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Abstract: This article presents a new methodology for designing a hybrid control and 

acquisition system consisting of a 32-bit SoC microsystem connected via a direct Universal 

Serial Bus (USB) with a standard commercial off-the-shelf (COTS) component running the 

Android operating system. It is proposed to utilize it avoiding the use of an additional 

converter. An Android-based component was chosen to explore the potential for a mobile, 

compact and energy efficient solution with easy to build user interfaces and easy wireless 

integration with other computer systems. This paper presents results of practical 

implementation and analysis of experimental real-time performance. It covers closed 

control loop time between the sensor/actuator module and the Android operating system as 

well as the real-time sensor data stream within such a system. Some optimisations are 

proposed and their influence on real-time performance was investigated. The proposed 

methodology is intended for acquisition and control of mechatronic systems, especially 

mobile robots. It can be used in a wide range of control applications as well as embedded 

acquisition-recording devices, including energy quality measurements, smart-grids and 

medicine. It is demonstrated that the proposed methodology can be employed without 

developing specific device drivers. The latency achieved was less than 0.5 ms and the 

sensor data stream throughput was on the order of 750 KB/s (compared to 3 ms latency and 

300 KB/s in traditional solutions). 
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1. Introduction 

Advanced control, acquisition-recording and automation systems require extensive communication 

interfaces to integrate with external computer systems and highly ergonomic sophisticated user 

interfaces. Processing of user data is normally performed by either embedded solutions (microprocessors) 

or personal computers equipped with I/O cards. This approach requires specialised software and 

dedicated hardware drivers. 

Widely popular mobile devices, such as phones, tablets and personal digital assistants offer an 

alternative. Mass production makes them increasingly affordable and attractive as a component of 

acquisition, control and recording applications. These devices typically comprise several modules, 

including colour touch screens and a range of communication modules, such as Wi-Fi, Bluetooth and 

GSM/3G. They are compact, small and relatively resistant to shocks. Large amounts of data can be 

stored using Secure Digital (SD) cards while Universal Serial Bus (USB) interfaces allow external 

devices such as pen-drives and keyboards to be attached. Cameras have become a standard in these 

devices, but many also feature GPS modules or other sensor types such as compasses, accelerometers, 

etc. The devices are battery-powered and energy efficient. 

Mobile devices run their on-board operating systems with graphic libraries and user interface and 

also handle communications. Android has a special place on the operating system market due to its 

openness, which means that programmers can use free libraries. 

Building of an acquisition and control device from separate components would take much more 

time and expense than when using ready commercial off-the-shelf (COTS) components. Separate 

components are microprocessors, display panels, communication modules, operating systems, 

including their programming and testing. 

The COTS approach, however, faces two fundamental problems: operating system response time 

and latency of external communication. COTS designs are equipped with operating systems intended 

for general purposes but not optimised for short response times of single milliseconds or less. Such 

short times are required for the target applications considered in this article. Control and acquisition 

devices also rely heavily on the integration with external sensors, converters and actuators that require 

highly reliable communication with low-latency and, in most cases, large data streams. COTS devices 

tend to be closed hardware designs where access to classical Recommended Standard 232 (RS232) or 

Serial Peripheral Interface (SPI) ports can be very difficult or outright impossible and integration with 

sensors and actuators highly problematic. Most current COTS hardware is equipped with a host class 

USB interface [1] intended for external pen-drive memories, keyboards or mice. USB links can 

achieve high data exchange speeds, but are much harder to programme than SPI and RS232 interfaces. 

This paper proposes the new, hybrid architecture of acquisition, control and recording solutions 

involving Android-running COTS devices module (e.g., tablets or mobile phones). The sensor and 

actuator module is based on a single chip microcontroller, capable of short response times, equipped 

with analogue-to-digital (AD), pulse-width modulation, digital-to-analogue converters and digital I/Os. 

These two modules are proposed to be integrated with each other using a new concept involving USB 

with standard operating system (OS) components rather than developing dedicated hardware drivers. 

The presented system is targeted to acquire sensor data (from encoders, accelerometers, 

magnetometers, AD) installed on mechatronic constructions, handle relatively large sensor data 
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streams and provide real-time supervisory control (predictive controller, linear-quadratic controller) 

with very low latency. The described architecture is characterised by low cost and hardware simplicity 

through the use of standard 32-bit processors with an ARM/CortexM core with a built-in USB port. 

