtained. 

Because Equation (14) does not introduce new unknown parameters, Equations (4b) and (14) can be 
solved as a classic non-linear least-squares Gauss–Newton solution. The linear in Equation (15) are 
obtained after linearization with a Taylor-series expansion, in which x represents the unknowns of the 
features and t represents the six translation and rotation parameters. A and B are Jacobians of  
Equation (4b), L represents the constant terms, C is the Jacobian of Equation (14) and LG represents 
the corresponding constants. P and PG are the inverse matrices of the covariance matrix that describe 
the uncertainties of the ray observations and GPS observations, respectively. The normal equations are 
then constructed as Equation (16). Equation (16) contains two types of unknowns; typically, the 
unknown x is eliminated, and only t remains, as shown in Equation (17). After Equation (17) is solved 
with a sparse Cholesky solver as in [33], t is substituted into Equation (16) to solve for x. It is time 
consuming to obtain an exact solution for P for every observation, particularly at a large scale. P is 
typically set to an identity matrix under the assumption that all observation errors are Gaussian and 
independently distributed. PG will be deduced according to the accuracy of the GPS against the 
accuracy of the ray observations. In our test, PG is between 0.1 and 1: 
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5. Experiments 

5.1. Test Design 

To test the proposed rigorous sensor model and its application in GPS-supported SLAM on a 
vehicle platform, we use PGR’s Ladybug system [34], which consists of a multi-camera rig for 
panoramic imaging, as shown in Figure 5. The six separate fisheye images have a size of  
1,616 pixels × 1,232 pixels, a 0.009 mm pixel resolution and 24-bit RGB colour resolution. The 
images that are aimed at the sky are not used. The focal length of the fisheye images is 3.3 mm, and 
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the optimum radius of the panoramic sphere is 24 m. A dual-frequency GPS receiver is mounted on 
top of the car, and the distance between the GPS antenna centre and the camera centre is calibrated 
precisely in advance. The trajectory is shown as the blue line in Figure 6 from an overhead view in 
Google Earth. Adjacent images are taken at 1 m intervals over a total course length of approximately 
1.8 km. For an off-line SLAM, the GPS observations are pre-processed using CORS RTK technology. 

Figure 5. Panoramic image and separate images captured by the Ladybug system.  
(a) Panoramic image. (b) Images from 6 separate fish-eye lenses. The image aimed at the 
sky is not used in our SLAM. 

(a) (b) 

Figure 6. Results of the segmented BA-SLAM and GPS-supported BA-SLAM methods. 
The yellow line is the trajectory of the unconstrained results after data association and 
block BA. The start point is located in the correct position, but the trajectory shows a large 
accumulation of uncertainty in angle and scale. The blue line represents the trajectory after 
the GPS-supported BA-SLAM method is applied and shows a high level of accuracy. All 
eight GCPs are located in the enlarged area and are shown in Figure 7.  

 

5.2. BA Results without GPS  

After the three rounds of outlier elimination, all of the remaining corresponding rays intersect 
correctly, as shown in Figure 4. The red features in the images are regarded as outliers and are 
eliminated by RANSAC and histogram voting, and the blue points are eliminated by the 3-image BA 
because they exceed an intersection error of 0.03 m. The green points are the points remaining. The 
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remaining features are located on both sides of the road and are seldom in front of or behind the car 
because features on the side of the road have larger intersection angles, which lead to higher 
intersection accuracy. In contrast, a small intersection angle causes a large uncertainty. Some of the red 
points in Figure 4 may have been correctly matched but were excluded only because they did not meet 
the accuracy threshold. The yellow trajectory in Figure 6 shows the results after data association and 
local BA and shows that the angle and scale uncertainties gradually accumulate, even if accurate ray 
observations are generated by the three-step outlier elimination process and local BA. 

Figure 7. The eight GCPs, with accuracy up to 2 cm, are used in the experiments to check 
the accuracy of the GPS-supported BA-SLAM. 

 

5.3. BA Results with GPS 

The blue line in Figure 6 represents the trajectory after the GPS-supported SLAM is applied and 
shows a higher level of accuracy than the results of the segmented BA-SLAM. The quantitative results 
are shown in Table 1. The check errors of the GCPs are all less than 10 cm, with an average of 6.7 cm, 
which is similar in precision to measurements made with a total station system. This accuracy is 
sufficient for most applications. 

Because it is the only georeferencing information, the quality of the GPS observations is very 
important for the convergence of the union Equations (15) and the final localization accuracy. The 
effects of GPS on BA-SLAM should be carefully evaluated if too few GPS observations are obtained 
or there is insufficient accuracy due to multipath effects. We designed two tests to evaluate the GPS 
impact of our method. First, we gradually reduced the number of GPS observations and evaluated the 
localization results with different numbers of observations. As shown in Figure 8(a), eight assumptions 
were tested. For example, a “distance interval 2” on the X axis means that we only use one GPS 



Sensors 2013, 13 132 
 

 

observation for every two images/meters (one image is captured per meter), and “interval 50” means 
that one GPS observation is used every 50 meters. Figure 8(a) shows that the 3D check errors 
gradually increase with an increasing in the size of the interval. If the distance interval is less than 10, 
an accuracy of greater than 0.1 m can be reached; this level of accuracy is similar to that obtained 
when the results of all of the GPS observations are used (Table 1). With an interval of 50 m, the 
accuracy is approximately 0.3 m, which is sufficiently high for many applications; in this case, more 
than 30 GPS observations are enough for the large outdoor SLAM. Figure 9(a) is the comparison of 
the SLAM results between all GPS observations and observations with an interval of 50 m are used. 
The slight difference only can be distinguished at the zoomed area, which indicates good SLAM 
results of the whole trajectory even if GPS are sparsely resampled. 

