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Abstract: A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast 

(~40 dB) is demonstrated along with its sensing applications. The device operates in 

reflection mode and consists of a centimeter-long segment of properly selected PCF fusion 

spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined 

with its modal properties allow high-visibility interference patterns. The interferometer is 

suitable for refractometric and liquid level sensing. The measuring refractive index range 

goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10
−5

. 
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1. Introduction 

Due to their compactness, simplicity and high sensitivity, optical fiber modal interferometers have 

gained considerable attention by the sensor community. Modal interferometers exploit the relative 

phase displacement between two modes, typically two core modes or a core and a cladding mode. To 

fabricate a modal interferometer one needs a mechanism to couple light from the core into two or more 

modes and another mechanism to recombine them. To this end, different approaches have been 

proposed including for example, combination of different optical fibers [1–3], tapering techniques [4–6], 
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or long period gratings [7,8]. Another approach consists of collapsing the voids of a photonic crystal 

fiber (PCF) over a microscopic region [9–11]. Such a process can be carried out by fusion splicing a 

PCF with a standard optical fiber [10,11]. The advantages of PCF modal interferometers built via voids 

collapsing are compactness, low temperature sensitivity, broad operation wavelength range, and high 

stability over time. All these properties are important for unambiguous measurement of the 

interferometer phase, and hence, the parameter being sensed. 

The applications of optical fiber modal interferometers as sensors basically depend on the types of 

modes that participate in the interference. For example, cladding modes are sensitive to the external 

environment, thus diverse sensors can be implemented such as refractive index sensors and 

refractometers [2–8,10,11]. To enhance the sensitivity of such sensors it is desirable that the cladding 

mode is powerful, as this is the sensing mode. A good indication of the power of the interfering modes 

in a modal interferometer is the visibility or fringe contrast of the interference pattern. For instance, a 

relatively weak cladding mode gives rise to interferometers with low visibility. In modal 

interferometers based on standard fibers it is difficult to control the power of the interfering modes, 

hence the fringe contrast of the interference pattern. 

In this paper we propose a PCF mode interferometer for index and level sensing. Our device is 

simple, robust, compact and reproducible. The interferometer operates in reflection as well as in 

transmission mode and consists of a centimeter-long stub of commercially-available PCF fusion 

spliced to standard optical fiber (SMF-28). Two identical collapsed zones in the PCF combined with 

the PCF geometry allow the efficient excitation and recombination of a core and a cladding mode in 

the PCF. This makes the device reflection spectrum exhibit well-defined interference patterns with a 

record fringe contrast (in excess of 40 dB). In our devices changes in the refractive index or  

liquid-level cause a detectable shift in the interference pattern. The index of refraction can also be 

measured by monitoring the power at a fixed wavelength. The refractive index resolution of our 

interferometers is between ~1.6 × 10
−5

 and ~7 × 10
−6

, thanks to the high visibility of the interference 

pattern. The maximum measuring range goes from 1.33 to 1.43. We believe that the device proposed 

here can be utilized in many refractometric-based sensing applications. 

2. Device Design and Working Principle 

The cross section of the PCF used to fabricate the interferometers is shown in Figure 1. The PCF is 

commercially available, has six-fold symmetry in the void structure and is known as large-mode-area 

(LMA-10) PCF. The parameters of such a fiber are the following: core size diameter, 10 μm, average 

diameter of the voids, 3.1 μm, and average separation between the voids (pitch), 6.6 μm. The modal 

properties of this type of PCF have been reported elsewhere [12]. The fabrication of the devices here 

proposed only involves cleaving and fusion splicing; this ensures high reproducibility and low cost. 

Any commercial cleaving and splicing machines can be used. If the SMF and the LMA-10 PCF are 

spliced with a default program set in the machine for splicing single- or multi-mode fibers, the PCF’s 

air holes will entirely collapse over a length of a few hundred micrometers [11]. However, by adjusting 

the intensity and duration of the arc discharge of the fusion process the length of the collapsed zones 

can be controlled [13]. To achieve interferometers with high visibility both splices need to be identical 

(unequal splices give rise to devices with completely different properties, see Reference [14]). It was 
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found experimentally that the length of the collapsed zones could be from ~150 µm to ~220 µm, other 

lengths gave rise to interferometers with lower visibilities. 

Figure 1. Drawings of our interferometer showing two possible terminations and 

schematic representation of the interrogation set up. FOC stands fiber optic circulator; 

SMF for single mode fiber, L for PCF length, and l is the length of SMF at the distal end. 

