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Abstract: An optical flow-based technique is proposed to estimate spacecraft angular 

velocity based on sequences of star-field images. It does not require star identification and 

can be thus used to also deliver angular rate information when attitude determination is not 

possible, as during platform de tumbling or slewing. Region-based optical flow calculation 

is carried out on successive star images preprocessed to remove background. Sensor 

calibration parameters, Poisson equation, and a least-squares method are then used to 

estimate the angular velocity vector components in the sensor rotating frame. A theoretical 

error budget is developed to estimate the expected angular rate accuracy as a function of 

camera parameters and star distribution in the field of view. The effectiveness of the 

proposed technique is tested by using star field scenes generated by a hardware-in-the-loop 

testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases 

comprise rotations at different rates. Experimental results are presented which are 

consistent with theoretical estimates. In particular, very accurate angular velocity estimates 

are generated at lower slew rates, while in all cases the achievable accuracy in the 

estimation of the angular velocity component along boresight is about one order of 

magnitude worse than the other two components. 

Keywords: spacecraft angular velocity estimation; star field images; optical flow; 

performance analysis; hardware-in-the-loop simulation  
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1. Introduction 

Spacecraft requiring accurate three-axis attitude control are all equipped with star sensors to support 

attitude determination with high accuracy. In recent years, star tracker technology has seen a 

remarkable evolution. In particular, these sensors have gained significant improvements in their 

autonomy and capabilities [1–3]. Indeed, modern star sensors are expected to offer new advanced 

functionalities in addition to the assessed capability of high-precision pointing determination during 

low angular rate mission phases. The ultimate goal in modern star sensor design is achieving 

performance, functionality, and reliability levels that allow star sensors to be the only attitude sensor 

on-board the spacecraft [4]. In particular, the following advanced functionalities can be cited as 

characterizing modern star sensors: 

- to produce high-accuracy, high-reliability attitude angle and rate estimates without external support; 

- to operate in a wide range of mission conditions; 

- to solve the lost-in-space problem autonomously and in a short time; 

- to deliver angular rate information also when attitude determination is not feasible, as during 

platform de tumbling or slewing.  

These functionalities should be achieved via additional software routines rather than by hardware 

enhancements (apart from improved sensitivity of photodetectors), and different operating modes 

should control sensor operation. As a result, software for system control and management becomes 

very complex. 

Among the cited advanced functionalities, one of the most demanding, in terms of algorithm and 

software complexity and sensor operation management, is the determination of the satellite inertial 

angular velocity during slewing and/or de-tumbling phases. Indeed, many existing satellites execute 

slewing maneuvers at rates lower than 1°/s, at which the star sensor is still able to acquire star field 

images, so that star centroids can be computed on the focal plane. Instead, higher angular rates (>1°/s) 

are being proposed for high-agility small satellites and next generation Earth Observation satellites [5]; 

in this case the stars are typically acquired as strips, thus calling for different algorithms to be used for 

angular rate computations. 

On the other hand, there is a growing interest in systems able to propagate attitude of very small 

satellites (such as CubeSats) using low cost sensors and optics [6] (no star trackers available), in order 

to maintain accurate attitude estimates during eclipse avoiding the drift that characterizes gyroscopes.  

In this paper a technique for angular rate determination based on optical flow computation is 

analyzed. Besides being adopted for vision-based guidance and control of Unmanned Aircraft 

Systems, optical flow techniques have found usage in space applications within the fields of remote 

sensing and space exploration. Regarding spaceborne remote sensing, optical flow measurements have 

been used for example to estimate glacier motion from multi-temporal sequences of electro-optical 

(EO) images [7], to detect sandstorms [8], to estimate atmospheric motion from geostationary 

meteorological satellites [9]. Within space exploration, optical flow approaches have been widely 

proposed for planetary landing (see for example [10,11]). 

The optical flow technique proposed in the paper relies on the computation of a displacement field 

between successive star images, then a least squares method is used to find the best estimate of the 
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angular velocity vector components in the rotating frame matching the observed displacement field. 

The effectiveness of the proposed techniques is tested by using star field scenes reproduced by an 

indoor testing facility and acquired by a commercial-off-the shelf camera sensor, shortly described in 

the paper. Specifically, star field scenes relevant to representative satellite slewing maneuvers are 

simulated. Then the corresponding images are processed with the optical flow algorithm in order to 

extract the angular rate information. This information is then compared with the one used in input to 

the testing facility. 

Satellite angular rates estimation, independent of star identification and attitude measurement, has 

been also discussed in [12] and more recently in [6,13,14]. 

