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Abstract: Strain distributions are crucial criteria of cross-beams six-axis force/torque
sensors. The conventional method for calculating the criteria is to utilize Finite Element
Analysis (FEA) to get numerical solutions. This paper aims to obtain analytical solutions
of strains under the effect of external force/torque in each dimension. Genetic mechanical
models for cross-beams six-axis force/torque sensors are proposed, in which deformable
cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A
detailed description of model assumptions, model idealizations, application scope and model
establishment is presented. The results are validated by both numerical FEA simulations and
calibration experiments, and test results are found to be compatible with each other for a
wide range of geometric properties. The proposed analytical solutions are demonstrated to
be an accurate estimation algorithm with higher efficiency.
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1. Introduction

Cross-beams six-axis force/torque sensors are typical six-axis force/torque sensors used in various
branches of engineering, especially in robotic manipulators, for their compactness, simplicity and low
interference errors. A six-axis force/torque sensor is usually mounted between the distal end of a robot
arm and an end-effector to measure the interaction Cartesian forces and torques (Fx, Fy, Fz and Mx,
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My, Mz) between the robot arm and the environment [1–3]. The cross-beams elastic body (elastic body)
is the key component of a six-axis force/torque sensor. The brief measuring principle of cross-beams
six-axis force sensors can be described as follows. The elastic body will be deformed under external
forces/toques. Strain gauges are pasted firmly on surfaces of cross elastic beams in order to detect
deformations and convert variations of strains to variations of electric resistances. Finally, changes of
electric resistances are converted into six-dimensional output voltages by Wheatstone bridges [4–7].

Figure 1. Design process of six-axis force/toque sensors.
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In the design process, geometric dimensions of an elastic body need to be adjusted taking into
consideration design specifications and constraints obtained from engineer requirements, such as the
measurement range, weight and dimensional restrictions. Once a preliminary design of an elastic
body is proposed, many structure properties need to be analyzed, such as strain distributions of the
elastic body under external force/torque in each dimension, and locations where strain gauges should
be attached [7,8]. If an acceptable structure is conceived, a prototype is fabricated, and calibration
experiments are used to test performances of the elastic body. Figure 1 depicts a flow chart of the
whole design process. The conventional method to evaluate the above properties of an elastic body is
to use FEA by commercial FEA software, like ANSYS or ABAQUS, to get numerical solutions. With
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this method, Song et al. in [9] developed a four-axis cross-beams force sensor for HapticHCI with a
measurement range of 20 N and 4.5 Nmm. Chen et al. in [10] designed a three-axis cross-beams force
sensor with a measurement range of 200 N. Ma et al. in [11] designed a two-axis cross-beams force
sensor for massage robots with a measurement range of 100 N. However, as the FEA is time consuming,
it always takes quite a while to calculate strain distributions of a cross-beams elastic body with a certain
set of geometric parameters under effects of forces/torques in all directions. Moreover, if the geometric
parameters of an elastic body need to be adjusted several times before final judgment can be made as
to which structural form is most appropriate, then the whole calculation takes up much longer time.
Consequently, there is a need to design a faster calculation method to improve the design efficiency of
cross-beams elastic bodies.

In this paper, we propose closed-form expressions to fast estimate strain distributions of cross-beams
six-axis force sensors based on the establishment of mechanical models. In the proposed mechanical
models, all deformable beams of elastic bodies are idealized as deep beams or short beams, which are
supported and connected together in various methods. The simplified mechanical models are analyzed
by Timoshenko beam theory. The Timoshenko beam theory takes into account shear deformation and
rotational inertial effects, making it more suitable and accurate to describe behaviors of deep beams
and short beams than the Euler–Bernoulli beam theory (also known as classic beam theory). Analytical
predictions are subsequently validated by FEA simulations and calibration experiments. Our method is
proven to provide a reliable means of calculating strains with higher efficiency.