The micrographs show the PCF cross section and details of the PCF-SMF junction. The 

broadening of the beam when it enters the collapsed region is illustrated. 

 

The proposed interferometer is sketched in Figure 1 along with a schematic diagram of the 

interrogation system. The interferometer was intended to operate in reflection mode. To avoid issues 

imposed by the reflection of cladding modes in a PCF, see for example [10], a short section of SMF 

was spliced to the PCF at the distal end. In this way the PCF voids at the end were completely sealed. 

In this regard, our devices are different to those reported in [15]. The length of the SMF at the distal 

end can range from ~2 mm to tens of centimeters and even several meters. The SMF at the tip must be 

cleaved and coated with a highly reflecting mirror. Although a cleaved fiber end without any coating 

can also be used as a mirror (due to Fresnel reflection). 

Note from Figure 1 that the outer diameters of the SMF and the PCF in our interferometer are 

permanently aligned. This means that there is axial symmetry in the structure. On the other hand, the 

collapsed zones in the PCF cause a broadening of the beam when it propagates from the SMF to the 

PCF [10,11]. The broadening of the beam combined with the axial symmetry and the modal properties 

of the PCF are what allow the excitation (and recombination) of modes that have similar azimuthal 

symmetry [14]. The modes excited in the PCF have different effective indices (or different propagation 

constants), thus they travel at different speeds. As a result, the modes accumulate a phase difference as 

they propagate along the PCF. Due to the excitation and recombination of modes in the device, the 

reflection spectrum is expected to exhibit a series of maxima and minima (interference pattern). When 

two modes participate in the interference the transmitted or reflected intensity (I) can be expressed as: 

 (1)  .cos2  2121  IIIII
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In Equation (1) I1 and I2 are, respectively, the intensity of the core mode and the cladding mode and 

ΔΦ = 2πΔnL/λ is the total phase shift. Δn = nf − nc, nf and nc being, respectively, the effective 

refractive index of the core mode and the cladding mode. L is the physical length of the PCF and λ the 

wavelength of the optical source. The fringe spacing or period (P) of the interference pattern is given 

by P = λ
2
/(ΔnL). The maxima of the interference pattern appear at wavelengths that satisfy the 

condition ΔΦ = 2mπ, with m = 1, 2, 3… This means at wavelengths given by  

 (2) 

The fringe contrast or visibility (V) of a modal interferometer is an important parameter, particularly 

when the interferometer is used for sensing applications. Typically, higher visibility is desirable since 

it leads to larger signal-to-noise ratio and more accurate measurement. The visibility of a two-mode 

interferometer can be calculated by the well-known expression: V = (Imax − Imin)/(Imax + Imin), where 

Imax and Imin are, respectively, the maximum and minimum values of I given in Equation (1). According 

to the definition and Equation (1) V can be expressed as [16]:  

 (3) 

where k = I1/I2. Many research groups prefer fringe contrast (expressed in dB) instead of visibility. The 

fringe contrast (FC) is defined here as FC = −10log(1−V). In Figure 2 we show the dependence of the 

fringe contrast on k along with the theoretical interference pattern of device with L = 10 mm for two 

values of k. It can be noted that the fringe contrast increases as k approaches to 1, i.e., when the two 

modes that participate in the interference have equal intensities. 

Figure 2. Fringe contrast in a mode interferometer as a function of k or the intensity of the 

cladding mode to that of the core mode ratio. The inset shows the theoretical reflection 

spectrum in the case of k = 0.4 (dotted line) and k = 0.96 (solid line). 

 

In our interferometer the length of the PCF can be controlled very precisely while the wavelength of 

the optical source can be chosen. The types of modes that participate in the interference and their 

intensities, i.e., Δn and I1 and I2 can eventually be controlled with the PCF geometry. Thus, it seems 

possible to fabricate mode interferometers with specific periods and visibilities. 