The proposed architecture also has a wide range of potential applications. Such a system can be a 

framework of embedded acquisition-recording devices, including energy quality measurements,  

smart-grids and medicine. Due to the cooperation of many software modules and interactions with 

operating system, there is a need to conduct an experimental real-time performance study. 

The main contributions of the paper include: 

 A novel hybrid hardware architecture for acquisition, control and recording devices involving 

Android-running COTS components with a direct USB link which allows one to avoid 

additional serial-USB converters; 

 A novel software architecture and the idea of using standard system libraries which allow one 

to avoid implementing dedicated hardware drivers for the USB link; 

 Detailed results of experimental research on the real-time performance of the proposed hybrid 

system which are important for closed-loop control applications such as robot controls. 

Detailed real-time throughputs results are important for acquisition and recording applications. 

The results of statistical analyses of various size packets are presented; 

 Proposed optimisation methods and their experimentally measured results. 

2. Related Work 

The general concept of hybrid acquisition-control systems using mobile COTS devices can be 

found in [2]. The use of COTS-based hardware solutions is widely discussed and advocated in [3] 

while some application designing methodologies for demanding applications are described in [4]. 

COTS solutions have been suggested even for military [5] and marine [6] applications. 

The selection of an Android-based design and some devices is justified in [7,8]. Detailed analysis of 

energy consumption of platforms based on the ARM/CortexA-core used in mobile applications can be 

found in [9]. Generally, these hardware platforms are highly energy efficient, for example the 

OMAP™ processor and Android OS implementations consume in the range of 1.5–2 W. 

The professional literature suggests SPI as the interface of choice for the sensor and actuator 

module [10] and these ports are present in microprocessors with the ARM/CortexA core. In a  

COTS-based solution, however, this might require an intervention in the electronics and make the 

design overly complicated. Other solutions for integration suggested by researchers have included 

designs based on an SD port and dedicated hardware with the built-in Secure Digital Card 

Input/Output standard [11,12]. These examples were demonstrated to convert data for a relatively slow 

ZigBee network with throughput on the order of 20 Kbit/s. A similar idea applied in medical 

equipment known as a body sensor is presented in [13]. SD-based solutions tend to have limited 

applications. Such placement of the acquisition module in an SD port not only eliminates the option to 

log large amounts of data on SD cards, but it can also be even physically impossible to implement in 

some devices where MicroSD ports are placed inside.  

Another study explores the potential of an audio interface using Dual Tone Multi Frequency 

(DTMF) tones to carry information about the status of sensors and to set actuator outputs [14]. The 
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connection can be wired or wireless using a built-in microphone and a loudspeaker. This approach 

suffers from limitations of DTMF coding/decoding methods and offers data streams of less than  

100 bytes of data per second. An audio solution is also shown in [15]. 

Many authors propose a Bluetooth-based wireless communication between COTS and sensor 

modules. Examples of medical applications using mobile equipment are shown in [16,17]. That 

additional Bluetooth link is relatively slow at transmission rates in the order of 20–50 Kbit (2–8 KB/s) 

and involves delays in the order of 30–60 ms. The analysis of Bluetooth connection in a mobile device 

and a robot-control application is discussed in [18] and results obtained for the Serial Port Profile 

protocol are adequate for other solutions. Simple applications of mobile devices for the remote control 

of home appliances are shown in [19]. An additional Universal Asynchronous Receiver Transmitter 

(UART) to Bluetooth converter necessary in the sensor/actuator module makes the hardware solution 

more complicated and increases power consumption. 

Google created the Android Development Kit (ADK) and official standard Android Open 

Accessory (AOA) for Android devices to cooperate with external devices [20]. AOA protocol version 

1.0 is intended to operate simple external accessory hardware such as buttons, relays, temperature 

sensors, etc. Such devices send little amounts of data. Data exchange time is not critical. Accessory 

hardware is a USB-host, and Android is a USB-device. The Application Programming Interface (API) 

accessory is available for programme use [21]. Two-chip solutions consisting of a USB-host controller 

MAX3421E and 8-bit microprocessor ATmega2560, e.g., [22] is the official platform and reference 

design. This platform is obtainable at the cost of about 80$. One of those chips plays the role of a 

converter between USB and microprocessor. It provides SPI interface from the microcontroller side. 

