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Abstract: A technique for rapid detection of pathogenic microorganisms is essential for 
the diagnosis of associated infections and for food safety analysis. Aeromonas hydrophila 
is one such food contaminant. Several methods for rapid detection of this pathogen have 
been developed; these include multiplex polymerase chain reaction assays and the colony 
overlay procedure for peptidases. However, these conventional methods can only be used 
to detect the microorganisms at high accuracy after symptomatic onset of the disease. 
Therefore, in the future, simple pre-screening methods may be useful for preventing food 
poisoning and disease. In this paper, we present a novel system for the rapid detection of 
the microorganism A. hydrophila in cultured media (in <2 h), with the use of an electronic 
nose (FF-2A). With this electronic nose, we detected the changes of volatile patterns 
produced by A. hydrophila after 30 min culture. Our calculations revealed that the 
increased volatiles were similar to the odours of organic acids and esters. In future, 
distinctive volatile production patterns of microorganisms identified with the electronic 
nose may have the potential in microorganism detection. 
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1. Introduction 

Electronic noses have been used for various purposes [1], including chemical sensing [2–6], 
microorganism profiling [7–11], disease diagnosis [12–15], and quality analyses for foods and 
beverages [16–20]. In microorganism profiling studies, for example, we showed that the electronic 
nose (FF-2A, Shimadzu Corporation, Kyoto, Japan) could detect the volatile concentration changes 
depending on the number of yeast between 102 and 107 colony forming units (CFU)/mL in 90 min [11]. 
Another group demonstrated that the electronic nose system can recognize volatile production patterns 
of pathogens including Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli at the 
species level [10]. They detected the microorganisms’ volatile patterns after 24 h incubation 
(preincubation concentrations: more than 1.0 × 105 CFU/mL). 

Among such bacterial families, Aeromonas species are facultative anaerobic Gram-negative 
bacteria that belong to the Aeromonadaceae family [21]. These bacteria are found in water, soil, and 
food items [22]. Some species can grow in chlorinated water [23]. The US Environmental Protection 
Agency has included Aeromonas hydrophila in the list of potential contaminant organisms that will 
require regulation in the future, as per the Safe Drinking Water Act [24]. In recent years, Aeromonas 
species have been isolated from patients with diarrhoea, especially children aged <5 years [25]. 
Although diarrhoea caused by Aeromonas species is often mild, it can occasionally become serious, 
accompanied by haematochezia, abdominal pain, and fever [26]. Moreover, although a link between 
diarrhoea and the consumption of food contaminated with Aeromonas has not been conclusively 
identified, putative virulence factors have been detected in contaminated food or clinical  
isolates [25,27,28]. Other diseases associated with these bacteria are wound infections, pneumonia, 
meningitis, and septicaemia in humans [29,30]. Some patients with Aeromonas infections have 
developed acute illness and died of septic shock [31]. A. hydrophila and A. sobria are often isolated 
from patients with diarrhoea and the abovementioned diseases [26].  

In clinical practice, microorganisms in patient samples are mainly identified by isolation from a 
selective agar medium or by enzyme-substrate reactions. Although these methods enable definitive 
identification of contaminant microorganisms, they require long periods for the processing and 
detection. Recently, multiplex polymerase chain reaction (PCR) assays [32,33] and the colony overlay 
procedure for peptidases (COPP) have been proposed for the rapid detection of Aeromonas  
species [34]. PCR assays have been used to determine the distribution of virulence factors among 
Aeromonas species isolated from drinking water utilities [32] and from a trout farm [33]. It was found 
that bacterial isolation on agar plates required 24–60 h, while the PCR method was completed in less  
than 2 h. Further, COPP has been used to identify A. hydrophila on the basis of its lysyl 
aminopeptidase activity; in this assay, the culture plates were incubated for 16–18 h, after which 
enzyme activity was detected within 10 min [34]. Both the PCR assays and the COPP are rapid, 
sensitive, and accurate.  
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However, these techniques aim at detecting Aeromonas species at high accuracy after disease 
occurrence. For preventing food or water-borne illness, other quick tests may be useful for determining 
the presence of Aeromonas species. Thus we propose a novel rapid method based on the combination 
of an electronic nose and odour descriptors for simple identifying microorganisms, based on the 
analysis of the odours arising from volatile compounds released from microorganism metabolism. 
Especially, A. hydrophila is reported to metabolize many types of carbohydrates to organic acids [35,36]. 
We hypothesized these volatile compounds may be able to be detected with an electronic nose. 

In this study, we investigated the possibility of applying the FF-2A electronic nose for the rapid 
detection of A. hydrophila in liquid culture media. This electronic nose is equipped with 10 metal 
oxide semiconductor sensors and a preconcentration tube, consisting of carbon-based adsorbents to 
eliminate water vapour, which affects the sensors. Therefore, this device yields measurements with 
high sensitivity and reproducibility [37,38]. In order to know the differences of the detected odours,  
we compared them with known odours of several standard gases. 