2. Mechanical Structure and Distribution of Strain Gauges

Figure 2 depicts mechanical notations and dimensions of a typical cross-beams elastic body in global
coordinate. The elastic body contains four cross elastic beams (i.e.,AB, CD,EF ,GH), eight compliant
beams (i.e., AQ, AI , HL, HM , DJ , DK, EP , EN ), a square convex and four location holes.
Twenty-four uniaxial strain gauges are pasted on surfaces of each cross elastic beam to measure related
strain values. Each four strain gauges are connected to form a full Wheatstone bridge according to six
distinct deformation conditions of the elastic body under effects of each one-dimensional force/torque,
i.e., Fx, Fy, Fz and Mx, My, Mz. Parameters l1, b1, h1 denote the length, width and height of
compliant beams, and parameters l2, b2, h2 denote the length, width and height of cross elastic beams,
respectively. In most cases, b2 is equal to h2. The parameter r represents half of the width or length of
the square convex.

In an actual force perception task, external forces/torques are applied on the square convex and
transmitted to cross elastic beams. The cross elastic beams will subsequently be deformed. Compliant
beams, which are flexible to external forces/torques too, can be regarded as elastic supports or floating
bodies. Other parts of the elastic body show small deformations and thus are assumed to be rigid.
Because of the symmetry of the structure, the deformation under Fx is similar to the case of Fy, and the
deformation under Mx is similar to the case of My. As a result, here we only analyze deformations of
the elastic body under Fx, Fz, Mx, Mz.
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Figure 2. Geometric characteristics of the elastic body. (1) Cross elastic beams;
(2) Compliant beams; (3) Square convex; (4) Location holes; (5) Strain gauges.
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3. Model Development

Cross-beams elastic bodies are statically indeterminate structures. The responses of cross-beams
elastic bodies under forces/torques in different directions involve various complex interactions between
cross elastic beams and compliant beams. Deflection characteristics of the above flexural beams
under different dimensional forces/torques are analyzed by Timoshenko beam theory [12–14]. The
Timoshenko beam theory adopts planar sections hypothesis that all cross sectional areas stay planar
after deformation, but the cross sectional areas are not required to stay perpendicular to the deformed
axis of the beam. In other words, any cross-section of the beam is treated as an undeformable body that
does not allow any displacements other than rigid ones [15]. Thus, the deformation characteristics of the
beam are described by two variables, i.e., the translational displacement (ω) of any cross-section and the
angular displacement (ψ) of any cross-section, as is expressed in Equation (1). An infinitesimal section
of a Timoshenko beam is illustrated in Figure 3.{

M(x) = −EI dψ(x)
dx

FQ(x) = kGA(dω(x)
dx

− ψ(x))
(1)

where x denotes the x-coordinate value of any point in the beam as is shown in Figure 3 (it also indicates
the distance of the point away from the beginning of the beam), M is the bending moment and FQ is
the shear force, A represents the cross-sectional area, E, I , k, G are the elastic modulus, second area
moment, shear coefficient and shear modulus, respectively.

Equation (1), together with force/torque equations of equilibrium for the infinitesimal section depicted
in Figure 3, can yield {

d
dx

[C(dw(x)
dx

− ψ(x))] = 0
d
dx

(D dψ(x)
dx

) − C(dω(x)
dx

− ψ(x)) = 0
(2)

where C = kGA,D = EI .
Equation (1) and Equation (2) are two basic formulas of Timoshenko beam theory, from which

analytical solutions of ω(x) and ψ(x) could be calculated when given enough boundary conditions.
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Once the analytical solution of angular displacement ψ(x) is obtained, the strain value (ε) of any point
in the beam can be calculated in Equation (3).

ε(x, z) = −zdψ(x)

dx
(3)

where z is z-coordinate value of any point in the beam and it also indicates the distance between the
point and the neural plane.

