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Abstract: In this study, time-resolved optical coherence tomography (OCT) scanning 
images of the process of water diffusion in the skin that illustrate the enhancement in the 
backscattered intensities due to the increased water concentration are presented. In our 
experiments, the water concentration in the skin was increased by soaking the hand in 
water, and the same region of the skin was scanned and measured with the OCT system 
and a commercial moisture monitor every three minutes. To quantitatively analyze the 
moisture-related optical properties and the velocity of water diffusion in human skin, the 
attenuation coefficients of the skin, including the epidermis and dermis layers, were 
evaluated. Furthermore, the evaluated attenuation coefficients were compared with the 
measurements made using the commercial moisture monitor. The results demonstrate that 
the attenuation coefficient increases as the water concentration increases. Furthermore, by 
evaluating the positions of center-of mass of the backscattered intensities from OCT 
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images, the diffusion velocity can be estimated. In contrast to the commercial moisture 
monitor, OCT can provide three-dimensional structural images of the skin and characterize 
its optical property, which together can be used to observe morphological changes and 
quantitatively evaluate the moisture-related attenuation coefficients in different skin layers. 
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1. Introduction 

Skin is the physical barrier for the human body, tasked with preventing damage from various 
external stimuli and preventing the loss of water [1]. Additionally, skin’s softness is related to the 
moisture in the skin, which is essential for protecting the body. It is composed of three layers: the 
epidermis (EP), the dermis (DM), and the subcutaneous layer. The EP layer is the outermost layer and 
acts as a protective barrier. The stratum corneum (SC) is the outer layer of epidermis and is composed 
of dead skin cells made of keratin. Additionally, water in the skin plays an important role in gland 
secretions, regulation of body temperature, and the prevention of aging. Many approaches for measuring 
water concentration in human skin have been proposed [2–4], including electric conductance [5], 
transepidermal water loss [6], Fourier transform infrared spectroscopy [7], photothermal imaging [8], 
and confocal Raman spectroscopy [9]. However, the proposed approaches are limited to measuring the 
water concentration in the SC layer, and such information is not enough to completely characterize the 
skin’s properties. 

Over the last few decades, optical sensing and imaging have attracted much attention in biomedical 
applications such as near-infrared spectroscopy [10], photoacoustic microscopy [11,12], nonlinear 
microscopy [13,14], and optical coherence tomography (OCT) [15,16]. Compared with other optical 
imaging techniques, OCT has the advantages of deeper imaging depth, requiring no contrast agents, 
and high imaging speed. Based on the interferometer configuration, either two-dimensional or  
three-dimensional micro-structural information can be reconstructed without destroying the sample. 
Since 1991, many research groups have demonstrated that OCT can be applied in various biomedical 
fields such as ophthalmology, dermatology, and oncology [17–19]. In the last decade, the imaging 
speed and system sensitivity have been greatly improved due to the development of Fourier-domain 
OCT (FD-OCT) without mechanical scanning in the reference arm of the interferometer. Furthermore, 
FD-OCT includes two different configurations known as swept-source OCT (SS-OCT) [20–22] and 
spectral-domain OCT (SD-OCT) [23–25]. Aside from obtaining structural information, OCT can perform 
functional imaging including tissue birefringence, blood flow velocity and angiography [26–28]. 

Many dermatological studies using OCT have been reported [29–35], most of which focus  
on the detection of pathological changes in the skin due to skin disorders. Additionally, dermal 
birefringence, which can be utilized for the diagnosis of sun damage [33] or for the determination of 
burn depth [34], can be visualized using polarization-sensitive optical coherence tomography  
(PS-OCT). Furthermore, Yasuno et al. were able to differentiate young and old photo-aged human skin 
based on a birefringence analysis using PS-OCT [35]. In addition to characterizing skin morphology, 
OCT has been proposed by Ohmi et al. as a tool for performing dynamic analysis of mental sweating 
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from human fingertips [36]. The same group was also able to visualize the dynamics of the small 
arteries and veins of human fingers using OCT [37].  

