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Abstract: In this paper, a human electrocardiogram (ECG) identification system based on 

ensemble empirical mode decomposition (EEMD) is designed. A robust preprocessing 

method comprising noise elimination, heartbeat normalization and quality measurement is 

proposed to eliminate the effects of noise and heart rate variability. The system is 

independent of the heart rate. The ECG signal is decomposed into a number of intrinsic 

mode functions (IMFs) and Welch spectral analysis is used to extract the significant 

heartbeat signal features. Principal component analysis is used reduce the dimensionality of 

the feature space, and the K-nearest neighbors (K-NN) method is applied as the classifier 

tool. The proposed human ECG identification system was tested on standard MIT-BIH 

ECG databases: the ST change database, the long-term ST database, and the PTB database. 

The system achieved an identification accuracy of 95% for 90 subjects, demonstrating the 

effectiveness of the proposed method in terms of accuracy and robustness. 

Keywords: biometrics; ECG Identification System; ensemble empirical mode decomposition; 

k-nearest neighbors 

 

1. Introduction 

With the development of society and technology, traditional human identification technologies like 

keys, ID cards, and passwords are no longer adequate to satisfy modern security demands. The advent of 

OPEN ACCESS



Sensors 2013, 13 6833 
 

biometric identification technology (BIT) may effectively solve this problem. BIT is a technology that 

uses physiological or behavioral characteristics extracted from human subjects to automatically identify 

the individual subject by using a computer-based algorithm [1]. In the past few decades, a number of 

biometric identification technologies have been investigated, based on physiological characteristics such 

as the face, iris, retina, and fingerprints, and behavioral characteristics such as speech, signature, or gait. 

Although these biometrics offer unique advantages such as portability, reliability, and security, they also 

have unique defects, including the ease with which they can be circumvented, for instance by using a 

prosthetic finger or iris, or a facial photo. 

Because ECGs reflect the cardiac electrical activity and contain substantial important information about 

the human body, they have been used as a tool for clinical diagnosis since the early 20th century. Recently, 

researchers have evaluated ECGs as a new biometric characteristic for human identification [2–13]. The 

validity of ECG as a biometric identification tool is supported by its permanence, universality, and 

uniqueness. Every living person produces ECG signals, which can be observed and recorded throughout 

their lifetime. Individual differences in heart physiology and geometry yield produce unique features in 

ECG signals. The ECG signal has several advantages compared to other biometric characteristics: the 

heart rate, and therefore the ECG waveform, is controlled by the autonomic nervous system and is affected 

by other sympathetic and parasympathetic factors, making it difficult to mimic. Because ECG is a feature 

generated inside the body, environmental factors cannot significantly impact the waveform. In addition, 

the primary structure of the signal is stable over a long period of time. The ECG signal is easily 

collected by placing the two thumbs onto electrode nodes and this inherently indicates the animate 

nature of the subject. 

Identification systems based on ECGs also have the advantages of requiring minimal space and 

offering rapid results as opposed to other biometrics. Based on the number of extracted multiple-fiducial 

points, previous work can be divided into three categories: fiducial-based, single-fiducial-based, and 

non-fiducial-based approaches. Table 1 summarizes these approaches. 

Table 1. Previously reported ECG analysis approaches. 

Authors ECG Database Feature Extraction Classification Performance

Biel et al. Self-collected 
Uses a SIEMENS ECG apparatus to record 

medical diagnostic features 
PCA 98% 

Shen 

et al. 

20 MIT/BIH 
Seven fiducial features from P, QRS, and 

T waves Template matching 

DBNN 

100% 

168 MIT/BIH 
17 fiducial features from P, QRS, and  

T waves 
95.3% 

Wang  

et al. 

29 MIT/BIH 

PTB 

Extract analytic features and appearance 

features from ECG fiducial 

PCA 

LDA 

100% 

92.4% 

Li Wang  

et al. 
Self collected 

Use difference threshold method to extract 

eight duration and amplitude features 
BP/RBF 100% 

Chiu et al. 30(8) QT 
Wavelet decomposition to extract feature 

coefficients 

Euclidean distance 

measure 

100% 

81% 

Chan 

et al. 