Figure 3. A Timoshenko beam and its infinitesimal section.
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In following sub-sections, mechanical models of cross-beams elastic bodies under effects of Fx,
Fz, Mx, Mz are established respectively to estimate strain distributions on related cross elastic beams.
Overall, the modeling approach in this paper incorporates flexibilities and interactions among cross
elastic beams and compliant beams and enables a faithful simulation of deformations. Detailed
modeling approach consists of the following steps: (i) establish idealized mechanical model according
to deformations of an elastic body under effects of force/torque in each direction; (ii) analyze deformed
cross elastic beams and compliant beams utilizing Timoshenko beam theory and obtainable boundary
conditions; (iii) determine unknown parameters in derived analytical solutions of ω(x) and ψ(x) based
on displacement relationships of relative beams and force/torque equations of equilibrium; (iv) derive
formulas for strain distributions.

3.1. Mechanical Model under Fx

As is shown in Figure 4, when Fx is loaded, bending occurs on cross elastic beams EF , GH and
compliant beams AQ, AI , DJ , DK. Compliant beams HL and HM , EN and EP become two elastic
supports of beams EF and GH .

Figure 4. Deformation of an elastic body under Fx.
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Based on the deformation configuration, the mechanical model of the elastic body is proposed in
Figure 5. Compliant beams HL and HM , EN and EP are simplified as roller supports H and E.
Other conjunctions are deemed as rigid joints. Thus cross elastic beams EF , GH are idealized as
propped-cantilever beams and compliant beams AQ, AI , DJ , DK are idealized as cantilever beams. In
addition, it can be easily noticed that axial forces are transmitted through cross elastic beams AB and
CD. Accordingly, beams AB and CD, which are subjected to axial forces, show negligible tension or
compression deformations, and thus could be regarded as rigid bodies. Notations with primes (e.g., A′,
B′, C ′) indicate displaced positions of original ones (e.g., A, B, C). ∆x, ∆GFx , and ∆DFx represent
the displacement of the square convex, the displacement of node D in compliant beam DJ , and the
displacement of node G in cross elastic beam GH , respectively. Owning to the symmetry of structure,
the deflection characteristic of cross elastic beam EF is similar to GH and the deflection characteristic
of compliant beam DJ is similar to DK, AQ, AI . Here we only consider cross elastic beam GH and
compliant beam DJ .

Figure 5. Mechanical model of an elastic body under Fx.
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∆GFx can be obtained from a combination of Equation (2) and boundary conditions of Equation (2)
observed from beam HG in Figure 5 as follows

∆GFx =
l32FGFx

3D2

+
l2FGFx

C2

(4)

where C2 = kGA2, D2 = EI2, A2 = b2h2 is the cross-sectional area of cross elastic beams, I2 =
b2h32
12

,
FGFx is the shear force on cross elastic beam GH .

∆DFx is derived from Equation (2) and obtainable boundary conditions from beam DJ in Figure 5
as follows

∆DFx =
l31FDFx

12D11

+
l1FDFx

C1

(5)

where C1 = kGA, D11 = EI1, A1 = b1h1 is the cross-sectional area of cross elastic beams,
I11 =

h1b31
12

, FDFx is the shear force on compliant beam DJ .
According to the geometric characteristic of the deformation as is depicted in Figure 5, the

displacement equation of the elastic body can be written as below

∆x = ∆GFx = ∆DFx (6)
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The force equations of equilibrium of the square convex is derived as below

4FDFx + 2FGFx = Fx (7)

The combination of Equation (2) through Equation (7) leads to following

εFx(x, z) = −z(
FGFx

D2

x− l2FGFx

D2

) (8)

where FGFx =
l31

12D11
+

l1
C1

2(
l31

12D11
+

l1
C1

)+4(
l32

3D2
+

l2
C2

)
Fx, εFx represents the strain value of any point on GH .