In particular, [13] discusses a technique that (unlike the one presented in this work) is applicable to 

electronic rolling shutter imaging mechanisms, since it is aimed at compensating distortion effects due 

to this technology, thus improving centroiding accuracy and attitude measurement performance in 

nominal conditions. 

In [6] the q-method [15] is used to solve the relative attitude problem between successive frames, 

while [12] refers to Poisson relation as the basic algorithm equation. [14] illustrates an angular velocity 

technique based on a least squares approach that starts from knowledge of star vectors and the time 

sampling interval, and focuses on dynamic estimation techniques such as adaptive Kalman filtering. 

Validation is based on numerical simulations and night sky observations.   

With regards to these latter works, the work presented in this paper provides the following  

original contributions: 

- the entire angular velocity measurement process is presented comprising accurate and efficient 

optical flow computation and relation with algorithm tuning; 

- a complete theoretical error budget is developed that allows predicting the expected measurement 

accuracy as a function of camera and geometric parameters; 

- the developed methodology is tested in hardware-in-the-loop simulations of representative 

satellite slewing maneuvers.  

The paper is organized as follows: Section 2 describes the adopted algorithm with a preliminary 

error budget to estimate the expected angular accuracy, then Sections 3 and 4 describe, respectively, 

the adopted indoor facility and the simulation scenario, and the results of the algorithm test on star 

field scenes acquired with the laboratory facility. 

2. Algorithm 

The developed algorithm is composed of a few basic steps: given a couple of subsequent star field 

images, first the acquired images are pre-processed to eliminate background noise, and the velocity 

vector field (which is indeed a displacement field) is calculated in pixels. Then, unit vectors and unit 

vector derivatives corresponding to the computed velocity vectors are evaluated by exploiting a neural 

network calibration to estimate at the same time intrinsic and extrinsic parameters relevant to the 

adopted experimental setup. Once unit vectors and their derivatives are known, the Poisson’s equation 

expressing the time derivative of a unit vector in a rotating reference frame and a least square method 

are used to find the best estimate of the angular velocity vector components in the rotating frame. 
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The above mentioned process is summarized in Figure 1. The different blocks are described in 

details in the following sub-sections, with particular regard to the adopted optical flow methodologies 

and the equations used for estimating the angular velocity. 

Figure 1. Algorithm flow-chart. 

 

2.1. Image Processing and Optical Flow Computation  

Given a couple of consecutive grey level images, first of all a background noise removal process is 

carried out separately on both images to eliminate sensor noise which can affect accuracy of optical 

flow computation. To this end, a global threshold technique [16]
 
is applied in which a μ + 3σthreshold 

is applied to identify the illuminated pixels, with μ and σ being, respectively, the intensity mean and 

standard deviation computed over the entire image. All the pixels with intensity below the noise 

threshold are set equal to zero. This processing may slightly affect centroid accuracy in dynamic 

conditions when stars are spread over several pixels and the signal-to-noise ratio is degraded, as it will 

be discussed in the following when dealing with results from high rate simulations.  

An example of background noise removal process around a star is reported in Figure 2. After 

background noise removal, a labeling technique [16]
 
is applied to distinguish the different stars 

detected on the focal plane. Within this phase, stars whose dimension is smaller than three pixels are 

discarded to increase algorithm accuracy, as it is better explained in the error budget sectiosn. It is 

important to underline that all the subsequent calculations are applied only to the detected stars and not 

to the whole image. This thresholding procedure significantly reduces the computational burden of 

optical flow techniques, which is very important in view of real time applications. In fact, modern, 

multifunction star trackers with large-medium size field of view (FOV, e.g., 15° to 20°) and capable of 

autonomous multi-mode operation have a detection limit up to visible magnitude mv of 6–6.5. 

Assuming as reference a 20°-FOV and mv = 6.2 as detection limit, the resulting average number of 

detectable stars in the sensor FOV is 40 [17].  
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Figure 2. Background noise removal process (pseudo colors are used for the sake  

of clarity). 

 

In general, the optical flow is the 2-D motion field, which is the perspective projection onto the 

image plane of the true 3-D velocity field of moving surface in space [18,19], arising from the relative 

motion between the surface and the viewer. 

The basic assumption in measuring the image motion is that the intensity structures of local  

time-varying image regions are approximately constant for, at least, a short time duration. The classical 

“optical flow constraint equation” [20] can be expressed in differential terms as follows: 
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where I represents the image intensity, x and y the two spatial coordinates in the image, Vx and Vy the 

corresponding apparent velocity components, and t is time. 

Different approaches can be adopted to compute optical flow [20–22]
 
such as differential techniques, 

phase-based and energy based methods, and region-based matching. 

