
Sensors 2013, 13, 16965-16984; doi:10.3390/s131216965 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Automatic and Objective Assessment of Alternating Tapping 

Performance in Parkinson’s Disease 

Mevludin Memedi 
1,2,

*, Taha Khan 
1,3

, Peter Grenholm 
4
, Dag Nyholm 

4
 and Jerker Westin 

1
 

1
 School of Technology and Business Studies, Computer Engineering, Dalarna University,  

Falun SE-791 88, Sweden; E-Mails: tkh@du.se (T.K.); jwe@du.se (J.W.)  
2 

School of Science and Technology, Örebro University, Örebro SE-701 82, Sweden 
3 

School of Innovation, Design and Technology, Mälardalen University, Västerås SE-721 23, Sweden 
4 

Department of Neuroscience, Neurology, Uppsala University, Uppsala SE-751 85, Sweden;  

E-Mails: peter.grenholm@akademiska.se (P.G.); dag.nyholm@neuro.uu.se (D.N.) 

* Author to whom correspondence should be addressed; E-Mail: mmi@du.se;  

Tel.: +4-623-778-852; Fax: +4-623-778-050. 

Received: 26 September 2013; in revised form: 21 November 2013 / Accepted: 5 December 2013 /  

Published: 9 December 2013 

 

Abstract: This paper presents the development and evaluation of a method for enabling 

quantitative and automatic scoring of alternating tapping performance of patients with 

Parkinson‟s disease (PD). Ten healthy elderly subjects and 95 patients in different clinical 

stages of PD have utilized a touch-pad handheld computer to perform alternate tapping 

tests in their home environments. First, a neurologist used a web-based system to visually 

assess impairments in four tapping dimensions („speed‟, „accuracy‟, „fatigue‟ and „arrhythmia‟) 

and a global tapping severity (GTS). Second, tapping signals were processed with time 

series analysis and statistical methods to derive 24 quantitative parameters. Third, principal 

component analysis was used to reduce the dimensions of these parameters and to obtain 

scores for the four dimensions. Finally, a logistic regression classifier was trained using a 

10-fold stratified cross-validation to map the reduced parameters to the corresponding 

visually assessed GTS scores. Results showed that the computed scores correlated well to 

visually assessed scores and were significantly different across Unified Parkinson‟s 

Disease Rating Scale scores of upper limb motor performance. In addition, they had good 

internal consistency, had good ability to discriminate between healthy elderly and patients 

in different disease stages, had good sensitivity to treatment interventions and could reflect 

the natural disease progression over time. In conclusion, the automatic method can be 
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useful to objectively assess the tapping performance of PD patients and can be included in 

telemedicine tools for remote monitoring of tapping. 

Keywords: alternating tapping; touch-pad; handheld computer; telemedicine; Parkinson‟s 

disease; remote monitoring; automatic assessment; objective assessment; visual assessment 

 

1. Introduction 

The ability to perform functional upper limb motor tasks is essential for most of activities of daily 

living. Patients diagnosed with Parkinson‟s disease (PD) often have difficulties with timing control and 

coordination of upper limb movements [1,2]. In this neurodegenerative condition, patients also 

experience some of the four cardinal symptoms of PD including rigidity, bradykinesia (slowness of 

movements), postural instability and tremor.  

Measuring symptoms and treatment-related complications in advanced PD is challenging. In 

clinical settings today, quantification of PD symptoms is usually done by employing rating scales, like 

the Unified Parkinson‟s Disease Rating Scale (UPDRS), which is mainly based on observations and 

judgments by clinicians. During evaluation of symptoms, both the clinician- and patient-derived 

outcome measures offer complementary information. The gold standard approach to evaluate the 

severity of upper limb motor symptoms is to use the UPDRS-part III (motor examination), more 

specifically items #23 (Finger Tapping), #24 (Hand Movements) and #25 (Rapid Alternating 

Movements of Hands) [3]. However, the use of these clinical scales is not suitable for long-term and 

repeated follow-up of symptoms since they are relatively time consuming [4], may need to be filled out 

at a clinic visit which in turn may influence patient outcomes [5], require considerable clinical 

experience [6] and some of their items have poor inter-rater reliability [7,8].  

Therefore, there is a need for objective and observer-independent measurements which may provide 

better resolution than clinical scales for more accurately capturing symptom severities and fluctuations. 

Quantitative measurement of upper limb motor performance of PD patients during finger tapping tests 

has been previously analyzed by the use of musical instrument keyboard [6], personal computer 

keyboard [9], magnetic sensors [10,11], optoelectronic camera [12], infra-red emitting diodes [13], 

computerized assessment battery [14] and accelerometry [15]. The results from these studies showed 

that objective measures of finger tapping performance correlated well with clinical ratings  

scores indicating that these technologies contained important elements of the information of the  

well-established scales. As in the case of outcome measures derived by clinical rating scales, objective 

measures derived by computer assessment tools should be scientifically sound in terms of validity, 

reliability and sensitivity to change [16–18]. 

This paper presents the development and evaluation of a method for enabling quantitative and 

automatic scoring of alternating tapping performance (ATP) of PD patients, using a touch-pad 

handheld computer designed for telemedicine. The paper reports on different metrics to evaluate the 

quality of assessments of the method including correlations to visually assessed scores of ATP and 

UPDRS motor ratings, reliability, and sensitivity to treatment interventions and natural PD progression 
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over time. In addition, the ability of the method to discriminate between healthy elderly subjects and 

patients in different disease stages is reported. 

