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Abstract: A novel, rapid algorithm to speed up and improve the reconstruction of 
sensitivity encoding (SENSE) MRI was proposed in this paper. The essence of the 
algorithm was that it iteratively solved the model of simple SENSE on a pixel-by-pixel 
basis in the region of support (ROS). The ROS was obtained from scout images of eight 
channels by morphological operations such as opening and filling. All the pixels in the 
FOV were paired and classified into four types, according to their spatial locations with 
respect to the ROS, and each with corresponding procedures of solving the inverse problem 
for image reconstruction. The sensitivity maps, used for the image reconstruction and 
covering only the ROS, were obtained by a polynomial regression model without 
extrapolation to keep the estimation errors small. The experiments demonstrate that the 
proposed method improves the reconstruction of SENSE in terms of speed and accuracy. 
The mean square errors (MSE) of our reconstruction is reduced by 16.05% for a 2D brain 
MR image and the mean MSE over the whole slices in a 3D brain MRI is reduced by 
30.44% compared to those of the traditional methods. The computation time is only 25%, 
45%, and 70% of the traditional method for images with numbers of pixels in the orders of 
103, 104, and 105–107, respectively. 

Keywords: parallel imaging; sensitivity encoding; magnetic resonance imaging; region of 
support; sensitivity maps; polynomial model; morphological operator 
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1. Introduction 

Parallel imaging (PI) is one of the most important applications of the phased-array surface coils 
introduced to the field of MRI more than two decades ago [1]. PI makes use of the characteristic 
sensitivity distributions of the spatially separated receiver coils to provide an additional spatial 
encoding mechanism, in addition to the conventional phase encoding and frequency encoding required 
for MRI. This sensitivity-based encoding allows one to skip some phase encoding steps, speeding up 
the acquisition of the MRI data. Several PI methods have been proposed in the past decade, and they 
can be classified into two main types according to the working domains for the image reconstruction [2]. 
One is the k-space-based method, such as simultaneous acquisition of spatial harmonics (SMASH) and 
generalized autocalibrating partially parallel acquisitions (GRAPPA) [3], in which the missing phase 
encoding data points in k-space were synthesized by combining the sensitivity information of the coils 
and the acquired phase encoding and frequency encoding data [4]; The other is the image domain-based 
method, such as sensitivity encoding (SENSE) [5], in which the full image was recovered from the 
sensitivity maps, derived from scout images acquired during the patient setup, and the folded images 
reconstructed directly from the undersampled data of the individual coil components. In this paper, we 
focus our research on the latter, which is most widely used in clinical practice, and propose a rapid and 
accurate algorithm for the reconstruction of SENSE MRI. 

Consider a simple 2D SENSE with an acceleration rate of r, in which every (r�1) phase encoding 
lines in the conventional fully sampled k-space were skipped [6]. According to the Nyquist theorem, 
the resultant images of the component coils would be folded in the dimension corresponding to the 
phase encoding direction. The basic principle of the SENSE technique is to unfold the images with the 
help of the sensitivity maps to recover the full images. The data acquired at m image points by an array 
of c coils can be expressed in the form of direct problem as a set of linear equations: 

 (1)

where S is an mc × n sensitivity map, � is an n × 1 column vector denoting the desired full image, and 
b is an mc × 1 column vector whose elements are points in the folded images of the c coils. The 
reconstructed full image � can be obtained as an inverse problem by solving the above linear equations. 

The traditional method for solving Equation (1) suffers from the following three shortcomings [7,8]: 
(i) The values of both m and n are of the order of 105, making the computation time of direct image 
reconstruction impractically long in clinical settings; (ii) It solved the equations for the entire FOV and 
did not take into account the region of support [9]; (iii) The estimation of the sensitivity map is 
vulnerable to noises, because it involves extrapolation from the brain area to the background area.  