Therefore, it (still being the converter) introduces additional latency during transmission. Such a 

solution is not scalable as only one external device can connect with Android. 

AOA protocol version 2.0 was extended to operate Human Interface Device class (HID) and Audio 

Output class devices. The former is aimed at operating with devices such as keyboards, mice, 

joysticks, etc. This class operates with relatively small amounts of data (see also Section 4). The latter, 

Audio Output, allows handling big amounts of data. However, isochronous type transactions are used 

for it. During this transaction data packets error retransmission is not performed and bytes with errors 

are sent to the application. This kind of performance is sufficient for audio stream in which error bytes 

causes only crackling in loudspeakers. This performance is unacceptable for acquisition-control 

systems, as incorrect data can disturb the control system. 

AOA architecture makes application programming in Android OS easier, but increases the 

complications and the cost of the sensor/actuator module hardware. Moreover, an additional 

specialised USB host is much more expensive than a standard microcontroller and the performance 

fails to fully exploit the potential of USB. Real-time performance solutions based on AOA are 

presented in [23]. A one-way sensor data stream with 798 packets/s throughput was obtained. Each 

packet contained only 1 B of data. Such a result is equivalent to 1.25 ms of average packet 

transmission time. Another solution was presented in [24]. A multi-interface host chip FT311 and 

microcontroller was used. Data acquisition with a sampling period of 10 ms was obtained. 

The hardware architecture, named ―IOIO‖ by its founders, was also designed with the use of  

AOA [25], at an average cost of about 40$. This solution utilises a microprocessor equipped with an 

On-The-Go (OTG) class USB host. One study on this architecture [26] reports the relevant 
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performance at 3 ms one-way/6 ms closed control loop latency and just only 300 KB/s throughput. A 

similar example is presented in [27]. 

Various concepts of distributed measurement systems involving Android OS and data transmission 

into other computer systems were described in [28,29]. These systems are intended for telemetry, 

including the automotive market. Android-based platforms in remote control applications are discussed 

in [30]. None of these areas of usage, however, requires either short reaction times or involves large 

quantities of transmitted data. Examples of mobile COTS solutions used as life-logging devices are 

shown in [31]. 

3. Hardware Architecture  

The proposed hardware architecture is shown in Figure 1. This hybrid system consists of  

a sensor/actuator module and a control module. The sensor/actuator module involves a 32-bit  

system-on-chip (SoC) microprocessor responsible for performing analogue and digital measurements 

through external sensors (acceleration, orientation, touch, pressure, voltage, temperature, etc.). It can 

direct control mechatronic systems with proportional-integral-derivative (PID) type control, producing 

PWM, DA signals, and handling digital outputs. The module communicates with the high-level control 

module via USB without external converters. The high-level control module is a COTS tablet or a 

smartphone and is responsible for receiving sensors data, computing control set-points (where 

necessary), handle user interaction and can be used to send data to other computer systems. A tablet has a 

built-in Wi-Fi capability, an external GPRS/3G modem for web access and a Bluetooth option for  

local communication. 

Figure 1. Proposed hardware architecture. 

 

In the proposed architecture, a direct link without an external converter allows it to achieve better 

real-time performance since a converter (such as RS-USB converters or additional chip with  

USB-host) introduces additional latency in control loop. The sensor/actuator module is a USB-device. 

It allows one to achieve scalability. This makes it possible to connect several modules via a standard 

USB hub to Android. 

In the experimental study conducted by the author, an Archos 80 G9 tablet was used as the  

high-level control module, recording and visualisation [32]. It is equipped with a Texas Instruments 

OMAP4-class processor [33] with a Corex-A9 dual core and is clocked at 1 GHz. An integrated nVidia 

Tegra2 graphic accelerator is primarily intended for handling the graphical touch-sensitive liquid 
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crystal display (LCD) in order to relieve some of the main core processing power for data processing, 

including numerical computing for control purposes. 

The tablet is equipped with a Micro-SD port that takes Micro-SD or Secure Digital High Capacity 

(SDHC) mass storage cards up to 32 GB their capacity that can be used to record measurement results. 

Communications include two host-class USB 2.0 ports [1]. Normally, they are intended to handle 

external mass storage (e.g., pen drives) and GSM/GPRS/3G modems and offer 5 V power supply. 