2. Methods 

2.1. Subjects 

The results presented in this paper are based on data from two clinical studies, both of which were 

approved by the relevant agencies and written informed consent was given. In total, 95 patients in 

different clinical stages of PD and 10 healthy elderly (HE) subjects were assessed (Table 1).  

Table 1. Characteristics of PD patients and of healthy elderly participants, presented as 

median  interquartile range.  

 Swedish Study 
Italian Study  

(F Group) 

Italian Study  

(S Group) 

HE  

(Healthy Elderly) 

Patients (n, gender) 65 (43 m; 22 f) 15 (13 m; 2 f) 15 (13 m; 2 f) 10 (5 m; 5 f) 

Age (years) 65 ± 11 65 ± 6 65 ± 6 61 ± 7 

Years on levodopa 13 ± 7 7 ± 8.5 5.5 ± 6 NA (not applicable) 

Hoehn and Yahr stage 

at present 
2.5 ± 1* 2 ± 0 ** 2 ± 0.5 NA (not applicable) 

Total UPDRS 49 ± 20.5* 33.5 ± 11.8 ** 26 ± 16.5 NA (not applicable) 

* Assessments performed in afternoons; ** Assessments performed in on-state. 

Sixty-five patients diagnosed with advanced PD were recruited in an open longitudinal 36-months 

study (Duodopa in Advanced Parkinson‟s: Health Outcomes & Net Economic Impact, EudraCT  

No. 2005-002654-21) at nine clinics around Sweden [19]. On inclusion, 35 of them were treated with 

levodopa-carbidopa gel intestinal infusion (LCIG) and 30 patients were candidates for switching from 

conventional oral PD treatment to LCIG (hereafter denoted as LCIG-naïve group). In the second study, 

30 patients with a clinical diagnosis of idiopathic PD in Milan, Italy, participated [20]. The Italian 

study included two patient groups: intermediate stage patients experiencing on-off fluctuations  

(F group) and clinically stable patients (S group). 

2.2. Telemetry Assessments 

Both patients and HE subjects performed repeated and time-stamped assessments in their home 

environments using a telemetry test battery implemented on a touch-pad handheld computer [21]. On 

each test occasion, they were asked to perform objective tests of their upper limb motor performance 

including 20 seconds-long uncued alternate tapping of two square areas (“fields”) (Figure 1). The 

fields had a side of approximately 15 mm and were located 27 mm apart. The fields were shown on the 

screen and subjects were instructed to use an ergonomic pen stylus to tap as fast and accurate as 

possible, using first right hand and then left hand. The subjects were instructed to place the handheld 

computer on a table and to be seated in a chair. Raw telemetry data, consisting of tap position  

(x-y pixel coordinates) and timestamps (in milliseconds), were collected and wirelessly transmitted in 
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an XML format to a central server for storage and offline processing. The test battery was implemented 

on a Qtek 2020i Pocket PC device having a 3.5” touch screen and a 240 × 320 pixel resolution. 

Assessments with the test battery were performed four times per day during week-long test periods. 

In the Swedish study, the test battery was used quarterly for the first year and biannually for the second 

and third years. The LCIG-naïve patients used the test battery at baseline (in which they were on oral 

treatment), month 0 (first visit; at least 3 months after percutaneous endoscopic gastronomy surgery), 

and at follow-up test periods. In 23 LCIG-naïve patients, assessments with the test battery were 

available during oral treatment and at least one test period after having started infusion treatment. 

Hence, n = 23 in the LCIG-naïve group. 

Figure 1. Illustration of the alternating tapping test using the telemetry device. 

 

In the Italian study, patients used the test battery for two test periods with a washout week in 

between. The HE subjects used the test battery for one test period. The total number of observations 

with the test battery were as follows: Swedish group (n = 10,079), Italian F group (n = 822), Italian  

S group (n = 811), and HE (n = 299).  

The development and evaluation of the method was mainly done using the Swedish dataset. To 

avoid onset and offset effects, data points collected during the first and last two seconds of the test time 

were discarded. Hence, the time series of interest were in the range between 2 s and 18 s. 

2.3. Visual Assessment of ATP 

A web-based system was developed to visualize the performance of patients during tapping tests 

and to allow users (PD specialists) to rate different tapping impairments [22]. The system was designed 

as a three-tier web application using JavaServer Pages and MySQL Server as a back-end database.  

The system retrieved time series of raw data from the database tables and visually depicted them 

into different types of graphs. Information presented included: (i) distribution of taps over the two 

fields; (ii) horizontal tap distance vs. time; (iii) vertical tap distance vs. time; and (iv) tapping reaction 

time over the test length (Figure 2). A neurologist was instructed first to visually interpret the tapping 

variation, patterns and trends within the graphs, and then to assess the observed impairments on  