3.2. Mechanical Model under Fz

The deformation of the elastic body in the case of Fz is shown in Figure 6. Bending deformations
occur on all cross elastic beams and compliant beams. Compliant beams AI and AQ, DK and DJ ,
EN and EP , HL and HM turn into four elastic supports for cross elastic beams AB, CD, EF ,
GH , respectively. The idealized mechanical model is established in Figure 7 according to geometric
characteristics of the deformation. All cross elastic beams are simplified as propped-cantilever beams
and all compliant beams are simplified as fixed beams. ∆z respects the displacement of the square
convex, ∆HFz respects the displacement of node H in compliant beam HM . Owning to the symmetry
of the structure, here we only derive equations for analyzing cross elastic beam GH and compliant
beam HM .

Figure 6. Deformation of an elastic body under Fz.

Figure 7. Mechanical model of an elastic body under Fz.
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Let ∆GFz represent the vertical distance between node G′ and node H ′ in Figure 7. ∆GFz can be
derived from Equation (2) and boundary conditions of Equation (2) obtained from beam GH in Figure 7
as below

∆GFz = −(
l32

3D2

+
l2
C2

)FGFz (9)

where FGFz represents the shear force in beam GH .
Similarly, ∆HFz can be calculated from Equation (2) and obtained boundary condition from beam

HM in Figure 7 as

∆HFz = −(
l31

12D12

+
l1
C1

)FHFz (10)

where D12 = EI12, I12 =
b1h31
12

, FHFz represents the shear force of compliant beam HM .
Additionally, the force equations of equilibrium of the elastic body lead to

Fz = −4FGFz = −8FHFz (11)

Besides, according to geometric characteristics of the deformation under Fz, the displacement (∆z)
of the square convex under Fz can be obtained as

∆z = ∆GFz + ∆HFz (12)

Let εFz represent strain of any point in cross elastic beam GH , analytical expressions of εFz can be
calculated from Equation (2) and Equation (3), Equation (9) through Equation (12) as follows

εFz(x, z) = −z(
Fz

4D2

x− l2Fz
4D2

) (13)

3.3. Mechanical Model under Mx

The deformation of the cross-beams elastic body under Mx is shown in Figure 8. Bending
deformations occur on cross elastic beams EF and GH . Torsional deformations occur on cross elastic
beams AB and CD.

As is shown in Figure 8, compared with the rotation of the square convex with respect to x-axis in the
global coordinate, there are very small rotations and translations in compliant beams AQ and AI , DJ
and DK. As for beams AB and CD, there are strong reaction moments from beams AQ, AI , DJ , DK.
As a result, compliant beams AQ and AI , DJ and DK are idealized as two fixed supports for beams
AB and CD, respectively. Compliant beams HL and HM , EN and EP are idealized as beams with
fixed supports. Consequently, for cross elastic beams EF and GH , nodes H and E can be simplified
as roller supports. The mechanical model of the elastic body under Mx is illustrated in Figure 9. The
notation ∆θMx describes the angle of rotation of the square convex with respect to x-axis of the global
coordinate and the notation ∆HMx describes the displacement of H . The bending of beam EF is the
same as the case of beamGH , the bending of beamHM is the same as the case of beamsHL, EP , EN .
The torsion of beam AB is the same as the torsion of beam CD. Accordingly, here we only consider
deformation conditions of beams AB, GH and HM .
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Figure 8. Deformation of an elastic body under Mx.

Figure 9. Mechanical model of an elastic body under Mx.
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The torsion angle (α) of cross elastic beam AB can be obtained according to the equation of torsion
angle for rectangular beams [16–18] in Equation (18)

α =
MBMxl2
GIt

(14)

where MBMx represents the applied torque on beam AB, It = βb32h2, β is a coefficient for rectangular
beams that is relevant to h2

b2
. When h2

b2
= 1, β = 0.141.

∆rMx respects the angular displacement of the overlapping surface between the square convex and
the cross elastic beam GH (hereinafter referred to as “beginning surface” of cross elastic beam GH)
with respect to x-axis in global coordinate. It can be calculated by Equation (2) and boundary conditions
of Equation (2) obtained from deformed characteristics of beams GH and HM in Figure 8 as follows

∆rMx =
3C2D2∆HMx − C2FGMxl

3
2 − 3D2FGMxl2

3C2D2(l2 + r)
(15)

where ∆HMz = −FGMx(
l31

12D12
+ l1

C1
), FGMx represents the shear force on beam GH .