Differential techniques compute velocity from spatiotemporal derivatives of image intensity or 

filtered version of the images (using low pass or band pass filters). In this framework, Equation (1) is 

an under-constrained equation, since only the motion component in the direction of the local gradient 

of the image intensity function may be estimated: this is known as “the aperture problem” [20] and one 

more assumption is necessary. 

As an example, Horn and Schunck’s method assumes that the motion field is smooth over the entire 

image domain and tries to maximize a global smoothness term [20], while Lucas and Kanade’s method 

(first introduced in [22] and then developed into the most implemented tracking algorithms [23–25]) 

divides the original image into smaller sections, assumes a constant velocity in each section, and 

performs a weighted least-square fit of the optical flow constraint equation, to a constant model for the 

velocity field in each section.  

Differential techniques are not the best solution in the considered case for several reasons. First of 

all, after background removal, images are very sparse, with a few non zero pixels and a significant 

departure from the smoothness properties these techniques are based on. Thus, accurate numerical 

differentiation is typically unachievable. This also happens if background removal is not applied 
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because of the negative impact of noise. Then, it has to be considered that if a very high resolution 

camera is used, i.e., with a very small Instantaneous FOV (IFOV, i.e., the angle subtended by a single 

pixel of the imaging system) as it typically happens for a star tracker, apparent star motion can be of 

several pixels per frame even during medium-rate rotations, while differential techniques typically 

work well for apparent velocities of the order of 1 pixel/frame, at most. Coarse to fine pyramid 

representations can be used [24], but with high computational cost since they should be carried out 

over the entire image, and with degraded performance because of the very sparse image structure.  

Since phase-based and energy-based methods work in the Fourier domain, in the star sensor case 

they also suffer from the same problems of differential techniques. 

Region based matching is, instead, an appealing solution because it works well even in noisy 

images without smooth intensity patterns, and in case of large pixel velocities, such as the ones we 

have to work with.  

The basic principle is to evaluate velocity as the displacement that yields the best fit between image 

regions at different times. Specifically, in the considered application, a customized two-step method is 

adopted in which a coarse estimate of the star displacement on the focal plane is computed first and 

then refined to improve accuracy in the velocity field estimate: 

- First of all, the integer shift in pixels (d) is computed for each star that minimizes over δ the sum 

of squared differences:  

      21 ,,,, yxnn
k

ki
k

kj jyixIjyixIyxSSD ddd     (2) 

As before, In and In+1 indicate two consecutive star images. The sum is calculated on a window 

whose center is the star centroid calculated in the first image (whose coordinates are x and y) and 

whose dimensions (i.e., k) depend on the maximum foreseen star dimensions, while δ has to vary 

in an interval which depends on the maximum measurable star displacement. These are the basic 

parameters for algorithm tuning, and the computational burden of the algorithm increases for 

larger angular velocities to be measured; 

- The coarse estimate of d is then refined by computing in the second image the centroid of a 

window centered at the coarse estimation, whose size and shape are the same of the considered 

star, plus a margin of 2 pixels. This margin is used to ensure that all the pixels of the considered 

star (whose intensity is above the threshold) are used for centroid computation in the second 

image. In fact, the coarse centroid computation has an intrinsic accuracy of 1 pixel due to the 

integer nature of the solution, and one more pixel is considered as a “safety margin”. This second 

step is customized to the considered application. It allows a very precise determination of d with 

a very small increase of the computational weight, as it needs very few pixels to be further processed. 

The two steps are repeated for each star detected and labeled in the first image. Once star 

displacements are determined, the information can be easily translated in a velocity information (in 

pixels) by taking the frame rate into account. Within this framework, it is assumed that accurate image 

timing is available, thanks to the adoption of proper hardware (camera and shutter technique) and 

software (real time operating systems and proper coding of image acquisition).  
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2.2. Angular Velocity Estimation  

Once star centroids and vector displacements between two consecutive frames are known, the 

subsequent step is to convert this information in unit vectors and their derivatives. This has to take 

camera calibration parameters into account and can be done in different ways. 

For example, a classical calibration procedure can be used to estimate, firstly, camera intrinsic 

parameters to be used in a pinhole camera model plus distortion effects (e.g., focal length, optical 

center, radial and tangential distortion, etc.) [16,26], and, then, the extrinsic parameters relevant to the 

test facility (i.e., the translation vector from camera optical center to a point on the LCD screen 

assumed as the origin of the display reference frame, and the rotation matrix that relates camera 

reference frame to the axes of the display reference frame).  

In the considered case, an end-to-end neural-network-based calibration procedure is used, which 

correctly takes account of all the intrinsic and extrinsic parameters relevant to the camera and the test 

facility [27,28]. 