Built-in wireless connectivity options include Wi-Fi and Bluetooth for an easy integration with other 

systems and sharing the recorded data or performance parameters, which can also be transmitted via 

mobile telephony using an external GPRS/3G modem. 

The sensor/actuator experimental module in the conducted research has a 32-bit STM32F4 SoC 

(system-on–chip) with a Cortex-M4 core [34]. In the context of the proposed solution, it has a built-in 

full-speed USB-UDP 2.0 port. The data exchange between the USB port and the programme is executed 

via dual-port first-in-first-out memory banks that are independent of the microsystem’s main memory 

banks. The author of this paper wants to point out that the cost of hardware was 20$ because a standard 

processor was used. 

The microsystem is equipped with a wide range of peripherals including an AD converter, 

quadrature encoder, SPI, I2C and UART ports and PWM controller. The AD converter allows 

performing measurements of sixteen channels at a sampling rate of 1 million samples per second 

(depending on the programmed resolution). During data exchange, these devices can use a 

multichannel direct memory access (DMA) controller, which takes the communication load off the 

main core. In the proposed solution, the DMA handles AD converter and UART and SPI ports. This 

gives the core more time for data processing operations. External sensors such as accelerometer, 

gyroscope and magnetometer are attached to the microsystem. 

A microsystem with a standard USB device port and a Cortex-M3 core (e.g., [35]), ARM7 core  

(e.g., [36]) or MIPS core (e.g., [37]) could provide an alternative. Eight-bit and 16-bit processors with 

USB device ports could also be used, but their computational efficiency is lower. Neither OTG nor a 

USB-host is required.  

4. Software Architecture 

In the proposed architecture, Android COTS performs the advanced supervisory control and 

visualisation/recording tasks run on the Android 4.0 system. This allows for a relatively easy graphical 

user interface (GUI) implementation with standard and free tools available from Google [20,38]. The 

application can be programmed in Java. The OS allows the use of wireless Wi-Fi, Bluetooth and 

GSM/3G connectivity. Ready-made web-handling libraries help in a relatively quick development of the 

sections of applications that are responsible for integrating the solution with other computer systems. 

One of the key advantages of the solution suggested here is that the parts of applications handling 

GUI and integration can be coded by programmers without specialised programming knowledge about 

either the operating system or specialised hardware drivers. This speeds up the development process 

and offers substantial overall cost savings. 

The main problem of such a solution is the handling of communications between the two main 

modules via USB. Indeed, the communication profiles supported as standard in Android environment 
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are simple ones, such as Mass Storage Device (MSD, handling pen-drives) and Human Interface 

Device (HID, for mice and keyboards). However, these profiles are not very useful in measurement 

and recording applications. HID uses interrupt and control transactions [1,39], which restrict the 

maximum datastream transmitted along the USB. 

In order to address this weakness the Communication Device Class (CDC [40]) was proposed and 

then implemented in the microsystem to handle the USB communication between the sensor/actuator 

module and the high-level control module in this solution. This particular choice was made for a 

number of reasons: CDC uses bulk transactions [1] that can be performed several times during the 

main one-millisecond frame on the USB. This offers an advantage in data stream size when compared 

to control and interrupt type transactions. Also a minor modification of the USB-CDC protocol stack 

in the microsystem made it possible for it to be programmed both as a CDC and as a general purpose  

bulk-class device, which affords a greater universality of the solution. Indeed, the same programme in 

the microcontroller can be handled by standard CDC software drivers available in many embedded 

operating systems (e.g., Windows CE/Mobile, Linux Embedded), as well as in general purpose 

systems (e.g., Windows XP/7, Linux). An option to use bulk transactions paves the way to a hardware 

solution using the Android system. 

The vendor of the processor offers a framework solution of an USB-CDC stack. During the 

development process, the stack was optimised to shorten the data packet handling time. Additionally, 

hardware-generated USB-frame stamps as well as hardware timer time-stamps are added to packets 

sent by the microcontroller to verify the data stream continuity. The microcontroller was programmed 

in C using a free GNU C compiler. USB interface handling accounted for 20% of the processor’s 

power, which means that it had 130 million instructions per second (MIPS) remaining for the 

application-related tasks involving signal processing and PID control. 