Geometric characteristics of the deformed elastic body under Mx can yield

∆θMx = ∆rMx = α (16)

Force/torque equations of equilibrium of the elastic body lead to

2MBMx + 2MGMx − 2FGMxr = Mx (17)

where MGMx is the bending moment on the beginning surface of beam GH , FGMx =
MGMx

l2
.
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Combinations of Equation (2) through Equation (3), Equation (14) through (17) lead to

εMx(x, z) = −z(−FGMx

D2

x+
l2FGMx

D2

) (18)

where εMx represents the strain value of any point on beam GH , FGMx can be calculated in the
following equation:

FGMx =
−3C2D2l2(l2 + r)Mx

W
(19)

where W = 3C2D2[2l2(l2 + r)2 +GIt(
l31

12D12
+ l1

C1
)] + 2GIt(C2l

3
2 + 3D2l2).

3.4. Mechanical Model under Mz

Under the effect of Mz, bending deformations happen on all cross elastic beams of the elastic body as
is shown in Figure 10. Compliant beams AQ and AI , DJ and DK, EN and EP , HL and HM become
four elastic supports of beams AB, CD, EF , GH , respectively. Here we take cross elastic beam CD

for example. The right end of beam CD is free to rotate and translate along x-axis in global coordinate,
compared with small translations along y-axis in global coordinate. Taking into consideration the strong
reaction force perpendicular to beam CD, the reaction moment and force of D along cross beam CD

could be ignored. Hence, the four elastic supports can be simplified as four roller supports, i.e., nodes
A, D, E, H in the proposed mechanical model of the elastic body under Mz, as is depicted in Figure 11.
As a result, four cross elastic beams are idealized as propped-cantilever beams. The notation ∆θMz is
the angle of rotation of the square convex with respect to z-axis in the global coordinate under Mz.

Figure 10. Deformation of an elastic body under Mz.

Figure 11. Mechanical model of an elastic body under Mz.
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The force/torque equation of equilibrium of the square convex under Mz can be written as

−4FGMzr − 4MGMz = Mz (20)

where FGMz and MGMz are the shear force and bending moment of the beginning surface of GH
respectively, MGMz = FGMz l2. Equation (2) and Equation (20), together with boundary conditions
of Equation (2) obtained from beam GH in Figure 11, can yield, after integration

∆θMz =
l32C2 + 3D2l2

12C2D2(r + l2)2
Mz (21)

Similarly, equations for analyzing strain distribution of GH can be derived as

εMz(x, z) = −z(−FGMz

D2

x+
l2FGMz

D2

) (22)

where FGMz = − Mz

4r+4l2
.

4. Validation and Results

4.1. FEA Simulations

The analytical solutions proposed in the previous section are validated against the FEA simulation
results by four different cross-beams elastic bodies with various geometric dimensions. The material
of the elastic bodies is defined as 2A12 Duralumin, in which the elastic modulus (E) is 72 GPa, the
Poisson’s ratio is 0.33 and the Yield strength is 380 MPa. Span-to-depth ratios of the cross elastic beams
of the four elastic bodies range from 3:1 to 6:1. According to the principle of Timoshenko beam theory,
in general, the higher the span-to-depth ratios are, the more accurate the proposed analytic solutions will
be, because the planar sections hypothesis as mentioned in the previous section will be less accurate
when the span-to-depth ratios of the Timoshenko beam decrease [19]. All other geometric parameters
and measurement ranges are varied within expected practical ranges. Table 1 presents a summary of the
four elastic bodies including geometric details as well as measurement ranges.

Table 1. Summary of four elastic bodies for testing.