In this study, an SS-OCT system is implemented for the investigation of moisture-related optical 
property of human skin. In our experiments, OCT scans taken every 3 min after soaking the palm in 
water were used to observe water diffusion and evaluate the moisture-related attenuation coefficient of 
human skin. The time-resolved OCT scans revealed the process of water diffusion in the skin,  
which we then analyzed quantitatively along with the skin’s moisture by evaluating the skin’s 
attenuation coefficients. Then, the OCT scanning results were compared with the measurements made 
by a commercial moisture monitor. Furthermore, to investigate the diffusion velocity in skin, the 
positions of center-of-mass of backscattered intensities in the longitudinal direction from OCT images 
are evaluated. 

2. Experimental Section  

Figure 1(a) shows a schematic diagram of the portable SS-OCT system used for studying water 
diffusion in the skin [38]. The central wavelength and the scanning range of the swept source are  
1,310 nm and 110 nm, respectively. This source can provide an output power of 6 mW and a sweeping 
rate of 30 kHz. It is connected to a Mach-Zehnder interferometer, consisting of two circulators and two 
couplers. Ten percent of the output power from the swept source is connected to a narrowband fiber 
Bragg grating (FBG) to generate an A-scan trigger for each A-scan. The narrowband FBG has a Bragg 
wavelength of 1,275 nm, and the reflected signal from the FBG is combined with the interfered signal 
by a 10/90 fiber coupler. To eliminate the DC component of the interfered signal, another 10/90 fiber 
coupler is used before the balanced detector (PDB150C, Thorlabs). Finally, the data from the balanced 
detector is sampled with a high-speed digitizer at a sampling rate of 100 MB/s (PXIe-5122, National 
Instruments). Based on this mechanism, the time-induced phase errors can be greatly reduced, and only 
half the on-board memory of the digitizer is required for data acquisition. In the sample arm, a  
palm-held probe is implemented for skin scanning. Figure 1(b) shows the layout of the probe for 
scanning human skin. A single-mode fiber with an FC/APC connector is connected to a collimator, and 
the output light beam was incident onto a two-axis galvanometer, which provides lateral and transverse 
scanning. The light beam is focused by an achromatic lens having a focal length of 10 mm, resulting in 
the focusing of the light beam at a depth of 300 μm beneath the sample surface. In this OCT system, 
the frame rate can achieve 50 frames per second, each consisting of 600 A-scans.  

Water concentration in the skin is an important factor in preventing skin damage from external 
infections and aging. To increase the water concentration in skin, the left palm of a 23-year-old 
volunteer was soaked in water. Because lipids on the SC influence water diffusion and hydration, the 
volunteer washed his palm with soap to speed up water diffusion before the measurement. The index 
fingertip was scanned using the OCT system at 0, 3, 6, 9, 12, 15, 18, and 30 min after soaking. After 
each OCT scan, a commercial moisture monitor (ZRH-009, Chung Yun Industrial) that assesses 
moisture levels based on the electrical conductance measurement was also used to measure the water 
concentration. To facilitate scanning of the same region of the index fingertip in each measurement, 
the scanned region was marked. However, the regions scanned in each measurement were not exactly 
identical, even with the marking, although each scan did cover most of the marked region. After each 
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layers before and after soaking the palm in water for 30 min revealed that the attenuation coefficients 
of the epidermis and dermis layers increase after soaking the palm in water. Additionally, we analyzed 
the moisture-related attenuation coefficients as a function of increasing immersion time and compared 
the OCT results with the measured moisture from the commercial moisture monitor. The  
moisture-related attenuation coefficients evaluated using OCT show the same trend as the results from 
the commercial product. Furthermore, the diffusion velocity of water in human skin can be estimated 
by evaluating the positions of center-of-mass of intensity variance OCT images, obtained from the 
successive OCT images. From the results, the water diffusion velocities in the EP and DM layers of 
one volunteer’ skin are 12.32 μm/min and 19.61 μm/min, respectively. However, such information still 
cannot be obtained from any other commercial products. 
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