.L  m mn

,)1(2 kkV 
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It is important to point out that fusion splicing machines can be programmed to automatically align 

an SMF and an LMA-10 and apply the exact amount of heat to join permanently the two fibers 

together, thus ensuring high reproducibility. A collection of devices were fabricated with a commercial 

fusion splicing machine (Ericsson FSU 955) under the same splicing conditions. To interrogate the 

interferometers, light from an LED (peak power of 10 mW) was launched to them and the reflected 

light was fed to an optical spectrum analyzer by means of a fiber optic circulator. Figure 3(a) shows 

the normalized reflected power of a 12 mm-long interferometer observed for different lengths of SMF 

at the distal end. In these cases the light was bounced off the cleaved end by Fresnel reflection. The 

section of SMF at the distal end was coated with index matching gel to absorb or scatter possible 

cladding modes in the SMF. It can be noted that the length of SMF at the end does not affect the 

performance of the interferometer. It is important to mention that the reflected power at the minima 

was on the order of picowatts level due to the low reflectivity (less than 4%) of the cleaved fiber end, 

the insertion losses of the interferometer (around 6 dB). In a practical application the unprotected end 

can be an issue, but it can be overcome with a highly reflecting mirror. Figure 3(b) shows the spectra 

of a 16 mm-long interferometer when a commercially available fiber optic reflector (OZ Optics) was 

spliced at the distal end. The fringe contrast in this case exceeds 40 dB (V = 0.9999) which is 

considerably higher than that of any other mode interferometer reported until now. The modal 

properties of the PCF employed and the configuration of the device largely contributes to achieve  

well-defined interference patterns and high fringe contrast. For comparison, the transmission spectrum 

of the device was measured; it is shown in Figure 3(b). It can be noted that the period of the 

interferometer in both reflection and transmission modes is the same, however, the visibility is 

considerably higher when the device operates in reflection mode. We believe that these properties are 

due to the fact that the PCF cladding mode does not experience double pass along the PCF since it is 

not reflected from the mirror. The core mode does experience double pass in the PCF. Due to the two 

identical collapsed regions in the PCF and the short section of SMF at the distal end our device 

behaves in a completely different manner than that reported in Reference [15]. 

Figure 3. (a) Normalized reflection of a 12 mm-long interferometer for different lengths of 

SMF at the distal end. (b) Normalized transmission and reflection spectra of a 16 mm-long 

interferometer when a highly reflecting mirror was used. In all cases the external medium 

was air and the PCF was LMA-10. 
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3. Results and Discussion 

The excited cladding mode reaches the PCF-external-medium interface and becomes highly 

sensitive to the external refractive index (RI). Thus the interferometer can be exploited for 

refractometric sensing. The presence of a liquid or a layer on the PCF will change solely the effective 

index of the cladding mode since the core mode is completely isolated and it does not interact with the 

external medium. According to Equation (2) changes in nc hence in Δn, will make λm to shift by Δλm 

provided that L is kept fixed. The position of the maximum or maxima of the interference pattern can 

be determined very accurately even with a low-cost spectrometer. To avoid a Δλm = mP with m an enter, 

i.e., shifts that are a multiple of the period of the interference pattern, compact devices were be fabricated. 

Figure 4(a) shows the reflection spectra (using the commercial reflector mentioned above) of a  

12 mm-long device for indices in the 1.330–1.430 range. It can be noted that the shift in the whole 

measuring range is less that the interferometer period for which there is no ambiguity in the 

measurements. Note also that whatever the external index the interference pattern remains well defined 

and that the visibility does not change. Figure 4(b) shows the observed shift in our 12 mm-long 

interferometer as a function of the external index. It should be pointed out that a shift of 0 nm was 

assumed when the device was in water (RI of 1.333). 

Figure 4. (a) Interference pattern of a 12 mm-long interferometer immersed in different 

indices. (b) Corresponding interference pattern shift versus RI. The measurements were 

carried out at room temperature with fluctuations on the order of 2 °C. 

  

Like most fiber-based RI sensors, the maximum sensitivity of our interferometer is for higher 

indices. For example, the shift of the interference pattern when the external index changes from 1.420 

to 1.430 is ~12.70 nm, see Figure 4(b). This means that the sensitivity in that RI range reaches a value 

of ~1270 nm/RIU (RIU refers to refractive index units). The resolution of our interferometer, i.e., the 

smallest RI change it can detect, will depend on the minimum shift Δλm that can be detected. With 

simple peak-tracking algorithms [17] or by performing a Fourier transformation [18] Δλ on the order of 

~20 pm can be resolved; this means that a resolution of our RI sensor can reach ~1.6 × 10
−5

. Such a 

resolution is an order of magnitude higher than that of interferometers built with LMA-8 PCF [11]. In 

addition, the present interferometer is between 3 to 10 times shorter than that reported in [11]. The 

results here presented suggest the importance of the PCF design and the configuration in which the 

interferometer operates. 
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Figure 5(a) shows a close up of the minima of the interference patterns of a 12 mm-long 

interferometer for three RI values that are close to each other. The shift is minimal but quantifiable. If 

we monitor the power of the wavelength located at the point of maximum slope, or e.g., at  

λ = 1,554.8 nm (see the arrow in the figure) and by taking 1.4120 as reference, we can see that an 

increment of 5.8 × 10
−4

 in the refractive index causes a transmission change of nearly 1.4 dB. Large 

changes in the reflection are due to the high fringe contrast of the interferometer. Thus, a resolution of 

~7 × 10
−6

 can be achieved if transmission changes of 0.01 dB can be resolved. The resolution can be 

even higher for indices in the 1.420–1.430 range. 