Once unit vectors and their derivatives are known, angular velocity estimation is based on the 

Poisson equation, that relates the temporal derivatives of the stars unit vectors in the Inertial Reference 

Frame (IRF) and in the Star sensor Reference Frame (SRF): 
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where we take into account that stars are fixed in the IRF, u  is the star unit vector, and   represents 

the angular velocity of the SRF with respect to the IRF.  

Equation (3) can be rewritten through the vectors components in the SRF as: 
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Thus, three non independent linear equations (in three unknown variables) can be written for  

each star, leading to N × 3 linear equations if N is the number of stars for which the optical flow has  

been calculated.   

These N × 3 equations can be solved in ω by a classical minimum-least-squares technique based on 

orthogonal-triangular decomposition, which is computationally light thanks to the sparse structure of 

the problem matrix. Once the solution for ω is obtained, measurement residuals can be calculated to 

detect anomalous values and thus to have a first assessment of the method reliability.  

2.3. Performance Analysis 

A theoretical analysis can be carried out to derive a first order error budget for the selected 

technique. The input parameters for the error budget are: the angular resolution of the considered 

sensor, the angular velocity to be measured and the consequent velocity field pattern of the stars, the 
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attitude of the SRF with respect to the inertial reference frame (which determines the star distribution 

within the camera field of view), and the number of detected stars (which depends on star sensor 

sensitivity and, again, on sensor attitude).  

Equation (4) can be rewritten as: 
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(5) 

With reference to Figure 3 let us introduce the angles ϕ and θ that define the star line of sight 

orientation in SRF:  is the elevation angle over the Xs,Zs plane of the star line-of sight, and  is the 

angular separation from the sensor boresight Zs of its projection on Xs,Zs. In addition, we define χ as 

the angle of the generic star line-of-sight with respect to the sensor boresight axis.  

Figure 3. Definition of the generic star angles in SRF: the star line-of-sight is in red, Zs is 

the sensor boresight axis. 

 

The error analysis can be carried out separately for the different components of the angular velocity 

in SRF (ω1s, ω2s, ω3s). Let us first consider ω1s, i.e., the case under analysis is ω2s = ω3s = 0, ω1s ≠ 0.  

In this case Equation (5) reduces to: 





















































t

u
t

u
t

u

u

u

s

s

s

ss

ss

3

2

1

21

31

0



  
(6) 

The unit vector components can be written in terms of the ϕ and θ angles. Since star sensors 

typically have small FOVs, we can apply the small angle approximation thus getting: 
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And from Equation (6): 
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Then, we can relate the ϕ and θ rate of change directly to the star displacement on the focal plane: 
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where f is the sensor focal length and xc and yc are the coordinates on the focal plane of the generic  

star centroid. 

Thus, we get the final approximate relation in which the first component of the inertial angular 

velocity vector is directly related to the velocity component along the ys axis computed by means of 

the optical flow techniques and expressed as an angular velocity: 
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Equation (11) allows us to derive the error budget for ω1s. In what follows, we use x and y as  

non-dimensional coordinates, i.e., they are calculated as 
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x
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From a numerical point of view: 
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where n and n + 1 refer to two generic successive frames, ∆t is the time elapsed which is inversely 

proportional to sensor frame rate. Thus we have, for a single star: 
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where Nstarpixels is the number of pixels of the focal plane collecting the radiation from the generic star. 

The term between brackets in Equation (13) approximates the actual accuracy of the centroiding operation. 
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Since ω1s represents a rotation around an axis perpendicular to the sensor boresight, the 

corresponding velocity field measured on the focal plane is uniform, i.e., it does not depend on the 

distance from the boresight axis. Thus, if N is the number of detected stars, since the number of pixels 

of the different stars is more or less the same, we can produce an estimate of ω1s by combining N 

identical, and identically distributed, measurements of Vy. Thus the uncertainty in ω1s does not depend 

on the star position in the FOV and it can be estimated as: 
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Assuming realistic values for the frame rate (10 Hz), the number of pixels per star (10), and the 

number of detected stars (40), we get the uncertainty in ω1s as a function of camera IFOV presented in 

Figure 4. It can be seen that within the considered range for camera IFOV, the uncertainty in ω1s goes 

from about 0.0035°/s to about 0.035°/s.  

Figure 4. Approximate theoretical uncertainty in ω1s estimate as a function of sensor IFOV. 