0 (normal) to 4 (extremely severe) categorical scales. First ratings of four tapping dimensions, 
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including „speed‟, „accuracy‟, „fatigue‟ and „arrhythmia‟, were done followed by rating of the „global 

tapping severity‟ (GTS). The dimensions were considered specific for the type of movement disorder 

found in PD patients, as defined by the items 23–25 of the UPDRS-III (finger tapping, hand 

movements, rapid alternating of movements, respectively) [3]. The „speed‟ dimension measured the 

ability to tap rapidly during the test. Cases that had a large number of taps were rated as normal (0) 

whereas those with very low number of taps were rated as extremely severe (4). The subject‟s ability 

to correctly tap the fields on the screen was measured by the „accuracy‟ dimension. Normal cases were 

considered those which had majority of taps within the fields and not widely spread whereas extremely 

severe cases were considered those which had majority of taps outside the fields followed by a larger 

spread. The amount of tapping irregularity and the progressive reduction of movements across the tap 

test were measured by „arrhythmia‟ and „fatigue‟ dimensions, respectively. The „fatigue‟ dimension 

was visualized as increment in the tapping delay graph where if the tapping was regular and the curve 

was flat the case was rated normal whereas if there was a continuous slowing with longer delays 

between each tap the case was rated extremely severe. For the „arrhythmia dimension, cases that 

exhibited no interruptions or arrests in the movements were rated as normal whereas cases that 

exhibited frequent interruptions and multiple taps in the same field were rated as extremely severe. The 

GTS was assumed to be a composite score of the four dimensions providing a holistic representation of 

the patient‟s ATP. The visually assessed scores are hereafter denoted as V-SPEED, V-ACCURACY, 

V-FATIGUE, V-ARRHYTHMIA and V-GTS. The web-based system visualized at least 20 test 

occasions per each GTS level to the neurologist. 

Figure 2. Two illustrative examples of visualized ATP in the web-based system. (a) A test 

occasion with V-SPEED, V-ARRHTYHMIA, V-FATIGUE and V-GTS rated 0 (normal) 

and V-ACCURACY 1 (mild). (b) A test occasion with V-SPEED rated 4 (extremely 

severe), V-ACCURACY 1 (mild), V-FATIGUE 3 (severe), V-ARRHYTHMIA 0 (normal) 

and V-GTS 4 (extremely severe). The left field is represented with blue color. The right 

field is represented with red color. 
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2.4. Computerized Assessment of ATP 

In total, 24 quantitative parameters (Table 2) were extracted from time series data to represent 

patients‟ symptom severities during tapping tests, using time series analysis and statistical methods. 

The data was summarized into scores for the four tapping dimensions and the GTS. 

Table 2. Percentage total variance accounted for by first 5 PCs and contributions of the  

24 parameters in each one of them. Details of the parameters are discussed in the text.  

Parameter Dimension 
First 

PC (%) 

Second 

PC (%) 

Third 

PC (%) 

Fourth 

PC (%) 

Fifth PC 

(%) 

TNT „speed‟ 6.8 0.2 1.9 4.3 2 

MTS „speed‟ 6.9 3.5 0.3 1 0.7 

MTSLR „speed‟ 6.6 3.5 1.9 2 4.1 

CVTSLR „speed‟ 2.7 5.9 4.9 1.5 14 

MTSRL „speed‟ 6.7 3.1 1.7 0.3 3.7 

CVTSRL „speed‟ 2.5 7.7 2.2 7.4 3 

MDCF „accuracy‟ 3.3 6.2 6.8 8 1.8 

CVDCF „accuracy‟ 1.4 5.8 8.8 9.7 0.2 

ODT „accuracy‟ 5.5 5.5 0.5 2.3 0.2 

OTP „accuracy‟ 6.1 4.5 2 1.1 1.2 

MTSPC „fatigue‟ 6.9 1.5 0.7 3.2 2.2 

DDT12 „fatigue‟ 4 6.1 9.5 1.5 6.2 

DMTSPC12 „fatigue‟ 2.8 8.1 1.4 5.3 0.6 

DAEDT12 „fatigue‟ 1.6 0.8 8 7 12.4 

DTWMTS12 „fatigue‟ 4.4 7.2 0.3 7.9 1.6 

DTWDT12 „fatigue‟ 3 5.5 10.6 4.9 10.1 

MCDTT „fatigue‟ 0.4 0.3 12.6 4.7 4.6 

AEMTS „arrhythmia‟ 4.9 1.2 0.3 10.1 3.8 

AEY „arrhythmia‟ 5.3 3.3 2.8 4.7 3.6 

SDSHIM „arrhythmia‟ 4.6 3.2 2.3 1.3 6.6 

MJVIS „arrhythmia‟ 1.6 0.3 11.4 2.2 2.4 

SDVJS „arrhythmia‟ 4.2 4.9 4.3 2.1 7.3 

CCBS „arrhythmia‟ 6 4.7 1.6 2.4 0.7 

CABS „arrhythmia‟ 1.8 6.9 3.3 5 6.8 

Total variance NA (not applicable) 39 16 7 6 4 

2.4.1. Calculation of Automated Speed Score (A-SPEED) 

To quantify the „speed‟ performance during tapping tests, the following parameters were calculated 

and used in the subsequent analysis. The total number of taps (TNT) was calculated as the total sum of 

taps in a test occasion for the mid 16 s. The mean tapping speed (MTS) was defined as the mean rate 

of change of tap distance with time, using the following Equation: 

     
          

           
 

       

 

   

 (1) 
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where   is the total number of taps in a test occasion, x is the horizontal coordinate of pixels on the 

touch screen, y is the vertical coordinate and   is time in milliseconds. In order to catch side variability 

of „speed‟ while tapping the two fields, mean and coefficient of variation (defined as the ratio between 

standard deviation and mean, CV) of tapping speed for both sides were calculated. The side, left to 

right (LR) or right to left (RL), was depicted using the following Equation: 

      
          

          

  (2) 