An iterative method was introduced recently for the fast reconstruction of the SENSE-based  
MRI [10]. This method significantly reduced computation time and memory storage. However, in this 
and previous techniques [11,12], the sensitivity maps were estimated for the full FOV and the 
algorithms of reconstruction were also based on the full FOV, without distinguishing regions in the 
brain and regions in the background. In fact, the background region often constitutes a significant 
portion of the FOV and is filled with noise. Therefore, the signals in the background should be taken as 
zeros as prior knowledge and further excluded from the image reconstruction for the benefits of both 
accuracy and speed. In this paper we proposed a method for accurate and rapid reconstruction of 
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SENSE MRI. The method is based on the pixel-by-pixel algorithm for the simple SENSE model, and 
is applied on the ROS that is obtained by morphological operations such as opening and filling. 
Accordingly, the sensitivity map is estimated for the ROS without extrapolation to the whole FOV, 
thus avoiding considerable estimation errors. Finally, the method uses the ROS at the reconstruction 
stage to guide the equation solving procedures, and uses the accurate sensitivity maps to reconstruct 
the full image.  

2. Method 

2.1. The Simple SENSE Model 

For the model of simple 2D SENSE with an acceleration factor r, the k-space data were regularly 
undersampled by skipping every r�1 phase encoding lines in the full k-space [13]. Without losing 
generality, we consider as an example the case of acceleration factor of r = 2 and the number of coils  
c = 8. For a pixel at location (x, y) in the aliased image, the signals measured by each of the eight coils 
are given by following equations: 

 

(2)

This is a simplified version of the direct problem previously given in Equation (1), which states that 
the signals at the locations of the two pixels (x, y) and (x+FOV/2, y) are aliased to generate the 
measured signals in the component coils. The illustration of SENSE is shown pictorially in Figure 1. 

2.2. Iterative Method 

There are three approaches to SENSE reconstruction [5]: (i) solving Equation (1) directly, which 
would take enormous storage and time; (ii) line-by-line iterations, in which each iteration estimates 
two rows of the original image; (iii) pixel-by-pixel iterations, recovering two pixels of the original 
image in each iteration.  

We briefly analyze the three approaches to recovering an 8 × 8 matrix from two aliased 4 × 8 
images acquired with an acceleration factor of 2 (Figure 2). The first approach is non-iterative, and we 
obtain the estimate of the whole image without iteration. With the line-by-line iteration, we unfold the 
first lines in the aliased images to obtain the first and fifth row of the full image at the 1st iteration, and 
then we unfold the second lines in the aliased images to obtain the second and sixth row at the 2nd 
iteration, and so on. With the pixel-by-pixel iteration, we obtain the �(1, 1) and �(5, 1) at the 1st 
iteration, the �(1, 2) and �(5, 2) at the 2nd iteration, until the �(1, 8) and �(5, 8) at the 8th iteration; Then 
the scan turns to the next row, and we obtain the �(2, 1) and �(6, 1) at the 9th iteration, and so on. In 
this paper, we chose the pixel-by-pixel iteration since it only requires least memory.  
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Figure 1. A pictorial illustration of the SENSE principles. The k-space is scanned every 
other row. The rows are for the first, the second and the eighth channels, respectively. 
Column 1 & 3 are the sensitivity maps, column 2 & 4 are the brain or the images to be 
reconstructed, and final column is the aliased brain images acquired by the corresponding 
channels. The red square marker denotes the pixel at location (x, y). 

 

Figure 2. Schematic illustration of the three approaches to the SENSE reconstruction. The 
acceleration rate is 2. The upper 4 × 8 (pink) and the lower 4 × 8 (blue) matrices in the 
above represent the voxels in the aliased images. The full image is an 8 × 8 matrix.  
(a) Non-iterative method: we unfold the aliased images to obtain the full image in one 
iteration; (b) Line-by-line iteration method: we obtain the estimated voxels of the 1st and 
the 5th rows in the first iteration, and the 2nd and the 6th rows in the 2nd iteration, and so on; 
(c) Pixel-by-pixel method: we obtain the estimated voxels in pairs. The digits i in the image 
denotes the voxel is estimated at the i-th iteration. 