On the software side, the solution can be represented as several layers shown in a simplified form in 

Figure 2. The directions for sensor/actuator structure components module of SoC can be found in [2]. 

Figure 2. Software architecture of system’s key components. 

 

The proposed software architecture estimates that in supervisory control/logging module, direct 
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making reference to low level functions. Additionally, it facilitates user application programming  

and debugging. 

The programme was entirely written in Java language. API functions available in the operating 

system were employed to operate a direct USB connection. Basic operating sequences were grouped in 

several functions creating an object. User application searches for a handler attached to an appliance 

using vendor ID and product ID included in descriptor device. It is read by USB host driver standard 

procedures. Next, endpoint descriptors are searched in order to find proper numbers associated with 

user data directed IN and OUT. Bulk transfer IN/OUT functions were used for user data. Code 

sequences were carefully designed and optimized in terms of speed operation. 

Separate objects were created in order to construct binary OUT packets and interpret binary IN 

packets. Supervisory control functions may be inserted between their calls. Still, some other functions 

perform calculations for transaction times and record results in the files. Applications can be started 

automatically while connecting sensor/actuator modules with the USB port or upon request. 

5. Experimental Results and Discussion 

The proposed hybrid system was realized in the course of this study. The experimental testing 

programme covered the real-time performance of closed control loop time (CCLT) and sensor data 

stream performance. It comprised the whole, integrated system along the data path: sensor  

module—USB interconnection—user Android application—USB interconnection—actuator module 

(see Figure 3). A request packet was sent to the sensor/actuator module and the arrival of a full 

response packet was timed. Further in the paper, the whole packet exchange cycle is referred to as a 

transaction, while the transaction time is referred to as the CCLT. CCLT determines the control system 

capabilities and defines the time of execution of a closed control loop. It is a crucial parameter for 

control quality and it shows the speed with which the system can react to external events. 

Figure 3. Closed control loop path. 

 

In typical acquisition/control applications packets sent out from supervisory control module (OUT) 

are relatively short. They contain coded requests for the retrieval of sensors data and such a packet 
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tablet and intended for the DA, PWM converters or digital output lines. 
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Packets received (IN) contain sensors data from AD converter and input lines. Their length ranges 

from tens of bytes to several kilobytes and depends primarily on the number of AD channels measured, 

the sampling frequency and the user-specific needs. Exemplary packet consists of sensors data values: 

3D gyroscope (3  2 B), 3D accelerometer (3  2 B), 3D magnetometer (3  2 B), 12 AD channels  

(12  2 B), 16 digital inputs (2 B), time-stamp (2 B) and packet counter (2 B). Total size calculated is  

48 B. Short OUT and IN packets are normally used in control-type applications. In these cases the 

tablet receives measured values, computes control values (optionally) and sends set points to the 

sensor/actuator modules. Sensor data can also be stored in memory. Short packets allow short CCTL, 

which is important for the control loop, as smaller delays are introduced. 

The received sensor data stream is an important parameter in typical acquisition recording-type 

applications. The required sampling rates may be relatively high (50–500 kHz). The values can be 

stored in the sensor/actuator module and relayed on from the microcontroller to the tablet in larger 

packets. In these applications IN packets tend to be much longer, ranging between 1 and 8 KB. In this 

group of applications the tablet can still serve to compute control values or to identify the object 

parameters on-line. Such results can be sent on in the OUT packets as actuator set points. 

Further experimental results, including CCLT and sensor throughput, were obtained for the 

following packet sizes: 

 Input packets (IN): {48, 100, 200, 500, 750, 1000, 1250, 1500, 2000, … + n  500, … 8000} B; 

 Output packet (OUT): 16 B; 

 Number of repeats: 10,000. 

During all of these experiments, standard system processes were running on the Android OS. A 

statistical parameter called SD was also computed to describe the distribution of the closed control 

loop time (CCLTs) measured. The smaller the SD, the lower the jitter and better the real-time stability 

is. This is what actually matters for control loop quality. SD was computed using a standard deviation 

formula. It is important to note that the CCLT measured distributions did not follow the Gaussian 

pattern and therefore SD cannot be equated with standard deviation. 

5.1. Experimental Real-Time Performance of Direct Implementation 

This section focuses on experimental results obtained from a direct software implementation. The main 

part of the application in Android OS comprises a loop containing the codes of sending and receiving 

packets via USB and the function measuring CCLTs. Such an architecture is characterised by relative 

simplicity of realisation. The obtained results create a starting point for conducting further optimisation. 