Hence depending on the side, the following parameters were calculated: mean tapping speed from 

left to right (MTSLR), CV of tapping speed from left to right (CVTSLR), mean tapping speed from 

right to left (MTSRL) and CV of tapping speed from right to left (CVTSRL). Principal Component 

Analysis (PCA) using correlation matrix method was applied to these parameters to reduce their 

dimensions and obtain a single parameter. The purpose of PCA is to take n variables X1, X2, …, Xn, 

find combinations of these and transform them into a new set of non-correlated variables Z1, Z2, …, Zn, 

called principal components (PCs) [23]. These components are linear combinations of the original 

variables and are derived in the decreasing order of eigenvalues so that the first PC accounts for the 

largest possible variance in the data. When dealing with multivariate applications, PCA represents the 

original data in the first two or three components thus enabling better understanding of the data as well 

as operating with a small number of variables in the subsequent analyses. The first PC of the 

parameters accounted for 69% of the total variance in the original data and was used to represent  

the A-SPEED. 

2.4.2. Calculation of Automated Accuracy Score (A-ACCURACY) 

As stated above, this dimension reflects the subject‟s ability to correctly tap the fields on the screen 

and mainly focuses on coordination deficits. To quantify the „accuracy‟ during tapping, the following 

four parameters were calculated. To measure the overall precision while tapping the two fields over the 

test trial, the mean distance from the centers of the fields (MDCF) was calculated. For the taps that 

were tapped within the area of the fields, the distance was preset to zero. The second parameter 

measures the regularity of precision over the test trial and is defined as the CV of distances from the 

center fields (CVDCF). The higher the CVDCF, the higher irregularity of tapping precision is. In order 

to quantify the overall distribution of the taps (ODT) over the two fields, initially the variation (ratio 

between summed distance and total number of taps) for each field was calculated followed by a 

calculation of mean variation of the two fields. Finally, the overall tapping precision (OTP) was 

defined as the mean distance from center fields irrespective of whether the taps were inside or outside 

the field areas, corrected for total number of taps. After applying PCA to these four parameters, the 

first PC accounted for 65% of the variance in the data and was used to represent the A-ACCURACY. 

2.4.3. Calculation of Automated Fatigue Score (A-FATIGUE) 

The „fatigue‟ during tapping is usually characterized by continued demotion of tapping performance 

relative to the passage of the test trial. The following parameters were defined to quantify the „fatigue‟ 
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dimension. The first parameter is the mean tapping speed per cycle (MTSPC) and was calculated as 

follows Equation: 

       
       

         

 

   

 (3) 

where n is the total number of taps, D is the distance between adjacent taps defined as 

          
           

  and t is the change in time defined as ti+1 – ti. The tapping cycle is 

defined as the movement from one field to the other and backwards. In order to capture demotion in 

tapping performance over the test trial, the time series signal was initially divided into two parts and 

then analyzed as follows. The first part consisted of data points sampled during the test time 2–10 s 

and the second part during the test time 10–18 s. The absolute mean differences between the first and 

second part of the time series were calculated for t and MTSPC resulting in two more parameters 

denoted as DDT12 and DMTSPC12, respectively.  

To quantitatively characterize any change in sequential irregularity (or aperiodicity) of time series 

between the first and second part of the signal, Approximate Entropy (ApEn) statistical measure was 

applied. ApEn measures the similarity between a chosen window of time series of a given duration and 

the next set of windows of the same duration. A time series containing a single frequency component 

has a relatively small ApEn value whereas more complex time series containing multiple frequency 

components have high ApEn values, as a result of high level of irregularity. A detailed description of 

ApEn method can be found elsewhere [24]. Given a time series with N data points, ApEn requires 

determination of two user-specified parameters: a length of the window m and a measure of similarity 

r, each of which must remain fixed in all calculations. In this work, m was set to 2 and r to 0.2 (20% of 

the time series‟ standard deviation), as suggested by Pincus in [24]. In order to measure change in 

timing irregularity over the test trial, initially ApEn was applied separately on t of the two parts of the 

time series signal, that is first (2–10 s) and second (10–18 s), and then their mean absolute difference 

was calculated and used as a new parameter denoted as DAEDT12. 

The other two parameters used for measuring tapping „fatigue‟ were based on Dynamic Time 

Warping (DTW) method. The DTW is an algorithm used for comparing time series of different lengths 

and speeds by first locally stretching or compressing them and then by “warping” their time axes so 

that a relationship between the data points in the time series is maintained. Given two discrete time 

series, an input A = (a1, a2, …, aN), where i = 1…N; and a reference B = (b1, b2, …, bN), where  

j = 1…M, the DTW compares them as follows. The first step is to calculate absolute local 

dissimilarities between paired ith data points of A and jth data points of B, leading to a construction of 

a cross-distance matrix (d). The matrix d has small values if the data points are similar and large values 

if they are different. Next, an alignment path (or warping path) is created using a warping function 

w(k) = (wa(k), wb(k)), where k = 1…T, wa(k)  {1…N } and wb(k)  {1…M }. This path remaps data 

points of A and B, by minimizing their distance following the condition that the first and last data 

points of the two time series are aligned. Other constraints such as monotonicity and step size are 

imposed on the function w to ensure reasonable wraps. The mean normalized distance (mnd) is then 

calculated using the following Equation: 
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 (4) 

where cw is a per-step weighting coefficient and cw is the corresponding normalization coefficient. 