 

Uncertainty in ω2s can be estimated exactly in the same way, and the error budget is identical since 

azimuth and elevation IFOVs usually coincide. It is worth noting that the estimated uncertainty does 

not depend on the angular rotation value which produced the observed velocity field. Of course this 

conclusion relies on the validity of the proposed model, depending on the assumption that the slew rate 

is small enough so that a star-field image can be imaged on the focal plane in the considered 

subsequent images. 

The error budget in ω3s is somewhat different. Combining Equations (5) and (7) in the case  

ω1s = ω2s = 0, ω3s ≠ 0, and with the small angles assumption, we get: 
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Combining Equations (15) and (16), and taking Equations (7) into account, we get: 
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The first term can be further developed by using spherical trigonometry. Indeed, with reference to 

Figure 3 we have: 
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where χ is the angle between the direction to the generic star and the sensor boresight axis. Then: 
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From the small angle assumption we get: 
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Thus, from Equation (18) we get:  
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The χ angle obviously depends on the observed star, and its maximum value depends on the  

FOV size.  

Equation (18) can be rewritten by using the non-dimensional coordinates x and y as follows: 
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and the uncertainty in ω3s can be then calculated at a first order, and for a single star, as:  
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By developing the different terms we get: 
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where:  
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and it has been assumed that: 
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By using Equations (12) and (13) we finally have: 
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For the typically encountered angular velocities and high frame rates (10 Hz or more), the second 

term in the above equation is larger than the first one, which yields the following approximate form of 

the uncertainty in ω3s for a single star : 
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Equation (27) shows the very intuitive result that the uncertainty in the estimation of the apparent 

velocity affects the estimation of angular velocity in a way which depends on the star position in the 

field-of-view: the farther the star line-of-sight is from the boresight, the more accurate the angular 

velocity estimate will be for a given optical flow uncertainty.  

The final ω3s estimate is obtained by combining star measurements having different error 

distribution. However, a preliminary estimate of the ω3s uncertainty can be obtained by taking an 

average value of χ and using again the factor 
N

1
. Thus we get: 
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Considering an average value of 5° for χ (realistic considering typical medium-large size FOVs) we 

get that the achievable accuracy is about one order of magnitude worse than the one attainable for ω1s. 

This is also consistent with the usual difference existing between the attitude measurement 

uncertainties across and along the boresight axis of a star sensor [17]. Assuming again a frame rate of 

10 Hz, an average number of 10 pixels per star, and 40 detected stars, in Figure 5 we get the 

uncertainty in ω3s as a function of camera IFOV. Of course, the actual estimation uncertainty 

depends on the distribution of detected stars within the sensor FOV, and thus also on the actual 

attitude of the satellite.  
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Figure 5. Theoretical uncertainty in ω3s as a function of sensor IFOV. 

 

3. Hardware-in-the-Loop Facility 

Tests for performance assessment of the discussed procedure were carried out by means of  

a functional, hardware prototype of star sensor operated in a laboratory facility for star field  

scene simulation.  

The star sensor prototype was designed to implement the operational modes suggested by the 

European Space Agency [29]: autonomous operation, initial acquisition from lost-in-space state, 

attitude tracking, cartography mode for in-depth operation monitoring. It was realized by using COTS 

hardware: MATROX IRIS P1200HR System [30] is the hardware basis while sensor algorithms were 

developed in-house. The IRIS P1200HR is composed of two separate units: camera head and a 

compact embedded CPU which makes this camera fully programmable (it is a so called “smart 

sensor”). The former exploits SONY CCD detector and focal plane electronics, the latter is based on a 

400-MHz Intel Celeron processor equipped with 128-MB RAM, 128-MB flash disk, Microsoft 

Windows CE 5.0 operating system. Camera head is connected to the processor unit by means of a 

standard Camera Link
TM

 cabling. Main sensor specifications are in Table 1. Sensor algorithms and the 

relevant performance are discussed in the literature [31,32]. 

Table 1. Star sensor prototype specifications. 

Field Of View 22.48° × 17.02° 

Effective Focal Length 16 mm 

F-number 1.4 

Star Sensitivity <visible magnitude 7 

Image Sensor ½” CCD Progressive Scan 

Image Size 1,280 × 1,024 pixel 

Instantaneous Field Of View 0.017° × 0.017° 

The laboratory test facility (Figure 6) consists of a dark room where a high-resolution,  

computer-controlled LCD display produces star field scenes as computed on the basis of a star catalog 

and of assigned star sensor orientation [27,28]:  
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- a single pixel of the LCD screen is exploited to simulate a single star of a star field if a static 

pointing is considered or in the case of a low-rate dynamics of the orbiting platform. Differently, 

when high-rate attitude dynamics are accounted for in the simulation, a single star is represented 

by the strip of pixels reproducing its apparent trajectory in the sensor FOV during the update 

time of the displayed star field scene. Pixel brightness control is used to reproduce star apparent 

brightness. Approximations result in this simulation approach as a consequence of spatial, 

temporal, and pixel brightness digital discretization of the synthetic star field scenes and relevant 

sequences. However a theoretical, worst-case analysis [27] showed that, for high rate dynamic 

rotation simulation, approximation on large velocity components is at most of the order of 