Reference
Compliant Beam Cross Elastic Beam Square Convex Measurement Range

(mm) (mm) (mm) (N/Nm)
l1 h1 b1 l2 h2 b2 r Fx Fz Mx Mz

Example 1 17.9 7.2 2 28 7.2 7.2 18 100 100 10 12
Example 2 15.5 5 1 25 5 5 8 100 100 3 3
Example 3 25 8 1.5 36 6 6 15.25 150 150 8 8
Example 4 26.5 10 2 30 10 10 21.25 200 200 20 20

FEA simulations are calculated in ANSYS 11.0, while the 3-D, 20 nodes “Solid95” is chosen as
the element type of FEA models for its characteristic of high tolerance with respect to irregular shapes
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without as much loss of accuracy [20]. Taking the Example 1 for instance, the mesh-size of cross
elastic beams is defined as twenty equal parts in the height/width-direction and thirty equal parts in the
length-direction. The mesh-size of compliant beams is defined as fifteen equal parts in the height/length-
direction and bisection in the width-direction. Mesh lever of other examples are similar to the case of
Example 1. For degree-of-freedom (DOF) constrains, displacements and rotations of surfaces of four
location holes in all directions are restricted to zero. External force/torque in positive full-scale value of
each dimension is loaded on related locations in square convex.

Deformation conditions under each single force/torque are analyzed. Strains of nodes on the lateral
surface or upper surface, which corresponds to the surface for strain gauge locations of each force/torque
component, on cross elastic beam GH are recorded.

4.2. Calibration Experiment

Besides FEA simulations, calibration experiments are implemented to enhance validation of the
correctness of proposed analytic solutions. Special calibration experiments are designed to test strains of
strain-gauge-locations in cross elastic beams under external forces and torques. The experiment platform
of the calibration experiments is shown in Figure 12. A cross-beams six-axis force/torque sensor is
mounted on a rotatable indexing plate to guarantee directions of loading forces and torques.

Figure 12. The calibration experiment setup.
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The force/torque sensor is fabricated from 2A12 Duralumin. The calibration pillar is fixed on the
cross-beams elastic body to facilitate force/torque loading process in calibration experiments. Other
parts like pedestal are used for supporting and sealing. Under white protective coatings, twenty-four
uniaxial foil strain gauges are attached to cross elastic beams with special adhesives for strain gauges
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bonding. Six Wheatstone bridges are constructed for the measurement of force/torque in six dimensions.
Measurement ranges and geometric dimensions of the sensor are the same as Example 1 in Table 1.
Strain gauges for force measurements are pasted 6 mm away from beginning surfaces, strain gauges for
torque measurements are pasted 12 mm away from beginning surfaces.

The six Wheatstone bridges on cross elastic beams are connected to a static strain recorder. The static
strain recorder provides more than six input channels and a direct reading LED display. It is capable
of displaying strains of strain gauges when connected to quarter-, half-, and full- bridge strain-gauge
circuits. The resolution of the strain recorder is 1 µε, the measurement range is ±19,999 µε, and the
accuracy is 0.5% ± 3µε. These features meet requirements of the calibration experiments in our work.

During calibration process, force or torque in each dimension is calibrated separately by a series of
standard loads. Weights and pulley blocks are utilized for force/torque loading [21]. Loading forces inX
direction are generated by a unilateral pulley block and weights while indexing plate is rotated to adjust
the loading direction. Loading forces in Z direction are generated by weights, which are directly put on
the calibration pillar. Loading torques inX direction are created by a pair of horizontal forces. One force
is applied on the upper part of the calibration pillar, and the other force is applied on the lower part in
opposite direction. Loading torques in Z direction are generated by applying one horizontal force on the
right side of the calibration pillar and the other equal and opposite force on the left side. The calibration
range of Fx is from −100 N to +100 N with an incremental step of 10 N, the calibration range of Fz is
from −100 N to 0 N with an incremental step of 10 N. The calibration range of Mx is from −10 Nm to
+10 Nm with an incremental step of 1 Nm, the calibration range of Mz is from 0 Nm to 12 Nm with an
incremental step of 0.8 Nm.