Finally, to find the optimal path the minimum global dissimilarity is calculated using Dynamic 

Programming which breaks the entire set of solutions in sub-solutions thus reducing number  

of computations: 

             
 

           (5) 

In our work, the mgd values of the first and second parts of the MTS and t time series were first 

extracted separately and then their absolute differences were used as similarity measures to quantify 

progressive reduction of tapping speed and tapping reaction time over the test trial, respectively. These 

two parameters are hence on denoted DTWMTS12 and DTWDT12. 

The last parameter is designed to measure the overall trend of tapping reaction time over the test 

trial by calculating the mean correlation coefficient for jackknife (leave out one observation) samples 

between t and the corresponding timestamp sequences in milliseconds. The resulting parameter is 

hence on denoted MCDTT. Finally, in order to reduce the dimensions of these seven parameters and 

obtain a single score, PCA was applied. The first PC accounted for 35% of the variance in the data and 

was used to represent the A-FATIGUE.  

2.4.4. Calculation of Automated Arrhythmia Score (A-ARRHYTHMIA) 

„Arrhythmia‟ in tapping is characterized by a serial irregularity in tapping performance, followed by 

an unpredictable behavior and abrupt changing patterns. In order to quantitatively measure tapping 

„arrhythmia‟, the following parameters were calculated. The first two parameters were based on the 

application of the ApEn method. To quantify the presence of serial irregularity in tapping speed and 

vertical tap distance over the test trial, ApEn (with m = 2 and r = 0.2) was applied to MTS and raw  

y-coordinate time series, respectively. This resulted in two parameters, namely AEMTS and AEY.  

In order to measure variation in distance between the two fields on the screen, the shimmer measure 

was calculated. Initially, a zero-crossing signal ZC1…n was constructed by finding the centre coordinate 

(xc, yc) between the two fields, followed by calculation of an Euclidean distance between centre 

coordinate and tap position (xt, yt) at each time interval i, using the following Equation: 

    

 
 

           
 
         

 
         

         
 
         

 
         

  (6) 

where i = 1…n and n is the total number of time frames. The ZC signal was defined in order to 

measure variations in distance and time from one button to the other. Rhythmic tapping is associated 

with a relatively periodic ZC signal whereas arrhythmic tapping is associated with irregular patterns in 

time as well as distance, reflecting the patient‟s disability to keep the same timing and distance 

frequencies over the test trial. A normalized shimmer signal Si was computed by subtracting the 
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absolute values of ZCi with the minimum value of the whole signal, followed by dividing the result 

with the absolute maximum value using the following Equation:  

   
              

        
 (7) 

The standard deviation of Si was calculated to measure the irregularity caused by distance variations 

during actual tapping, resulting in a new parameter denoted SDSHIM. Two more parameters used in 

computing „arrhythmia‟ were based on the variation in jitter and shimmer. Jitter (Ji) is a measure of 

irregularity computed using the time delays in the ZC signal as follows:  

   
              

        
 (8) 

where ti is the change in time between successive taps. Initially, variation in jitter and shimmer (VJS) 

was calculated to represent a tapping variation focusing on both the distance and time, using the 

following Equation: 

             (9) 

The mean and standard deviation of VJS were calculated and used in subsequent analysis. These 

two parameters are hence on denoted MVJS and SDVJS. 

A clinician, rating „arrhythmia‟ using visualized graphs, would rate a sample as normal if he 

observes periodic patterns. On the other hand, he would rate a sample as extremely severe arrhythmic 

if he notices aperiodic patterns. The new parameter called the cross-correlation between the slopes 

(CCBS) quantitatively measures this aperiodicity by initially creating an artificial perfectly-periodic 

slope (PPS) signal using the ZC signal and then mapping it to the actual tapping signal. A distance 

series dci signal was first calculated for taps i = 1…n using: 

       
           

          
  (10) 

where ZCavg is the average distance between the taps in the ZC signal. Going further, the time variable 

was kept constant and taken as the average time delay tavg between the taps in the ZC signal and a 

time series signal was computed for taps i = 1…n using: 

                (11) 

The PPS signal was then constructed using both distance and time series signals as follows: 

     
         
         

 (12) 

The original slope signal (OS) was then computed from the ZC signal by computing the slopes 

between the distance and time, using the following Equation: 

    
       

       
 (13) 

Figure 3 shows superimposition of these two signals for two representative test occasions rated with 

GTS as 0 (normal) and 4 (extremely severe), respectively. The case rated as normal has relatively 

perfect overlap between the peak data points of the two signals whereas the case rated as extremely 
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severe shows no overlap. In order to measure similarity between these two signals, initially a  

cross-correlation was computed and then the absolute mean value of the cross-correlation sequence 

was used as a measure to estimate rhythm in tapping.  

Figure 3. (a) The artificial perfectly-periodic slope (PPS) signal is superimposed on 

original slope (OS) signal for the case with V-GTS rated 0 (Normal). (b) The PPS is 

superimposed on OS for the case with V-GTS rated 4 (Extremely severe). The red line 

represents PPS and the blue line represents the OS. 