30 

Self-collected 

Heart beat ECG waveform fuse wavelet 

coefficients 
PRD CCORRWDIST 95% 

Plataniotis  

et al. 
14 MIT/BIH AC/DCT AC/LDA 

Euclidean distance 92.8% 

Gaussian log likelihood 100% 
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1.1. Multiple-Fiducial-Based Approach 

Multiple-fiducial-based approaches extract features from selected points on the ECG waveform, such 

as the duration and amplitude of the P and T waves and the QRS complex, and then apply designated 

classifiers for identification. 

Biel et al. extracted multiple-fiducial features from each standard 12-lead ECG signal to obtain  

30 characteristics including the width, duration, and amplitude of the P and T waves and the QRS 

complex [2]. Principal component analysis (PCA) was used to reduce the dimensions of the feature 

coefficients. Finally, the soft independent modeling of class analogy model was used for classification, 

with a final identification rate of 100% over 20 healthy subjects. Later, Biel proposed another method 

based on a single-lead ECG signals. 

Shen et al. extracted seven temporal and amplitude features from the QRST wave [4], and then used 

a template matching method to calculate the correlation coefficients of two QRS complexes to classify 

the subjects. The possible candidates resulting from the template matching were put into a 

decision-based neural network (DBNN), with a final recognition rate of 100% over 20 subjects. They 

later evaluated the system using a larger database containing 168 subjects and 17 temporal and 

amplitude features, with a resulting system accuracy of 95% [3]. 

Wang et al. combined analytic and appearance features extracted from ECG fiducials to achieve a 

high identification rate [5]. PCA and linear discriminant analysis (LDA) were used to filter the 

redundancy features. In a database consisting of 29 participants, the recognition accuracy was  

100% and the heartbeat recognition rate was 92.4%. 

Li Wang employed a method based on wavelet noise reduction to eliminate the effects of noise [6]. The 

difference threshold method was used to extract eight duration and amplitude features from the P 

and T waves and QRS complex. The feature coefficients were fed into the back propagation (BP) 

and radial basis function (RBF) neural networks, for an identification rate of 100% in a database 

of 10 individuals. 

The disadvantage of multiple-fiducial-based approaches is that their identification performance 

is affected by the accuracy of fiducial point detection. Furthermore, there is no universal standard 

defining the boundaries of the ECG wave features. Fiducial points detected by ECG devices are 

approximate locations and do not satisfy biometric system requirements because even slight variation 

in the locations will result in misclassification. The P and T waves are sometimes too small to detect, 

preventing exact extraction of fiducial features such as the duration and width of the P and T waves. 

1.2. Single-Fiducial-Based Approaches 

Because the R point is easy to identify in the ECG signal, single-fiducial based approaches extract 

the heartbeat cycle signal based on the R point location and use the transformed waveform or 

coefficients as the features. 

Chiu et al. extracted a fixed-length heartbeat signal based on the position of the R point [7]. 

Wavelet transformation was used to decompose four continuous heartbeat signals and obtain the 

feature coefficients. The identification rate was 100% over 30 healthy individuals and 81% over in a 

database of 30 healthy subjects and eight unhealthy subjects. 
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Chan et al. extracted a fixed-length heartbeat signal based on the position of the R point and using 

its wavelet coefficients as the features [8]. A threshold was then selected according to the correlation 

analysis. The system was evaluated using a database of 30 individuals with an accuracy of 82.5% and 

87.5%, respectively, when combined the two features, and the identification rate is 95%. 

The identification performance of single-fiducial-based approaches is not affected by the accuracy 

of fiducial point detection, but these methods extract feature coefficients based on a fixed-length 

heartbeat signal and do not consider the effects of heart rate variability (HRV). In general, the 

normal heartbeat range is 60–100 bpm, but it changes with heart rate. 