 
(a) (b) (c) 

In matrix notation, equations in Equation (2) can be expressed in Equation (3), where S is an 8 × 2 
matrix whose elements are sensitivities of the coil components at two locations of (x, y) and (x + FOV/2, y), 
and b is a column vector of 8 elements, representing the superimposed signals from the two voxels at 
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(x, y) and (x+FOV/2, y) recorded by the eight coil components. The two intensities of �(x, y) and 
�(x+FOV/2, y) were obtained by solving the following equations: 

 

(3)

Here S1 and S2 are two column vectors of eight elements. In essence, the solution of Equation (3) is 
a procedure of recovering the two voxels at (x, y) and (x+FOV/2, y), by unfolding the superimposed 
signals. We will show that the entire image can be reconstructed when all the superimposed signals 
within the region of support (ROS) are unfolded. In the following subsections we introduce the  
ROS, give the detailed procedures for estimating sensitivity map S based on ROS, and describe the  
ROS-based SENSE reconstruction. 

2.3. Region of Support 

The ROS is detected from the scout images of eight channels [14] (Figure 3). Let Oi denotes the 
scout image of the ith channel, the ROS is calculated from following procedures.  

(1) Calculate the power image defined as:  

 
(4)

(2) Find the support area. Here we choose the threshold as the 1% of maximum intensity value: 

 (5)

(3) Perform the opening operation to eliminate the noise artifacts: 

(6)

(4) Use the filling method of mathematical morphologic operations to fill the holes: 

 (7)

The mean essence of the algorithm is thresholding based on the signal-to-noise ratio (SNR), 
because the brain area usually contains higher signal than the background does. But other 
morphological operations are also necessary to ensure an example of these procedures is illustrated in 
Figure 3. The final extracted ROS was very close to the shape of the brain. 

2.4. Estimation of Sensitivity Maps 

In the literature [9,10], sensitivity maps were generated for the whole FOV by fitting and 
extrapolating the raw sensitivity maps obtained from low resolution scout images acquired in a fast 
reference scan. Sensitivity maps in the whole FOV facilitate the whole FOV-based reconstruction of 
SENSE MRI, but they are difficult to estimate accurately not only in the background region but  
also within the brain, because the extrapolation inevitably introduces errors. We therefore adopted an  
ROS-based approach to accurately estimating sensitivity maps.  
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Figure 3. Illustration of obtaining ROS: (a) eight Scout images; (b) the summation of the 
squares of the magnitudes of eight scout images; (c) Support area, use 1% of maximum 
intensity as the threshold; followed by two morphological operations: (d) ROS after 
opening Procedures; (e) ROS after filling Procedures.  

  

We used a second-order polynomial regression model to approximate the realistic sensitivity map 
and to reduce noises. The model is as follows: 

 (8)

Let P = [x, y] denote the point at position [x, y], model(P) = [x2, xy, y2, x, y, 1] denote the 
polynomial model of point P, and A = [a20, a11, a02, a10, a01, a00]T denote the predictor vector 
(regressor), and then Equation (8) can be rewritten as:  

 (9)

Suppose there are r pixels in ROS, the estimated sensitivity map can be obtained by solving the 
following equations: 

 (10)

Here model(ROS)={model(P)|P�ROS}. D(i) denotes the energy ratio of the of i-th scout image to 
the whole of scout images: 

 
(11)

Finally, the regressor A(i) was obtained by solving Equation (10). The estimated sensitivity map 
covering the full image S(full) was inferred from regressor A and design matrix model(full): 

 (12)

Here S(full)={S(P)|P�full}, and model(full)={model(P)|P�full}. However, the regressor A was 
obtained only from samples of ROS as seen in Equation(10), so the S(full) implied that there should be 
extrapolation out of ROS, which would cause errors. However, the estimation of the sensitivity map 
covering only the ROS (Equation (13)) involved only interpolation and may be more accurate:  
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 (13)

Here S(ROS)={S(P)|P�ROS}. An example of the estimation of sensitivity maps is illustrated in 
Figure 4. 

Figure 4. Estimation of sensitivity maps. From left to right columns: eight scout images 
(O1 to O8) from eight channels; energy ratios (D1 to D8); Ds within ROS; regressor 
parameters by Equation (10); the estimated sensitivity maps Si (shown also the Si over the 
full FOV). 