0.01°/s, taking into account the typical number of simulated stars. As it is shown in the following, 

this does not represent a significant artificial contribution to the estimated algorithm accuracy; 

- a collimating lens allows for simulating the large distance of the star sensor from light source; 

- a high-performance video processor is adopted for LCD display control by an embedded 

computer, to carry out static but also dynamical simulations. The former ones simply consist of 

sequences of star field scenes, as resulting from assigned sensor attitude. The latter ones 

reproduce the evolution of the star field observed by the sensor during assigned maneuvers (orbit 

and/or attitude dynamics), with accurate timing; 

- sensor position within the darkroom and collimating lens selection guarantee matching of 

instrument FOV and LCD apparent angular size. Micro translators and rotators are used for  

fine regulation and alignment of sensor orientation and facility intrinsic reference frame,  

i.e., the display; 

- finally, precise matching is software-based. In particular, it is realized by means of a neural 

calibration function used to compensate for residual misalignment after installation in the 

darkroom, and to adjust sensor output to LCD star angular position finely [27,28,33]. This neural 

network is trained on the basis of a preliminary set of acquisitions to obtain accordance between 

input star field and sensor position measurements. 

Figure 6. Laboratory facility set-up for star field simulation and star sensor tests. 
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The above hardware is completed by the Experiment-Control Workstation that coordinates 

simulation and sensor operation during test, and it also generates the needed simulated star field data, 

off-line before star sensor testing. 

Table 2 shows the main feature of the system when it is specialized to be coupled to the star sensor 

prototype in use. 

Table 2. Test facility features relevant to sensor FOV match. 

Display active area H × V (m) 0.641 × 0.401 

Display resolution H × V (pixel) 2,560 × 1,600 

Collimating lens focal length (m) 1.3 

Collimator diameter (mm) 50 

Display apparent angular size (deg) 27.6 (H) × 17.5 (V) 

Display pixel apparent angular size at screen centre 

(deg) 

0.011 × 0.011 

(H × V) 

Overall magnification ratio 

(with 16-mm-focal sensor optics) 
1.23 × 10−2 

4. Simulation Results 

Accuracy and reliability of the proposed method can be evaluated by exploiting the described 

hardware-in-the-loop facility. In all the simulated cases, a circular equatorial Low Earth Orbit (LEO) at 

altitude of 500 km is considered. This choice does not compromise the general validity of the results 

since a wide range of attitude maneuvers is simulated to evaluate the effect of different star image 

patterns on method accuracy. Initially, the satellite body reference frame (BRF) is supposed to 

coincide with the classically defined orbital reference frame (ORF), i.e., the axis 1 is along the orbital 

velocity direction, the axis 2 is anti-parallel to the orbital angular momentum vector, and the axis 3 is 

in the nadir direction. In all the considered cases, the SRF also initially coincides with the BRF apart 

from sign conventions. In fact, the axis Ys coincides with the axis 2, whereas the other two axes have 

opposite directions.  

Figure 7. Reference frames for the considered simulations. 
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The SRF is thus obtained from the BRF by a 180°-rotation around the axis 1. As a consequence, the 

star sensor boresight axis initially points in zenith direction in the equatorial plane. The reference 

frames used for the simulations are depicted in Figure 7, with IRF origin at the Earth’s centre. 

The simulated cases differ for the considered attitude maneuvers. In the first two cases (case 1 and 

case 2) a satellite rotation around the 1 axis with constant angular velocity (1 deg/s in case 1, 5 deg/s in 

case 2) is superimposed to the constant angular velocity of the keplerian orbit (6.243∙10
−2

 deg/s along 

the negative 2 axis initially) so that the star sensor boresight axis moves outside the equatorial plane 

towards the North pole while the satellite rotates around Earth. This condition allows evaluating 

method performance with a varying number of detected stars and an almost uniform apparent velocity 

field on the focal plane (pure translation). 

In the other two cases (case 3 and case 4), the satellite is supposed to rotate around the star sensor 

boresight axis, again with constant angular velocity (1 deg/s in case 3, 5 deg/s in case 4). This 

condition is representative of the case in which the velocity field on the focal plane is not uniform 

(pure rotation). Actually, a small translational component due to the orbital angular velocity is present 

in the acquired images. 