  

(a) (b) 

The last parameter to quantitatively measure „arrhythmia‟ was based on the cross-approximate 

entropy (Cross-ApEn) between PPS and OS. The Cross-ApEn quantifies the regularity of patterns in a 

pair of time series [25]. In contrast to ApEn, Cross-ApEn is applied to two signals and thus measures 

the dissimilarity between them. In addition, Cross-ApEn evaluates both spatial and temporal 

dissimilarities whereas the ApEn reflects only the temporal irregularity. Similarly as in the case of 

ApEn, the input parameters m and r were set to 2 and 0.2 (20% of the time series‟ standard deviation), 

respectively. The output of Cross-ApEn was used in the subsequent analysis and hence on denoted 

CABS. Finally, the PCA was applied to these seven parameters and the first PC accounting 35% of the 

variance in the data and was used to represent the A-ARRHYTHMIA. 

2.4.5. Calculation of Automated GTS Score (A-GTS) 

In order to classify ATP based on the five GTS levels, a simple logistic regression model was used 

as a classifier to map the extracted quantitative parameters to the corresponding V-GTS scores. 

Initially, the PCA was applied to all the extracted parameters in order to reduce their dimensions, 

without much loss of variance in the data. An important step when applying PCA is to identify and 

retain the important components that account for a large proportion of the total variance. In this work, 

the appropriate number of “significant” components was decided by selecting a cumulative percentage 

of total variance for which it was desired that the selected PCs should account for more than 70% of 

the total variance in the original data. Applying this criterion resulted in retention of the first 5 PCs to 

be used as predictors in the subsequent regression analysis (Table 2). Dimensionality reduction with 

PCA helps in operating with a smaller number of variables in the subsequent analysis as well as to 



Sensors 2013, 13 16976 

 

 

avoid the problem of multi-collinearity when using PCs as independent variables in the regression 

model. The output of the regression-based classifier was used to represent the A-GTS. 

2.5. Data Analysis 

Agreements between V-GTS and A-GTS were evaluated using the area under the receiver operating 

characteristics curve (AUC) and weighted Kappa statistics as major performance evaluation measures. 

A stratified 10-fold cross-validation (also known as rotation estimation) was applied to assess the 

generalization ability of the logistic regression classifier to future independent data sets. Spearman‟s 

rank correlation coefficients were used for assessing linear relationships between computed and  

visual scores. Reliability i.e., internal consistency of the four tapping dimensions was assessed using 

Cronbach‟s α test. Sensitivity to treatment interventions and disease progression over time was 

assessed by evaluating changes in mean automated dimension scores of LCIG-naïve patients over time 

i.e., at baseline and follow-up test periods, with linear mixed-effects models [26] using a restricted 

maximum likelihood estimation method with patient ID as a random effect and test period as a fixed 

effect of interest. The linear mixed-effects models were also used to (i) assess the ability to 

discriminate between healthy elderly subjects and the two patient groups, with subject ID as a random 

effect and group as a fixed effect of interest and (ii) assess differences in mean scores of the First PC 

relative to categories of the items #23–#25 of the UPDRS, with patient ID as random effect and 

category as a fixed effect of interest. Tukey post-hoc multiple comparison tests were performed to 

determine differences between subject groups. Inter-subject variability of the automated dimension 

scores was assessed using intra-class correlation coefficients.  

3. Results 

3.1. Correlations/Agreements to Visual/Clinical Scores 

The agreements between V-GTS and A-GTS were very good with a Kappa coefficient of 0.87  

(p < 0.001) and weighted AUC value of 0.86 (Table 3). The best agreements were seen at extreme 

classes that is class 0 (normal, AUC = 0.93) and class 4 (extremely severe, AUC = 0.95). Correlations 

between computed and visual scores were strong (Table 4). The mean scores of the First PC for each 

category of items #23–#25 of the UPDRS scale are displayed in Figure 4. 

Table 3. Assessments of GTS for the computer method and human rater. The computed 

scores are derived after applying 10-fold cross validation on the logistic regression classifier. 

 Computer 

0 1 2 3 4 Total/Weighted 

Human Rater 

0 14 6 0 0 0 20 

1 7 10 4 0 0 21 

2 2 5 7 6 0 20 

3 0 0 8 8 3 19 

4 0 0 0 3 14 17 

Total 23 21 19 17 17 97 

 AUC 0.93 0.82 0.74 0.85 0.95 0.86 
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Table 4. Absolute Spearman rank correlations between computed and visual scores.  

 A-GTS A-SPEED A-ACCURACY A-FATIGUE A-ARRHYTHMIA First PC 

A-GTS 1 0.69 0.58 0.56 0.72 0.92 

V-GTS 0.91 0.89 0.55 0.62 0.65 0.88 

V-SPEED 0.89 0.89 0.65 0.81 0.80 0.91 

V-ACCURACY 0.59 0.39 0.77 0.32 0.54 0.55 

V-FATIGUE 0.57 0.49 0.53 0.38 0.54 0.58 

V-ARRHYTHMIA 0.63 0.34 0.64 0.54 0.57 0.55 

Figure 4. Mean scores of First PC for each category of items #23 (Finger Tapping),  

#24 (Hand Movements) and #25 (Rapid Alternating Movements of Hands) of the UPDRS 

scale, corrected for individual subject variation using linear-mixed effects models. Y-axis: 

a high score means good function. UPDRS items: 0 (Normal), 1 (Mild slowing and/or 

reduction in amplitude), 2 (Moderately impaired), 3 (Severely impaired) and 4 (Can barely 

perform the task). P-values and % changes are shown with respect to category 0. UPDRS 

item #23: 0 (n = 2323), 1 (n = 3649), 2 (n = 2793), 3 (n = 687), 4 (n = 25). UPDRS  

item #24: 0 (n = 2532), 1 (n = 3964), 2 (n = 2441), 3 (n = 491), 4 (n = 49). UPDRS  

item #25: 0 (n = 2201), 1 (n = 4085), 2 (n = 2511), 3 (n = 598), 4 (n = 82). Note that the 

category 4 of the UPDRS items had small number of observations that were assessed in 

very few patients. 