 

2.5. ROS-Based Reconstruction 

For the ROS-based rapid algorithm of SENSE reconstruction, we classified the pair of aliasing 
pixels into four groups as follows: 
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(1) Both pixels fall into the ROS. We solve Equation (3) to get �(x, y) and �(x+FOV/2, y). 
(2) The point of (x+FOV/2, y) falls into the ROS. We assign 0 to �(x, y), and the Equation (3) can 

be transformed to the following: 

 
(15)

Afterwards, we calculate the intensity value of �(x + FOV/2, y) by solving Equation (15). The linear 
coefficients matrix S1 of Equation (15) is 8 × 1, only half of the size of the linear coefficients matrix S 
of Equation (3).  
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(3) The point of (x, y) falls into the ROS. Similarly, we assign 0 to �(x + FOV/2, y) and transform 
Equation (3) to the following, 

 (16)

Afterwards, we solve Equation (16) to get the intensity value of pixel �(x, y). 

(4) Neither of the pair falls into the ROS. We assign a value of 0 to each of the pixels. As seen 
from Equations (14)–(16), recovering the pixels of groups 1 to 3 is straightforward and only 
requires simple arithmetic operations. Only the recovery of pixels of group 4 needs matrix 
operation as in the traditional methods. Therefore, our proposed method is computationally 
simple and can be executed rapidly.  

3. Experiments 

We carried out experiments to assess the performance of our method and, in particular, to compare 
our method with the traditional methods. The experiments were carried out on the platform of 
Windows XP on a desktop PC rquipped with an Intel Pentium 4, 3 GHz processor and 2 GB memory. 
The programs were developed via Matlab 2010b.  

3.1. Comparison of the Algorithms 

The traditional method used ROS as a correction tool, viz., to multiply final reconstruction results 
with the ROS to reduce the background noises. We call it “ROS-based correction” for short. In our 
method, we used the ROS at the reconstruction stage to group the pairs into different types, which is 
referred to as “ROS-based reconstruction”. The main differences of ROS-based correction and  
ROS-based reconstruction lie in the following three points (shown in the red font in Figure 5):  

(1) ROS-based correction calculates the sensitivity map of the full image, which involves 
extrapolation; however, ROS-based reconstruction only needs the sensitivity map within the 
ROS, which only involves interpolation. 

(2) ROS-based correction directly solves Equation (3) no matter the pixel pairs locate in the ROS 
or in the background. Conversely, the ROS-based reconstruction classifies Equation (3) into 
four types, and solves different type by different methods, which greatly hasten the procedures. 

(3) ROS-based correction needs to correct the final result by multiplying it with the ROS, while the 
ROS-based reconstruction is free from this procedure. 

3.2. The Quality of the Reconstruction 

We compared our proposed ROS-based reconstruction method with traditional ROS-based 
correction method. We first used a fully sampled T2 weighted brain MRI image as a reference data set, 
undersampled the data with an acceleration rate of 2, applied the aforementioned two methods to 
reconstruct the images from the undersampled data, and compared the results of the two methods using 
mean absolute error (MAE) and mean square errors (MSE), which were calculated against the ground 
truth. To facilitate fair comparison, we calculated MAEs and MSEs on the ROS instead of the whole 
FOV. In order to assess the performance of sensitivity map estimation, we added Gaussian noise of 
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zero mean and 10�4 variance, which indicates the pixels in the image will have a fluctuation of  
256 × ����� = ±2.56 in their gray intensity values. 

Figure 5. Flowchart of (a) ROS-based correction; (b) ROS-based reconstruction  
(the differences are labeled with red color), please see the paragraph below for the details. 

  

Figure 6 indicates that the noise influenced the estimation of sensitivity maps as the artifacts near 
the center of the brain. The detailed errors indicate that the MAE and MSE of our method are 1.6988 
and 9.4573, respectively, while the MAE and MSE of ROS-based correction method 2.0162 and 
11.2656, respectively. The results render a reduction of 15.07% for MAE and a reduction of 16.05% 
for MSE by the proposed method. The errors are calculated on the FOV area, not including  
the background.  