Detailed time performance of 48-B sized IN packets and their analysis are shown in Figure 4. This 

operational point is typical of control applications. The average CCLT was 370 µs. Most of the 

transactions were executed within 350–400 µs (Figure 4c,d) and 99.76% were carried out within  

1 ms. The SD parameter was 600 µs and the minimum CCLTs were contained within 230–280 µs. 

These minimum values were only sporadic. There were isolated cases of transactions performed at 

around 20 ms, but they constituted a negligible share of the total and can be explained by the system 

pre-empting the application. 
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It is worth noting that the obtained results are satisfactory and range below 1 ms cycle of the main 

USB frame. They are close to theoretical minimum for USB 2.0 full-speed connection. The average 

received sensor data stream was 130.6 KB/s, which is a measure of the system’s capability in 

acquisition/recording applications while the datastream sent averaged at 43.5 KB/s. 

Detailed real-time performance of 200-B sized IN packets are shown in Figure 5. A larger size causes 

longer transaction times as most of them were completed within 400–500 µs (Figure 5c,d). The average 

time was 480 µs, SD equalled 490 µs and 99.64% of all transactions executed within 1 ms. Just as with 

shorter packets, there were isolated CCLT cases on the order of 20 ms. A longer IN packet also resulted 

in a larger average sensors datastream received at 415 KB/s.  

Figure 4. Experimental results of CCLT for packets IN = 48 B. (a) Recorded CCLTs.  

(b) Enlargement of selected section. (c) CCLT histogram. (d) Selective histogram enlargement. 
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Figure 5. Experimental results of CCLT for packets IN = 200 B. (a) Recorded CCLTs.  

(b) Enlargement of selected section. (c) CCLT histogram. (d) Selective histogram enlargement. 
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With the IN packet size increased to 500 B the average sensors datastream received grew to  

626 KB/s (Figure 6). The average CCLT is 800 μs and most transactions executed within 700–800 µs 

(Figure 6c,d). SD equals 510 µs. 98.14% transactions execute within 1 ms and 99.85% in less than 2 ms. 

Figure 6. Experimental results of CCLT for packets IN = 500 B. (a) Recorded CCLTs.  

(b) Enlargement of selected section. (c) CCLT histogram. (d) Selective histogram enlargement. 
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Packets of 2500 B transacted on average in 3.52 ms. The SD parameter equalled 0.79 ms. 99.36% 

transactions executed within 4 ms and 99.82% within than 5 ms. A detailed analysis (Figure 7) shows 

very long delays of 60 ms, as a result of pre-emption by the OS. Similarly, high values (50–60 ms) 

were also observed in other experiments. The average sensor data stream received was 714 KB/s. 

Figure 7. Experimental results of CCLT for packets IN = 2500 B. (a) Recorded CCLTs. 

(b) Enlargement of selected section. (c) CCLT histogram. (d) Selective histogram enlargement. 
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The largest IN packet size was 7500 B (Figure 8) and it produced an average sensor data stream of 

776 KB/s. The average CCLT was 9.66 ms and SD = 0.52 ms. 75.15% transactions executed below  

10 ms and 99.83% below 11 ms. 

Figure 8. Experimental results of CCLT for packets IN = 7500 B. (a) Recorded CCLTs. 

(b) Enlargement of selected section. (c) CCLT histogram. (d) Selective histogram enlargement. 

0 2 4 6 8 10

x 10
4

5

10

15

20

25

30
16B/7500B/x10000  777.78[kB/s], in=776.12,out=1.66

p
a
c
k
e
t 

th
ro

u
g
h
p
u
t 

[m
s
/c

]

(thrT
max

1/2/3=25/25/17)

[ms]

3.1 3.2 3.3

x 10
4

9

9.5

10

10.5

11

zoom

(thrT
sr

=9.66,s0.52,T
min

=7.20)

[ms]

[m
s
/c

]

5 10 15 20 25 30
0

2000

4000

6000

8000

10000
empir. prop. den.

o
c
c
u
r.