The simulated angular rates are relevant to the slew maneuvers of many existing satellites, which 

are typically executed at rates lower than 1°/s. In this condition, the star sensor is able to acquire star 

field images, and star centroids can be computed on the focal plane. Higher angular rates (>1°/s) are 

instead proposed for high-agility, small satellites, and next generation Earth Observation satellites [4]. 

In this case, the stars are typically acquired as strips. This condition can affect the accuracy of the 

proposed technique. 

For reader convenience, all the simulated cases are summarized in Table 3. It is worth recalling that 

the reported “true” angular velocity components (ω1s, ω2s, and ω3s) represent the components along the 

SRF axes of the inertial angular velocity vector of the SRF. 

Table 3. Summary of simulated test cases: initial conditions.  

 Out of Plane Rotation Radial Rotation 

 Case 1 Case 2 Case 3 Case 4 

ω1S (°/s) 1 5 0 0 

ω2S (°/s) −6.243∙10−2 −6.243∙10−2 −6.243∙10−2 −6.243∙10−2 

ω3S (°/s) 0 0 −1 −5 

4.1. Out of Plane Rotation Results 

In this case, initially the true angular velocity vector has non-zero components only along the xs and 

ys axes of SRF. As a consequence, the velocity field pattern represents a pure translation with a larger 

components along the ys axis. This condition is evident in Figure 8, where the velocity vectors 

calculated from a couple of consecutive frames in case 1 are depicted (magnified for the sake of 

clarity). In spite of some noise affecting more the (smaller) horizontal velocity component, the 

uniformity of the velocity field can be clearly appreciated. In the considered case, pixel displacements 

are of the order of 0.4 pixels for the horizontal component and 5.9 pixels for the vertical component.  
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As a result of the relatively large number of detected stars, and velocity vectors, both the larger xs 

component (1 deg/s) and the smaller ys component (0.06 deg/s) are measured with good accuracy, as 

shown in Figure 9. The described algorithm was run on a sequence of about 100 images, 

corresponding to a simulation time span of about 10 s. It can be seen that the measurements are 

unbiased on average, and the measurement noise is very small. The third component estimate is also 

unbiased, but, in accordance with the error budget analysis, a larger noise is observed in this solution. 

Slight variations of the number of detected stars (due to stars moving inside or outside camera FOV) 

are the main cause of small oscillations of measurement noise. 

Figure 8. Velocity field as estimated by the optical flow algorithm from a couple of 

consecutive images (case 1). 

 

Figure 9. Estimated angular velocity components against “true” values (case 1, 10 frames 

per second). 
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Although the proposed technique is specifically tuned to work with star images, it is of great 

interest investigating its application to cases with higher angular velocities, where stripes rather than 

stars are imaged on the focal plane and a large displacement in pixels is measured among consecutive 

frames. Case 2 is representative of this condition (see Figure 10, where the original star image has been 

significantly modified in brightness and contrast to enhance clarity). In this case, the computational 

load of the proposed technique increases since large windows have to be used for effective  

region-based matching. Moreover, the signal to noise ratio in each frame is reduced, thus reducing the 

number of valid star measurements, and degrading accuracy in estimating star centroids and their 

displacement. As it is derived from the theoretical error budget, these phenomena increase the uncertainty 

in the angular velocity estimates. Nevertheless, as shown in Figure 11, the average performance is still 

satisfying, with the smaller component ω0 measured with slightly worse accuracy compared with case 1. 

Instead, the estimate of ω1s shows a small negative bias (due to a slight under-estimation of stars 

displacement) and a larger error standard deviation, which is also found in the third component estimate.  

Figure 10. Sample image of star stripes relevant to case 2, significantly modified for the 

sake of clarity (large angular velocity). 

 

Figure 11. Estimated angular velocity components against “true” values (case 2, 10 frames 

per second). 

 

stripes
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4.2. Radial Rotation Results 

Considering now the first radial rotation case (case 3), the velocity field pattern is of course very 

different from the one detected in cases 1 and 2, with a rotation around the boresight axis 

superimposed to the horizontal translation due to the orbital angular velocity. Notwithstanding the 

large variation of the velocity modules on the focal plane, the optical flow is able to capture the motion 

field (shown in Figure 12) and to measure the angular velocity components with good accuracy (see 

Figure 13). Again, as foreseen by the error budget analysis, a larger noise is found in the estimate of 

the third velocity component. In the high rotation case (case 4) satisfying performance is maintained 

and it is in any case better than case 2 in all velocity components (see Figure 14). 

Figure 12. Vector field as estimated by the optical flow algorithm from a couple of 

consecutive images (case 3). 