 
** = p < 0.01, *** = p < 0.001. 

3.2. Reliability 

The internal consistency among the four automated dimensions was acceptable (Cronbach‟s α 

coefficient = 0.75), indicating that they measure the same underlying construct of the ATP.  
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3.3. Sensitivity to Change 

Mean computed scores of the LCIG-naïve patients from baseline to the 36-month follow-up are 

shown in Figure 5. Mean A-SPEED, A-FATIGUE and A-GTS scores improved to the first test period 

on LCIG treatment and this improvement remained statistically significant until month 24 (p < 0.001). 

The mean scores of A-ARRHYTHMIA dimension deteriorated but only at different test periods. In 

contrast, mean A-ACCURACY scores deteriorated throughout the study period along with the natural 

disease progression. 

Figure 5. Trends of mean computed scores of LCIG-naïve patients over the 36-months 

study period, corrected for individual subject variation using linear mixed-effects models. 

Y-axis: a high score for A-SPEED, A-ACCURACY, A-FATIGUE and A-ARRHYTHMIA 

means good function whereas a high score for A-GTS means severe. P-values are shown 

with respect to baseline (−3) test period. Test period: −3, baseline (n = 507); 0 (n = 506);  

3 (n = 468); 6 (n = 389); 9 (n = 417); 12 (n = 362); 18 (n = 296); 24 (n = 322);  

30 (n = 227); 36 (n = 108). 

 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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3.4. Ability to Discriminate between Subject Groups 

Figure 6 summarizes the mean scores of the four automated dimensions for each subject group. 

Significant differences were found between HE and patient groups in all four dimensions. In general, 

HE had better tapping dimension scores than advanced patients with a 4,590% difference in  

A-SPEED, a 244% difference in A-ACCURACY, a 464% difference in A-FATIGUE, and 273% 

difference in A-ARRHYTHMIA. There were no significant differences in tapping dimensions between 

patient groups, except for better A-ACCURACY in early patients i.e., Italian S and Italian F than in 

advanced Swedish patients with a difference of 96.9% and 95.1%, respectively (p < 0.05). The 

variability (the lower the variability, the closer to 1.0 the value of the intra-class correlation coefficient 

is) of dimensions in advanced Swedish patients was generally greater than that observed in HE  

(A-SPEED, 0.52 vs. 0.5; A-ACCURACY, 0.58 vs. 0.65; A-FATIGUE, 0.62 vs. 0.63; A-ARHYTHMIA, 

0.59 vs. 0.66). The trends of mean scores of the automated dimensions for the two hands did not differ. 

Figure 6. Mean scores of the four automated dimensions for each group, corrected for 

individual subject variation using mixed-effects models (black line: right hand; red line: 

left hand). Y-axis: a high score means good function. Group: healthy elderly, HE (n = 286); 

Italian S (n = 806); Italian F (n = 784); Swedish (n = 9,531).  

 

4. Discussion and Conclusion 

In this study, we showed that quantitative and objective measures of ATP on a touch-pad test 

battery are valid measures of upper limb motor performance in PD. Majority of these measures had 

strong and significant correlations to visually assessed and clinical scores, suggesting that they contain 

important elements of symptom severity information in ATP. The regression-based classifier could 
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classify the GTS of patients on a 0 (normal)–4 (extremely severe) scale comparatively well to the 

neurologist with a weighted Kappa coefficient of 0.87 and a weighted AUC of 0.86. The strongest 

correlations between computed and visual scores were seen when assessing GTS (0.91), „speed‟ (0.89) 

and „accuracy‟ (0.77). However, there were moderate and weak correlations when assessing 

„arrhythmia‟ (0.57) and „fatigue‟ (0.38), respectively. This possibly could be adjusted by adding more 

parameters measuring these two dimensions.  

The main idea behind defining the four dimensions was to measure the severity of symptoms during 

tapping tasks as being represented in the items #23–#25 of the UPDRS scale [23]. Using these items, 

the marked severity in bradykinesia is rated in the beginning of the severity scale (“1 = Mild slowing 

and/or reduction in amplitude”) whereas the increased variability in time-dependent effects such as 

fatigue and arrhythmia is rated in higher categories i.e., 2 (“Moderately impaired. Definite and early 

fatiguing. May have occasional arrests in movement) and 3 (“Severely impaired. Frequent hesitation in 

initiating movements or arrests in ongoing movement”). The proposed computer method combined the 

four dimensions in a data-driven approach where each dimension contributed to the assessment of the 

GTS score. When comparing mean computed scores across the 0–4 categories of the three UPDRS 

motor items, it was found that the mean scores of the First PC were significantly different. 