1.3. Non-Fiducial-Based Approaches 

To eliminate the need for fiducial point localization in the ECG signal, Plataniotis et al. used an 

autocorrelation (AC) of the segmented ECG signal followed by discrete cosine transform (DCT) or 

LDA [9,10,13], also called the AC/DCT or AC/LDA methods, with identification accuracies of 92.8% 

and 100%, respectively. Although the AC/DCT and AC/LDA methods achieved high recognition rates, 

these methods also have disadvantages. These approaches do not use ECG data effectively and require 

ECG data of a minimum length to calculate the AC coefficients; however, they do capitalize on the 

information in the heartbeat signal.  

This paper describes a new feature extraction method based on ensemble empirical mode 

decomposition (EEMD) for automated analysis of single-lead ECGs in biometric identification 

applications. The proposed system applies a robust preprocessing algorithm to the raw ECG signal to 

compensate for noise and heart rate variability (HRV), followed by EEMD and Welch spectral 

analysis to extract the important temporal and spectral features from one heartbeat signal. Furthermore, 

the K-nearest neighbors (K-NN) method was used for classification after application of the PCA 

dimensionality reduction technique to increase the processing speed. 

2. Electrocardiogram Data and Noise 

2.1. Electrocardiogram 

An ECG trace describes the electrical activity of the heart as recorded using electrodes placed on 

the body surface. The variation in voltage is due to the action potentials of cardiac cells. The sinoatrial 

(SA) node is the pacemaker of the heart, and hence, it is responsible for regulation of the heart rate. 

The electrical activity is initiated when the SA node depolarizes, and the electrical impulse travels 

rhythmically along the conduction pathway, stimulating sequential contraction and relaxation of the 

heart muscle. The final destination is the atrioventricular (AV) node, which is responsible for 

regulating the conduction rate to properly pump blood from the atria into the ventricles [14,15]. The 

resulting heartbeat measured is by the ECG as a series of waves with a particular morphology, rhythm, 

and rate, as shown in Figure 1, which come from an ECG data on MIT-BIH database [16]. 

P wave: This wave reflects the depolarization of the right and left atria, and has a smooth 

morphology and small amplitude because of the limited atrial muscle mass. The spectrum of the P 

wave is considered to be about 10–15 Hz. When the heart rate changes, the magnitude and duration of 

the P wave also changes slightly. 
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Figure 1. Classical wave profile of an ECG signal. 
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QRS complex: This complex has the largest amplitude of the ECG waveform and is the most 

important part of the ECG signal. Because of its steep slope, the QRS complex has a high-frequency 

spectrum concentrated in the range 10–50 Hz. The QRS complex is considered to be fairly constant 

and is not altered by changes in heart rate, as it reflects the time between the depolarization of the right 

and left ventricles. 

S-T interval: This interval begins at the end of the S wave and curves into the T wave, representing 

the interval during which the ventricles remain in an active, depolarized state. When the heart rate 

changes, the S-T interval is altered significantly.  

T wave: This wave reflects the depolarization of the ventricles, and its position relies strongly on 

the heart rate, appearing closer to the QRS complex at rapid rhythms. The T wave shifts significantly 

with changes in the heart rate, e.g., when the heart rate increases, the magnitude of the T wave 

increases and the duration decreases, with an almost linear correlation to heart rate. 

2.2. ECG Noise 

During the ECG recording, the signal may be corrupted by low- and high-frequency noise that 

alters the waveform of the ECG trace from its original structure. To eliminate this noise, the most 

common types of noise and artifacts must be considered [14,15]. 

Quality measurement: Extraneous noise in the ECG trace may be caused by a variety of noise 

sources including perspiration, respiration, body movements, and poor electrode contact. The 

magnitude of this noise may exceed the amplitude of the QRS complex by several times, but its 

spectral content is usually confined to an interval below 1 Hz. 

Electrode motion artifacts: These are manifested as large-amplitude waveforms primarily caused by 

stretching that alters the impedance of the skin around the electrode. They are more difficult to combat 

because their spectral content ranges from 1 to 10 Hz and overlaps considerably with the PQRST complex. 