2. Experimental Section  

2.1. Microorganisms and Culture Conditions 

A. hydrophila was isolated from a water sample obtained in Japan. The bacteria were cultured in 
lysogeny broth (LB; Merck, Darmstadt, Germany; containing 1% peptone derived from casein, 0.5% 
yeast extract, and 1% NaCl) or modified nutrient broth (Becton Dickinson, Franklin Lake, NJ, USA; 
containing Bacto beef extract and Bacto peptone) supplemented with 1% NaCl. The starter culture was 
inoculated at a concentration of 9.6 × 102 CFU/mL and incubated at 37 °C for 0–120 min. Samples of 
the media containing A. hydrophila were collected at specific time points and filtered through a  
0.45 μm filter to remove the bacteria. 

2.2. Measurement and Calculation of Volatile Compounds and Standard Gases  

Aliquots of the liquid samples (2 mL, containing A. hydrophila and the media) were collected into  
2 L polyethylene terephthalate (PET) bags filled with dry nitrogen. The samples in the bags were 
allowed to equilibrate at 25 °C for 30 min. Further, 200 mL of headspace volatiles were collected, 
transferred to new 2 L PET bags, diluted with dry nitrogen, and equilibrated at 25 °C for 30 min.  
These diluted samples were introduced into a trap tube of the FF-2A electronic nose (Shimadzu 
Corporation, Kyoto, Japan) for 60 s and then exposed to a sensor array with pure nitrogen gas. All the 
samples were measured twice, and the mean data are presented. The first data was obtained within 
approximately 80 min after the culture started. 

Odour similarities were calculated with the FF-2A software in the following manner: the device 
contains 10 metal oxide semiconductor sensors that vary in their sensitivity and selectivity for different 
odorous substances [5,11,38]. These sensors were standardized with nine gases (hydrogen sulphide, 
methyl mercaptan, ammonia, trimethylamine, propionic acid, butyraldehyde, butyrl acetate, toluene, 
and heptane). These gases were decided as the standard materials from the environmental offensive 
odours which are targeted to cover general odour problems in Japan. On the basis of the signals 
yielded by the sensors, standard vectors corresponding to the nine standard gases were calculated in a 
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the similarities of the volatiles with the organic acids (30.0 to 46.1%) and esters (70.8 to 87.9%) also 
increased. Both the similarity charts indicated that minor modifications in the culture medium did not 
affect the tendency for increased production of distinctive odours.  

Previous studies have revealed that A. hydrophila strains produce several acids from various types 
of carbohydrates [35,36]. Abbot et al. investigated fermentation reactions of 17 kinds of carbohydrates 
and detected acids from 11. Furthermore, Lee et al. showed the time-dependent changes in the 
concentrations of volatile fatty acids (acetate and formate) from carbohydrate fermentation.  

The increase of the similarities observed for organic acids and esters was almost compatible with 
these previous studies in chemical categories and may become distinguishing markers of the presence 
of A. hydrophila. Moreover, volatile odours may be described objectively as the combination of 
distinctive odour descriptors from organic acids and ester. The former was described as pungent, sour, 
and sweaty [39], the latter was described as green, pungent, and sweet [40]. 

In order to identify the differences in greater detail, we plotted a similarity graph of the odours of 
the volatiles released on culture in LB against the odour of each standard gas (Figure 4). The graphs 
were categorized in terms of the correlation factors. As mentioned earlier, the similarities of the 
volatiles with organic acids (a) and esters (c) increased markedly with time. In addition, the correlation 
factors for both these standards were high (0.98 and 0.90, respectively). On the other hand,  
the similarities of the volatile compounds with the aromatic group (b), sulphur (d), and hydrocarbon (e) did 
not increase considerably, but the correlation factors were high. Other groups (f–h) showed low 
correlation factors, probably because these standard gases may not be suitable for detecting the 
metabolic products in this case. 

Presence of these distinctive odour groups suggested the possibility of presence of A. hydrophila. 
Further, since the detected odours were correlated with the concentration of A. hydrophila, this method 
can be useful for determining the concentration of bacteria in unknown samples. The modified nutrient 
broth, on the other hand, had relatively low correlation factors (0.0261–0.76, data not shown).  
These results suggest that LB is more suitable for the detection of A. hydrophila with the electronic 
nose on the basis of volatiles released. The differences of volatiles between the two media may affect 
the detection ability of the electronic nose. 

The sensitivity, efficiency, and specificity of the electronic nose render it highly advantageous for 
the detection of microorganisms. First, the sensitivity of the electronic nose used in the present study 
can be attributed to the fact that it was equipped with the preconcentration tube for eliminating water 
vapour, which affects the activity of the semiconductor sensors [37]. Preconcentration tubes also 
enable reproduction of the results under varied humidity conditions.  

Second, the electronic nose used was efficient since it took less than 2 h to obtain the first data 
(incubation time, 30 min; measurement time, 80 min). Moreover, the measurement time included 
dilution of sample volatiles by two natural equilibration steps to dilute the volatiles to appropriate 
concentrations (See Section 2) The natural equilibration of the volatiles accounted for 30 min  
(60 min in total); thus, the process time could be reduced with the development of a more rapid 
equilibration method.  

Finally, to determine the specificity of the system, more volatile data from other microorganisms 
are needed. Although A. hydrophila was the sole pathogen demonstrated in this study, data on the 
volatile compounds produced by other microorganisms will enable rapid detection and classification of 
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first report on the detection of A. hydrophila on the basis of its volatile production patterns with an 
electronic nose. In future, combination of selection medium and volatile pattern database from 
microorganisms will increase the detection specificities. 
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