The rationale behind including the Italian and HE datasets in the analysis was to have data from 

more early PD patients and healthy elderly, respectively along with the advanced PD patients from the 

Swedish study. Although having small sample sizes, adding these two datasets would assist in 

interpretation of the presented results. However, the employment of linear mixed-effects models 

allowed us to use all the data available, account dependencies within- and between-subjects, and model 

mean computed scores, with subject ID as random effects [27]. In addition, these methods are 

appropriate for analyzing repeated measures (longitudinal) data by accounting intra-subject correlation 

of measurements [26]. On average, HE had significantly better scores than PD patients in all four 

dimensions. The highest difference was seen at the A-SPEED dimension indicating that „speed‟ 

measures are probably the most relevant ones when separating HE and early PD patients, which is 

expected because bradykinesia is a cardinal and an early symptom. Nevertheless when comparing 

early and advanced PD patients the only significant difference was observed at the A-ACCURACY 

dimension. In general, advanced Swedish patients had slightly better tapping results with the right 

hand than with the left hand. Sixty-two out 65 (95%) of them were right-handed. In a previous  

study [28], tapping scores (speed, calculated as number of taps per 20 s and accuracy, calculated as 

percentage of correct taps) were compared between patients with more affected right side (n = 36) and 

patients with more affected left side (n = 26). The results showed that the effect of handedness was 

more prominent than the effect of the side in which PD symptoms started i.e., they had better tapping 

speed and accuracy scores during tapping test with the right hand than during tapping test with the  

left hand.  

The PCA for the 24 parameters showed that the ATP could be explained by only 5 components 

(Table 2). Among the four dimensions, „speed‟ had the highest number of measures which more 

contributed to the First PC compared to other dimensions, demonstrating that „speed‟ is the key marker 

when assessing ATP of patients. The unsupervised approach of defining the First PC showed to 

correlate well with visual measures of ATP; V-GTS (0.88), V-SPEED (0.91), V-ACCURACY (0.55), 

V-FATIGUE (0.58) and V-ARRHYTHMIA (0.55). The within-subject variability on repeated 
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measures indicated that advanced PD patients had a higher variability in their A-ACCURACY and  

A-FATIGUE scores compared to HE subjects. Possible reasons for this greater variability include: 

greater heterogeneity of symptom profiles among and within advanced/fluctuating patients, 

improvement or deterioration of symptoms as a result of treatment changes and expected natural 

progression of symptoms during a relatively long time that is 36 months. 

The method also showed to be sensitive to treatment interventions. The significant improvements in 

mean A-SPEED, A-ACCURACY and A-GTS scores indicated that the method was able to measure 

motor symptom improvements with LCIG that were sustained over at least 24 months. These changes 

were also documented with the clinical rating scales [29]. In contrast to other dimensions,  

A-ARRHYTHMIA and A-ACCURACY did not improve reflecting the expected natural progression 

of PD over time. These results are in line with the results from our previous research which showed 

that in contrast to tapping speed, the tapping accuracy progressively deteriorated during the 36-months 

study period of advanced patients [30]. It was also found that there was an earlier deterioration of 

tapping speed compared to tapping accuracy indicating that worsening of tapping accuracy could 

become a marker for considering advanced PD treatments [28].  

A limitation of the present study is that the clinical evaluation of ATP is done by visual inspection 

of graphs and not by live/video observations of the patient‟s performance. However, even these kinds 

of observations may be biased as a result of the within- and between-clinician variability in ratings. In 

the study performed by Heldman et al. [31], it was shown that clinicians differentially weighed 

movement components of speed, amplitude and rhythm during video recorded tasks on items #23–#25 

of the UPDRS scale. This illustrates that the whole-body video sequence may give a clinical 

impression of symptoms, e.g. axial hypokinesia, that are not necessarily reflected in upper limb motor 

performance. In this study, the rationale for visualizing graphs of ATP to clinicians was to derive a 

target measure to be used in correlation/agreement analysis against computed measures in order to 

develop the method. The next step in our research would be to gather video recordings of patient‟s 

performance during tapping tests along with telemetry measurements of the test battery. The video 

recorded test occasions then will be clinically evaluated leading to assessment of the feasibility of 

visualizing graphs to clinicians as well as to validate the computer-based approach. However, it is 

important that the computed scores of ATP correlated well to visually assessed scores, were 

significantly different across UPDRS motor ratings of upper limb motor performance, had good 

internal consistency, had good ability to discriminate between healthy elderly subjects and patients in 

different disease stages, had good sensitivity to treatment interventions and were able to reflect the 

natural PD progression over time.  

PD is a multidimensional and complex disorder affecting both motor and non-motor symptoms. The 

overall well-being and the quality of life of PD patients were shown to be highly influenced by  

non-motor symptoms and weakly by motor symptoms [32]. Therefore, in order to obtain a reliable 

assessment of the degree of the patient‟s disability, it is essential to account for both these two types of 

information. The main aim of the telemetry test battery is to combine subjective measures, which 

target patients‟ perception towards their symptoms, and objective measures of fine motor function 

(tapping and spiral drawing [33]), which target the actual physiological functioning, into composite 

scores for representing different symptom severities as well as the global health condition and 

disability of the patient over week-long test periods [34]. The derived scores from this study provided 
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means for objective characterization of kinematics and dynamic performance during tapping tests in 

the test battery. The compliance with the telemetry test battery was previously assessed [20,21] as the 

number of completed test occasions per test period. The results indicated that patients were generally 

compliant with using this technology with median compliance of 93%.  

In summary, the method we developed for the alternate tapping test is appropriate to quantitatively 

and objectively assess the severity of ATP of PD patients. The clinimetric properties, i.e., correlations 

to visual ratings, reliability and sensitivity to treatment changes and to natural disease progression over 

time, of the method indicate that it can be included in tools for repeated and remote monitoring of the 

said fine motor performance. 
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