Power line interference (50/60 Hz): This is high-frequency noise caused by interference from 

nearby devices, resulting from improper grounding of the ECG equipment. 
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Electromyography noise (EMG noise): EMG noise is caused by the electrical activity of skeletal 

muscles during periods of contraction or owing to a sudden body movement. Although, the frequency 

component of EMG overlaps considerably with that of the QRS complex, it also extends into higher 

frequencies. As a result, the processing of the ECG trace to remove these noises effects naturally 

results in some distortion of the signal. 

Respiratory activity: Beat-to-beat variation in the morphology and heart rate occurs during the 

respiratory cycle either as a result of changes in the dominant vector direction of the electrical wave 

propagation due to changes in heart position or as a result of changes in lung conductivity. 

3. Theoretical Framework 

3.1. EMD Algorithm 

Based on the assumption that any signal comprises intrinsic mode functions (IMFs) of different 

scales, the EMD method can decompose a signal into a set of IMF components. An IMF is a function 

that satisfies the following conditions: (1) the number of extremes and the number of zero-crossings in 

the data set must either be equal or must differ by no more than one; and (2) at any point, the mean 

value of the envelope defined by the local maxima and the envelope defined by the local minima is 

zero. The EMD processing of a signal x(t) can be described as follows [17]: 

(1) Initialize r0 = x(t), where i = 1; 

(2) Extract the ith IMF; 

(a) Initialize hi(k−1) = ri, where k = 1; 

(b) Extract the local maxima and minima of hi(k−1); 

(c) Interpolate the local maxima and minima using a cubic spline function to construct the upper 

and lower envelopes of hi(k−1); 

(d) Calculate the mean mi(k−1) of the upper and lower envelopes of hi(k−1); 

(e)  Let hik = hi(k−1) − mi(k−1); 

(f)  If hik is an IMF, then set ci = IMFi = hik or else go to step (b) where k = k + 1; 

(3) Define ri + 1 = ri − IMFi; and 

(4) If ri + 1 has at least two extrema, then go to Step (2), otherwise the decomposition process is 

stopped and ri + 1 is the residue of the signal. 

The result is the residue rl+1 and the collection of l IMFs ci (i = 1,2,3, …, l). The summation of all 

the IMFs and the final residue rl+1 yields: 

1
1

( )
l

i l
i

x t c r 


   (1)

Thus, the signal x(t) is decomposed into l IMFs and a residue rl+1, which represents the mean trend 

of the signal x(t). The IMFs c1, c2,…, cl represent different frequency components from high frequency 

to low frequency, whereas rl+1 indicates the general tendency of the signal x(t). 
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3.2. EEMD Algorithm 

One shortcoming of the EMD method is the appearance of mode mixing. Mode mixing is defined as 

a single IMF including oscillations of dramatically disparate scales, or a component of a similar scale 

residing in different IMFs. It is a result of signal intermittency. As discussed by Huang et al. the 

intermittence could not only cause serious aliasing in the time–frequency distribution, but also make 

physical meaning of individual IMF unclear. When the mode mixing problem occurs, an IMF can 

cease to have physical meaning by itself, suggesting falsely that there may be different physical 

processes represented in a mode. To overcome the problem of mode mixing in EMD, a new 

noise-assisted method called EEMD is proposed as a solution to the mode mixing problem of the EMD 

method. EEMD defines the true IMF components as the mean of an ensemble of trials, each 

comprising the signal with an added white noise component of finite amplitude. The ensemble method 

can clearly separate the natural scale of signals without the need for subjective a priori criteria. Recent 

studies on the statistical properties of white noise have suggested that EMD is an effective self-adaptive 

dyadic filter bank when applied to white noise, which inspired the new method [18–20]. 