[ms]

[p:10]

5 10 15 20
0

2000

4000

6000

8000
zoom T<20.0[ms]

[ms]

T<=10.0ms:75.150%, T<=11ms:99.830%

(a) (b)

(c) (d)  

A summary of the real-time performance of the USB, depending on packet size, is included in 

Figure 9. There were 10,000 repeats for each packet size. They are listed in Section 4. The chart in 

Figure 9a depicts minimum times, averages, the sums of average times and SD (average + SD), third 

maximum time recorded (max3) and the maximum time. By eliminating the two top values, max3 

offers a useful indication about the longest CCLTs in this configuration. 

Figure 9. Experimental results of CCLT depending on packet size. (a) min, mean,  

mean + SD, max3, max of CCLT. (b) Enlargement of low time range. 0 2000 4000 6000 8000
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There is almost a proportional increase in the average, minimum and the average + SD times as the 

packet size increases. An enlargement of the graph is presented in Figure 9b to reveal small packets, 

which are particularly interesting in the case of dedicated control applications. 
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There were isolated cases, when the application was pre-empted for very long periods, in the order 

of 50–60 ms, which caused long delays. There was, however, no repeatable pattern to these cases and 

they were only observed in some experiments. Nevertheless, they should be taken into account in the 

software of the sensor/actuator module to ensure that the continuity of the recorded sensor data stream 

is maintained. Specifically, the size of the data storage buffer should be calculated as the time of the 

worst case multiplied by the planned data stream. The longest delays that repeated themselves in each 

experiment were in the range of 20–25 ms. In each experiment they were observed in several up to 20 

of the 10,000 repeats. 

A summary of data streams received depending on the IN packet size is shown in Figure 10. The 

maximum data stream value is 776 KB/s and it is achieved with packets of 8000 B, but the packets of 

approximately 500 B reach that result with their corresponding data stream of 705.5 KB/s. For the 

author of this paper this is an important experimental observation. Performance within IN packets size 

1000–2000 B is sufficient to achieve 90% capacity and, at the same time, it allows one to maintain 

CCLT at the level of 1 ms (see Figure 9b), which is crucial for control-type application. 

Figure 10. Average sensors datastream, in KB/s, depending on the size of packet received. 

 

5.2. Architecture Optimisation and Experimental Results 

Investigation and measurements of a direct execution of the application (as shown in Section 4.1) 

reveal certain issues manifested by sporadic, but very large maximum transaction times (50–60 ms). 

Although these values are very rare and do not occur in all experiments they determine the worst case 

of the system’s operation. They are also negative from the perspective of implementing of a closed 

control loop including Android system. 

To minimise the maximum time (the worst case) an optimisation of the application’s software 

architecture is proposed. A separate thread is dedicated only to handle the USB link and its priority is 

increased, which is expected to minimise the risk of the thread being pre-empted by the OS. 

Standard Android OS processes are prioritised between 1 and 10. The default priority for most of 

the applications and threads is 5. There is a number of ways how to manipulate these priorities, 

including using standard mechanisms available in Java. This particular thread is set at the maximum 

priority 10. A summary of time performance results after the optimisation, depending on IN packet 

size, is shown in Figure 11a. 
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The optimisation produced considerable reductions in the worst-case CCLTs from very high at  

50–60 ms to 20–28 ms (Figure 11a maximum CCLT cyan curve). The average CCLTs did not  

change much. 

A summary of the average sensor data stream received is shown in Figure 11b. The values are 

comparable with those obtained before the optimisation, e.g., with 500 B, packets the data stream was 

641.3 KB/s and with 8000 B packets—779.3 KB/s. 

Figure 11. Experimental results after the optimisation. Maximum priority set using Java 

environment functions. (a) min, mean, mean + SD, max3, max CCLT depending on packet size. 

(b) Sensors datastream depending on packet size.  
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Thread priorities can also be manipulated using the Android system functions. Results measured in 

a software implementation achieved in this way are shown in Figure 12. Again, the priority was set to 

the maximum of 10. 

Figure 12. Experimental results after optimisation. Maximum priority set using Android 

OS functions. (a) min, mean, mean + SD, max3, max CCLT depending on packet size.  