Figure 5. (a) Reflection spectra for three RI values that are closed to each other.  

(b) Reflection changes observed at λ = 1,554.8 nm as a function of the external RI. The 

interferometer was 12 mm long. 

  

The refractive index sensitivity of our interferometers can be exploited to form a liquid level sensor. 

We observed that the shift of the interference pattern of our interferometers was dependent on the 

fraction of the length of the PCF that was immersed in water (or any other liquid). In Figure 6(a) we 

show the interference patterns exhibited by a device (L = 11 mm) operating in reflection mode and 

immersed partially or totally in water. The remaining section of the PCF was in air. Note that the shift 

of the interference pattern increases with the percentage of the length of the PCF that is immersed in 

the liquid. Figure 6(b) shows the calibration curve. Our liquid-level sensor showed a large linear range 

with sensitivity of 0.11 nm shift per millimeter of PCF immersed in water. The sensitivity may be 

higher for liquids with high index as the shift is more prominent for liquids with high index of 

refraction, see Figure 4(b). As liquid-level sensors our interferometers can be an alternative to those 

based on gratings [19,20] or other approaches that are a bit more complex [21]. 

It is important to mention here that the above results were obtained at a fixed temperature with 

variations on the order of 2 °C. Higher temperature fluctuations may affect the performance of our 

interferometers as temperature modifies the propagation constant of the interfering modes and causes 

the interference pattern to shift. Our interferometer has a temperature sensitivity of ~9 pm/°C and thus 

temperature fluctuations of around ~6 °C can be tolerated to achieve the refractive index resolutions 

mentioned above. Another factor that can affect the resolution is the stability of the optical source 

during the measurements. Highly stable, single frequency and tunable lasers for the telecom 

wavelength range are commercially available. In addition, power fluctuations can be compensated 
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easily. RI measurements in a fixed or controlled temperature environment are also feasible. Therefore, 

the aforementioned resolutions are reachable and the real-world applications of the interferometers 

here presented are promising. 

Figure 6. Reflection spectra of an interferometer at different percentages of the length of 

the PCF immersed in water and the corresponding calibration curve. The PCF length, L, 

was 11 mm. 

  

(a) (b) 

4. Conclusions and Outlook 

A compact, robust and simple photonic crystal fiber interferometer that operates in reflection mode 

was proposed for refractive index and liquid-level sensing. The device consists of a short section (in 

the 10−12 mm range) of commercially available PCF fusion spliced to single mode fibers. During the 

splicing process the voids of the PCF are intentionally collapsed over a microscopic region.  

The collapsed zone introduces an axial offset, and consequently, a mode field mismatch which allows 

the excitation and recombination of core and cladding modes in the PCF. Since the modes propagate at 

different phase velocity they accumulate a phase difference. As a result, the reflection spectrum of the 

device exhibits a sinusoidal pattern. Liquids or coating on the PCF surface modify the phase difference 

of the interfering modes, thus causing a shift of the interference pattern. The interferometer proposed 

here is more compact than others based on PCF or standard optical fiber. In addition, record fringe 

contrasts (~40 dB) were observed. 

The potential of our interferometer for refractometric sensing was demonstrated. The sensitivity to 

the external index of refraction was also exploited to form simple liquid-level sensors. Our results 

suggest that bulk RI changes on the order of 10
−5

 and 10
−6

 can be resolved, depending on whether one 

monitors the shift of the interference pattern or the reflected power at a fixed wavelength. Optimization 

of the PCF structure (holes diameter and separation between holes) may enhance the resolution even 

further. The high resolution of our interferometer can be particularly useful if one wants to monitor 

minute RI changes experienced, e.g., by a sensitive thin film or layer deposited on the PCF. The layer 

RI and its thickness can be tailored, thus, a number of chemical and biological sensors can be 

developed with the interferometer here proposed. 
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