Table 1. Check errors of the eight GCPs. 

ID DX (cm) DY (cm) DZ (cm) DXYZ (cm) 
K7 3.6 6.6 3.1 8.1 
K5 3.8 6.0 1.7 7.3 
K3 4.0 4.6 3.5 7.0 
K8 4.4 4.2 2.3 6.5 
K9 3.3 4.2 1.8 5.6 
F2 −1.7 6.9 0.5 7.1 
G3 −1.2 6.0 0.2 6.1 
H2 2.4 5.2 −0.6 5.7 

Average 3.0 5.5 1.7 6.7 

Figure 8. (a) Check errors vs. the number of GPS observations used. “Distance interval n” 
on the X axis means that one GPS observation is selected for every n m. The check errors 
of all 8 GCPs increase when the number of GPS observations is reduced but are still less 
than 0.35 m. (b) Check errors vs. number of gross errors added to the GPS observations. 
On the X axis, “Distance interval n” means that the gross error is added to one GPS 
observation every n meters. The check errors of all 8 GCPs increase when more GPS 
observations are given gross errors but are still less than 0.4 m. 
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The second test examines the robustness of our method when gross errors/outliers exist in the GPS 
data. A gross error of 1 m (10 times the original GPS deviations) is introduced to selected GPS 
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observations by rules, as shown in Figure 8(b). On the X axis, “distance interval 100” means that the 
gross errors are added to one GPS observation every 100 m, while “interval 5” means that one fifth of 
the observations are given gross errors. Figure 8(b) shows that the check errors gradually increase with 
a decrease in the size of the interval and reach an accuracy of approximately 0.37 m. These results 
show that even when the GPS observations contain many errors, our method can still provide 
acceptable localization results. Figure 9(b) is the comparison between GPS with errors introduced per 
5 m and all good GPS are used. As in Figure 9(a), the slight difference can only be distinguished at the 
zoomed area, which proved the robustness of our GPS-supported BA method against gross errors. 

Figure 9. (a) Result comparison between GPS with 50 m interval and All GPS. In fact 
there are two trajectories with different colours, blue and green, which cannot be 
distinguished in a scale of 20 m. While at the zoomed area with a scale of 2 m, we can see 
the very slight difference. (b) Results comparison between GPS with errors introduced per 
5 m and all good GPS. The same to (a), we can only distinguish the difference of 
trajectories in the zoomed area. 

(a) (b) 

6. Conclusions and Future Work 

In this paper, we present a framework for GPS-supported BA-SLAM with a new rigorous sensor 
model for a panoramic camera. The test results show that our method is capable of obtaining global 
localization accuracy of several centimetres when GPS observations are favourable and demonstrate 
that our rigorous sensor model is both correct and effective. The tests show that our method is robust 
and provides an acceptable accuracy of several decimetres, even when GPS observations are partially 
unavailable or with big errors. The main contribution of this paper is that it is the first time that a  
GPS-supported BA has been used in a vehicle-based outdoor SLAM with a panoramic camera. This 
system may complement mainstream filtering solutions. The second contribution is that the paper 
proposes a new sensor model for panoramic cameras that is theoretically rigorous and considers the 
small offsets between the panoramic centre and the centres of the separate lens. The model may avoid 
slight but unnecessary system errors compared to the ideal sensor model. 



Sensors 2013, 13 134 
 

 

Solutions based on BA may be more accurate than those using filters, but BA still has some 
shortcomings. BA requires accurate initial values to guarantee the convergence of the iteration. In our 
method, a three-step outlier elimination process is performed to guarantee that all of the tie-points are 
correct. Segmented BA has no trouble with good ray observations; in the global GPS-supported BA, 
however, Equation (15) depends on the consistency of the two observations, the rays and the GPS data. 
In Section 4, we verified that our method is robust regardless of a lack of GPS observations or if gross 
errors are introduced. However, the method will not generate satisfactory results if the GPS data 
contain excessive noise or conflict with the ray observations. In this case, BA-SLAM cannot provide 
results, and filter-SLAM is preferred because it can give a possible solution, though it may be unreliable.  

Future work will focus on SLAM accuracy. Two problems must be addressed. First, the robust data 
association will be tested and improved in complicated environments, such as in a busy highway, 
where the large number of moving vehicles will be the greatest challenge. Second, tall buildings in 
cities may cause the GPS signals to be locked out for long periods. We will develop a reliable method 
to maintain the consistency of the local SLAM results with GPS and detect gross errors in the GPS 
observations automatically. 
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