Figure 6. Comparison of the quality of the reconstructions: (a) Original, fully sampled  
T2-weighted brain MR image; (b) The aliased image; (c) Reconstructed image by ROS-based 
correction; (d) Reconstructed image by ROS-based reconstruction; (e) Difference between 
(c) and (a); (f) Difference between (d) and (a). 

The reason why our ROS-based reconstruction method can achieve less error leans on the H-shape 
area in Figure 6(f). We know a priori that the corresponding pixels of “H” area should be zero, and the 
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pixels are recovered in pairs. Therefore, we can get a higher signal-to-noise ratio on the H-shape area 
due to the a priori information. 

The advantages of our ROS-based reconstruction method over the conventional method are more 
significant for 3D MRI than for 2D MRI. We used a 128 × 128 × 64 MRI data and added Gaussian 
noise with zero mean and 10�4 variance. The curves of MAE and MSE of two methods versus different 
number of slices are depicted in Figure 7. The mean MAE and MSE of the whole slices for the  
ROS-based correction method are 2.1062 and 14.5392 and, conversely, the mean MAE and MSE of 
ROS-based reconstruction method are only 1.5519 and 10.1134. The results represent 26.32% 
reduction of mean MAE and 30.44% reduction of mean MSE. 

Figure 7. 3D Brain Reconstruction Results: (a) MAE curve, (b) MSE curve. X-axis 
denotes the index of brain slices, and y-axis denotes the error values. 

(a) 
 

     (b) 

3.3. Computation Time 

We compared the computation times of our method and the conventional method using datasets of 
2D/3D MRI, 3D MRSI, 3D DTI and 3D fMRI. The 1st 3 dimensions are spatial dimensions and the 4th 
for 3D MRSI, 3D DTI and fMRI are spectral, angular and temporal respectively. For images with 
small size, e.g., a 2D MRI of 256 × 256, the computation time of the proposed method is less than half 
of the conventional method (Table 1). When the size of the images increases, the ratio of computation 
times of the current method to conventional method increases, but the gain of the acceleration is 
significant. In the case of 3D fMRI, for example, the current method shortened the reconstruction time 
from more 12 min to less than 8.5 min. We further increased the size of the images and found the 
aforementioned ratios remained <0.7 (Figure 8).  

Table 1. Comparison of computation times image reconstruction by the conventional and 
the proposed methods for different MR modalities (c = 8, r = 2). 

Type of Image Size of images No. of image pixels n
Time (second) 

Traditional method Proposed method 
2D MRI 256 × 256 65,536 5.7051 2.5774 
3D MRI 128 × 128 × 64 1,048,576 91.4645 62.2536 
3D MRSI 32 × 32 × 8 × 512 4,194,304 365.9453 254.6059 
3D DTI 128 × 128 × 16 × 24 6,291,456 549.7143 383.4347 
3D fMRI 64 × 64 × 32 × 64 8,388,608 735.9560 512.3298 
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Figure 8. Comparison of the computation times between the proposed method and the 
traditional method. The x-axis denotes the total number of image voxels, and the y-axis 
denotes the ratio of computation times of the proposed method to traditional method. We 
used logarithm scale for clearance. 

 

4. Conclusions 

In this study, we have proposed an ROS-based method for the reconstruction of SENSE MRI.  
The method involves an ROS-based accurate estimation of sensitivity maps and an ROS-based  
pixel-by-pixel iterative algorithm for the reconstruction. The experiments show that the method is fast 
and significantly improve the quality of reconstruction of SENSE MRI. 

The MSE of our reconstruction is reduced by 16.05% for a 2D brain MR image and the mean MSE 
over the whole slices in a 3D brain MRI is reduced by 30.44% compared to those of the traditional 
methods. The computation time is only 25%, 45%, and 70% of the traditional method for images with 
numbers of pixels in the orders of 103, 104, and 105–107, respectively. 

However, the computation advantage of our method depends on the support size of the brain in the 
FOV. If the brain occupies most of the FOV, the computational advantage will be compromised. 
Therefore, our method is suitable for images which contain large background area. 

One of an interesting future work will be on the combination of ROS and other techniques, such as 
the 3D wavelet representation [15] that handles a 3D dataset as a whole and address reconstruction 
artifacts efficiently.  
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