(b) Sensors datastream depending on packet size. 
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This optimisation variant produced a further CCLT reduction in the worst cases, especially with 

small packets (Figure 12a maximum CCLT cyan curve). Transactions with packet sizes 48 B, 100 B, 

200 B (IN) never exceeded 15 ms. This is a very important result for specialised control applications, 

because it determines the maximum timing of a closed control loop. 
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A detailed example of a transaction with packets of 48 B is shown in Figure 13. The average CCLT 

went down slightly to 360 µs, but the gain in SD was much more significant at 320 µs (compared to 

490 µs without optimisation). This means that the times are far more stable (less jitter). 99.84% 

transactions executed within 1 ms. 

In large-sized IN packets above 1000 B differences, the results obtained from optimisations 

achieved with priority manipulated by Java or Android mechanisms are negligibly small. 

Figure 13. Experimental CCLT measured after the optimisation. Packet size IN = 48 B.  

(a) Recorded CCLTs. (b) Enlargement of selected section. (c) CCLT histogram.  

(d) Selective histogram enlargement. 
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5.3. Multithread Software Architecture 

The author proposes an alternative for USB-handling software architecture in the Android OS. In 

this concept the USB communication module comprises two threads, one of which is dedicated to 

sending and the other to receiving the packets of data. This architecture offers an advantage of an 

easier decomposition of tasks, which may be useful in certain types of applications. In many areas of 

use, this can simplify the application building process and, therefore, streamline the development and 

programming stages.  

The results of experimental testing of this type of architecture are shown in Figure 14. Both threads 

were set to the highest priority using functions available in the Android OS. With small packets  

(48–200 B) the time performance is on a par with the previous solution (Section 4.2). For example, the 

average IN = 48 B packet exchange time was 360 µs and SD = 0.28 ms. 99.82% transactions executed 

within 1 ms. Maximum times (worst case) remained up to 15 ms. 

Unexpectedly, however, the time performance with packets larger than 500 B was slightly worse, 

i.e., 3%–5% longer than in a single-thread architecture. It was caused by the load put on the processor 

by the need to handle an extra thread. 
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Figure 14. Experimental results depending on packet size measured after optimisation. 

Dual-thread architecture. (a) min, mean, mean + SD, max3, max CCLT depending on 

packet size. (b) Sensors datastream depending on packet size. 
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In terms of the throughput of the sensor data stream received the dual-thread architecture was slightly 

outperformed by the single-thread solution. The largest packets achieved a throughput of 686 KB/s. 

6. Conclusions 

This paper has presented a novel concept and the results of experimental real-time performance of 

closed control loop time in a hybrid acquisition-control solution. It consists of a 32-bit microsystem 

with an ARM core and a COTS tablet running the Android OS. A USB links the two components 

without any additional converters. Methods for software architecture optimisation were presented as 

well as their experimentally measured performance.  

The new concept shown in the paper was practically realized. It can be treated as a general 

framework. The experimental study shows that average closed control loop times (CCLTs) on the 

order of 370 µs in data exchange are feasible. Thereby, this paves the way towards control and other 

real-time applications where the average response time required is less than 0.5 ms. Hence, the 

solution produces an average continuous sensor data stream on the order of 780 KB/s. This allows an 

application in acquisition-recording devices, for example with sampling measurement data in eight 

sensor channels at the frequency of 45 kHz. 

Moreover, the solution implemented during the study was mainly intended to control mechatronic 

constructions but its areas of use go far beyond that. Indeed, the proposed solution has universal nature 

due to its compactness and low development cost that is reduced to a single-chip microsystem, a direct 

USB link and no additional specialised integrated systems or converters. In terms of the software, 

typical programming libraries available from the operating system were employed without any need to 

develop specialised drivers for the device. The software can be adapted for applications in the areas of 

automation, robotics, personal medical devices, smart-grids and wind farms. A COTS device running 

Android lends itself to easy integration with other computer systems via wireless (Wi-Fi, Bluetooth) or 

mobile (GSM/3G) connectivity. The results obtained are relevant to other SoC microsystems with 

ARM, Cortex, MIPS, AVR32 cores or FPGA systems with a USB device port macrocell. 

In further work the author plans to focus on and closely look at CCLT investigation and sensor data 

steam performance of an acquisition/control network using multiple sensor/actuator modules. 
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Additionally, a potential for a future software architecture optimisation will be explored to minimise 

the worst case CCLT. Native C/C++ code is envisaged, as it has shorter execution times than Java, but 

requires additional shared modules in the Android environment. The author is also planning to use the 

proposed architecture dedicated to acquisition-control system for medical robot. 
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