Besides calibration of one-dimensional force/torque, three groups of combined loads are applied
during the calibration experiments. In the first group, various loading forces in Z direction are applied
while a constant force is applied in X direction. In the second group, various loading torques in
X direction are applied while a constant force is applied in Z direction. In the third group, various
one-dimensional loading forces are applied along the bisector between X and Y directions.

4.3. Validation of the Analytical Model

As for the proposed analytic solutions, derived Equations (8), (13), (18) and (22) are utilized to
compute strains of elastic bodies under Fx, Fz, Mx, Mz respectively. All calculations are done in
MATLAB 2010b while the shear coefficient (k) is defined to be 1.0 and the shear modulus (G) can
be calculated as 27 GPa. Other material properties like the elastic modulus (E) are defined the same as
the case in FEA simulations.

Figure 13 presents comparisons of strains calculated by the proposed analytical solutions and the FEA
simulation results under applied force/torque in each dimension. In each sub-figure of Figure 13, two
kinds of data are presented. The first kind of data, which are depicted by colored lines, represent strains
calculated from Equations (8), (13), (18) and (22) in the proposed mechanical models. The second kind
of data, which are depicted by colored points, represent strain calculated from FEA simulations. The
colors red, black, blue, and green indicate that the elastic body is under effect of Fx, Fz, Mx, and Mz

respectively. The horizontal axis represents the distance of any node in selected surface away from the
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beginning surface, corresponding to parameter x in the mechanical models. The vertical axis represents
the strain value of the node, corresponding to parameters εFx ,εFz ,εMx and εMz in the mechanical models.

Figure 13. Comparison of analytical solutions and FEA simulations. (a) Example 1;
(b) Example 2; (c) Example 3; (d) Example 4.
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Good agreement is shown between proposed analytical solutions and FEA solutions. The FEA
simulated strains of nodes, which locate near the beginning or the end surface of the cross elastic
beam, may drift noticeably from the strain value predicted by the proposed mechanical models. The
discrepancy in the responses can be attributed to the stress concentration due to sharp corners in the
mechanical structure, which is not taken into account in the proposed mechanical models. However, in
practice, the stress concentration can be largely eased by adding fillets in the sharp corners and efficiently
avoided by keeping some space between strain gauges and the sharp corners. As a result, the deviations
caused by stress concentration are insignificant and can be ignored.

Figure 14 and Table 2 show comparisons between strains of strain-gauge-locations obtained from the
calibration experiments and strains calculated from proposed analytical solutions under one-dimensional
force/torque and combined loads, respectively. In each sub-figure of Figure 14, blue points represent
calibration data obtained from calibration experiments, and the blue line represents line drawn of strains
calculated from proposed analytical solutions. The horizontal axis represents a series of standard loading
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forces/torques, while the vertical axis represents strains of strain-gauge-locations. In Table 2, strains
obtained from calibration data and proposed analytical solutions under three groups of combined loads
are presented.

Figure 14. Comparison of analytical solutions and calibration data under one-dimensional
force/torque. (a) Strains on strain-gauge-locations under Fx; (b) Strains on
strain-gauge-locations under Fz; (c) Strains on strain-gauge-locations under Mx; (d) Strains
on strain-gauge-locations under Mz.
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Table 2. Comparison of analytical solutions and calibration data under combined loads.

Strain Fx = 40 N Fz = −40 N Fx = Fy
Values(µε) Fz = −20 N Fz = −80 N Mx = 2 Nm Mx = −6 Nm Fy = 28.3 N Fy = 56.57 N

Calibration εFx = 56.9 εFx = 57.0 εFz = −56.8 εFz = −61.5 εFx = 41.5 εFx = 82.6
Data εFz = −31.1 εFz = −122.7 εMx = 78.2 εMx = −233.5 εFy = 40.9 εFy = 82.2