 

Figure 13. Estimated angular velocity components against “true” values (case 3, 10 frames 

per second). 
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Figure 14. Estimated angular velocity against “true values” (case 4, 10 frames per second). 

 

Performance in terms of mean and standard deviation of errors with respect to assigned values is 

summarized in Tables 4 and 5. Specifically, Table 4 shows statistics relevant low slew rates (cases 1 

and 3): as foreseen by the error budget analysis, in the out-of-plane case, the standard deviation in ω1s 

is of order of 10
−2

 deg/s (about 1% of the “true” value), whereas the noise in the boresight axis 

component is always about one order of magnitude higher. In absolute terms, a slightly better 

performance is measured in the radial rotation case, which is still in agreement with the theoretical 

error budget taking into account that the number of detected stars, and the average off-boresight angle 

(of the order of 55 and 7°, respectively) were larger than the reference values assumed in deriving 

Figure 4 and 5.  

Table 4. Synthetic statistics relevant to low slew rates. 

 Out-of-plane (Case 1) Radial (Case 3) 

 Mean Std Mean Std 

Error on ω1s (°/s) −1.20∙10−4 1.64∙10−2 −2.88∙10−3 6.72∙10−3 

Error on ω2s (°/s) −1.90∙10−3 9.20∙10−3 1.61∙10−3 5.71∙10−3 

Error on ω3s (°/s) −4.96∙10−3 1.22∙10−1 −6.66∙10−3 5.57∙10−2 

Table 5. Synthetic statistics relevant to high slew rates. 

 Out-of-plane (Case 2) Radial (Case 4) 

 Mean Std Mean Std 

Error on ω1s (°/s) −1.79∙10−1 1.81∙10−1 −9.57∙10−3 1.52∙10−2 

Error on ω2s (°/s) 4.26∙10−4 3.90∙10−2 9.61∙10−3 7.47∙10−3 

Error on ω3s (°/s) −1.28∙10−1 1.38 7.95∙10−3 1.21∙10−1 

Table 5 shows statistics relevant to case 2 and case 4, which, as previously underlined, represent 

limiting conditions characterized by high slew rates. Although performance is globally worse, a 
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satisfying accuracy is maintained especially in the radial case. This is mostly due to the fact that strips 

generated by the fast star movement during sensor acquisition time are shorter in the radial case, as it 

can be seen from Equations (11) and (23). Since in these high-rate conditions strip length is inversely 

proportional to the signal-to-noise ratio, this implies a better signal to noise ratio for each star, and thus 

a larger number of detected stars as well as better accuracy in estimating optical flow between 

consecutive frames. The standard deviation in third component is always one order of magnitude 

higher with respect to the first component. 

5. Conclusions 

This paper focused on an optical flow-based technique to estimate spacecraft angular velocity based 

on successive images of star fields. The main steps of the developed algorithms are image  

pre-processing for background removal, region-based optical flow computation, and least-squares 

solution of a linear system obtained expressing the time derivative of a unit vector in a rotating 

reference frame for each detected star.  

Algorithm performance was evaluated on a set of star images generated with different rates and 

geometries (1°/s and 5°/s out-of-plane or radial rotations) by a hardware-in-the-loop testing facility and 

acquired by a commercial-off-the shelf camera sensor.  

The method showed good performance in terms of accuracy and reliability, and experimental results 

were consistent with the developed theoretical error budget taking account of star fields and camera 

parameters. In the case of the out-of-plane rotation at 1°/s, unbiased angular rate estimates were 

generated and the measurement noise was of the order of 10
−2 

deg/s for the off-boresight components, 

while the achievable accuracy for the angular velocity component along boresight was of about one 

order of magnitude worse. A slightly better performance was estimated in the 1°/s radial rotation case 

due to the number and the average off-boresight angle of detected stars.  

Rotation at 5°/s represents a very challenging situation for angular velocity measurement, with star 

strips on the image plane and a significant reduction of signal-to-noise ratio. Nevertheless, the 

developed algorithm was able to measure with satisfying accuracy these velocities, especially in the 

radial rotation case.  

Future work is aimed at optimizing algorithm tuning in view of real-time implementation. In fact, 

the computational burden dramatically depends on settings related to the maximum angular velocity 

that has to be measured. From this point of view, a feedback control scheme, where the current 

algorithm settings depend on the latest angular velocity estimate and the measurement residual, seems 

to be a promising solution. Furthermore, measurement residual can also be used to generate a real-time 

estimate of measurement covariance, which allows generated output to be effectively integrated in 

dynamic filtering schemes, possibly also comprising estimates from other sensors.  
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