Mechanical εFx = 59.1 εFx = 59.1 εFz = 49.1 εFz = 49.1 εFx = 41.8 εFy = 83.6
Model εFz = −24.6 εFz = −98.2 εMx = 74.4 εMx = −223.2 εFx = 41.8 εFy = 83.6
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As is demonstrated in Figure 14 and Table 2, strains estimated from proposed analytical solutions are
in close agreement with calibration data. The mechanical models are able to estimate strain distributions,
which are the key response parameters and features of cross-beams elastic bodies in high precision.
When one-dimensional force/torque is applied, the prediction error of the proposed mechanical models
is under 10%. The observed deviations occur for various reasons, like machining accuracy, modeling
idealizations of the Timoshenko beam and elastic bodies. When combined loads are applied, the
prediction error is under 20%. Compared with the accuracy under one-dimensional force/torque, the
increased errors come from coupling errors, which can be reduced by decoupling algorithms [21–23].
Note that in order to ensure proper operation and validate the correctness of measurements, even those
sensors that are fabricated by most sophisticated instruments need to be calibrated from time to time.
According to empirical data, the expected calculated strains at the attachment locations of foil strain
gauges under effects of full scale values should be 1.0 × 10−4 ∼ 9.9 × 10−4 to ensure both sensitivity
and strength. As a result, the accuracy of the proposed mechanical models is high enough in general.

Having gained confidence in the reliability of the detailed mechanical models, herein we examine
another crucial criterion, i.e., the processing speed for calculations. To evaluate the processing speed,
the calculation time of the proposed mechanical models and the FEA with respect to the above four
examples are recorded respectively. The whole process is repeated 5 times. All calculations are
made on a Windows XP Inter(R) Core (TM) 2 Duo CPU, 2.8 GHz processor with 2.0 GB RAM.
The FEA simulations are carried out by means of a prewritten program in APDL (ANSYS Parametric
Design Language).

Table 3 shows a summary of the averaged calculation time. For each example, the elapsed time
of preprocessing and solution steps in FEA under Fx, Fz, Mx, Mz are recorded separately, and the
total calculation time is a summarization of the four elapsed time. It can be easily found that the total
calculation time is reduced from more than 1,000 seconds to less than 0.0005 second by the proposed
analytical solutions. The calculation time of the proposed analytical solutions is much less than that for
FEA simulations. The proposed analytical solutions are proven to be a fast prediction tool for strains of
cross-beams elastic bodies for six-axis force/torque sensors.

Table 3. Averaged calculation time (in second) of mechanical models and FEA.

Elapsed Mechanical Model FEA
Time (total calculation time) Fx Fz Mx Mz Total Calculation Time

Example 1 0.000393 288.9 293.9 303.3 304.7 1,190.8
Example 2 0.000464 335.4 346.8 342.7 349.1 1,374.0
Example 3 0.000469 246.1 248.0 253.5 252.9 1,000.5
Example 4 0.000488 468.4 470.2 472.9 468.6 1,880.1
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5. Conclusions

This paper proposes analytical solutions for fast estimating strain distributions of cross-beams
six-axis force/torque sensors by means of mechanical modeling. The mechanical models are based
on Timoshenko beam theory, which accounts for shear deformation and rotational inertial effects.
Formulas are derived via second order differential equations in terms of translational and angular
displacement while their boundary conditions are obtained from deformations of elastic bodies under
external force/torque in each dimension. The strain distributions on cross elastic beams of elastic bodies
are formulated. Closed-form expressions of strains in terms of complicated geometric parameters, loads
and material properties are obtained.

The models are validated by FEA simulations and calibration experiments, and the proposed models
are found to provide reliable analytical solutions for evaluating strains. The application scope of
the proposed mechanical models is wide. The precondition is that the span-to-depth ratio of cross
elastic beams should be higher than 3:1. Compared with FEA simulations, the calculation time is
greatly reduced without compromising accuracy in our work, which will be advantageous in computer
simulation of whole design process of cross-beams six-axis force sensors. The proposed analytic
solutions of cross-beams elastic bodies can also be used to verify the correctness of FEA simulations.
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