The principle of EEMD is as follows: the added white noise constitutes components of different 

scales that uniformly inhabit the entire time-frequency space. When a signal is added to the uniformly 

distributed white noise background, the different scale components of the signal are automatically 

projected onto proper scales of reference established by the white noise component. Because each of 

the decompositions contains the signal and the added white noise, each individual trial generates very 

noisy results. Because the noise in each trial is different, it can be almost entirely removed by 

calculating the ensemble mean of all trials. The ensemble mean is treated as the true answer because 

only the signal is preserved as the number of trials added to the ensemble increases. The essential 

principle of the proposed method is based on the following observations [20]: 

(1) A uniformly applied white noise background is cancelled out in a time-frequency ensemble 

mean; therefore, only the signal remains in the final noise-added ensemble mean. 

(2) White noise of finite amplitude necessarily compels the ensemble to discover all possible 

solutions. The white noise causes the different scale signals to reside in the corresponding IMFs, 

controlled by dyadic filter banks, and renders the results of the ensemble mean more meaningful. 

(3) The EMD result with true physical meaning is not one without noise; however, it is the 

ensemble mean of many trials using noise-added signals. 

Based on the aforementioned observations, the EEMD algorithm can be stated as follows: 

(1)  Execute the mth trial for the signal with added white noise. 

(a)  Add the white noise series with the given amplitude to the investigated signal, i.e. 

xm(t) = x(t) + nm(t) (2)

where nm(t) represents the mth added white noise and xm(t) indicates the noise-added 

signal of the mth trial. 
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(b)  Decompose the noise-added signal xm(t) into l IMFs cim(i = 1, 2,…, l, m = 1, 2,…, M) 

using the EMD method, where cim indicates the ith IMF of the mth trial; l is the number of 

IMFs; and M is the number of the ensemble members. 

(c)  If m < M, then let m = m + 1 and repeat the steps (a) and (b) until m = M, but using 

different white noise each time. 

(3) Compute the ensemble mean ic  of the M trials for each IMF to obtain: 

,
1

1 M

i i m
m

c c
M 

   (3)

(4) Report the mean ),,2,1( lici   of each of l IMFs as the final ith IMF. 

An amount of research has been done recently about EMD/EEMD for ECG signal processing [21–26]. 

To demonstrate the EEMD performance of overcoming the mode mixing problem, an ECG signal is 

considered in this section. The ECG signal record 16,272 m comes from the MIT-BIH Normal Sinus 

Rhythm Database. The signal is a length of 3,000 sample points. The signal is decomposed by EMD and 

EEMD respectively to illustrate the mode mixing problem. The ECG signal is shown in Figure 2, and the 

decomposed IMFs are shown in Figure 3. Mode mixing phenomenon exists. 

Figure 2. ECG signal. 

 

The same ECG signal is decomposed again using EEMD with the ensemble number 30 and the 

added noise amplitude 0.1 time standard deviation of the signal. The IMFs are shown in Figure 4. The 

corresponding IMF spectrum distribution of EMD and EEMD are also illustrated in Figure 5. The 

difference between EMD and EEMD is the mode mixing reduction of EEMD. Comparing the IMF 

component of the same level, EEMD has more concentrated and band limited components. EEMD 

method is able to solve the problem of mode mixing and achieve an improved decomposition with 

physical meaning. The conclusion is identical to reference [27]. 
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Figure 3. IMFs obtained by EMD. From top to bottom is low level IMF to high level IMF. 

 

 

Figure 4. IMFs obtained by EEMD. From top to bottom is low level IMF to high level IMF. 
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Figure 4. Cont. 

 

Figure 5. Corresponding IMF spectrum distribution of (a) EMD and (b) EEMD. 
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3.3. EEMD Parameter Settings 

The previous section described the EEMD algorithm and its specific operating process. However, 

before employing EEMD, two parameters must be set: the ensemble number and the amplitude of the 

white noise. 
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3.3.1. Ensemble Number 

The effect of added white noise should conform to the following statistical rule: 

n

a
e

N
  (4) 

where N is the ensemble number, a indicates the amplitude of the added white noise, and ne  is the 

standard deviation of error, which is defined as the discrepancy between the input signal and the 

corresponding IMFs. 

To increase the effectiveness of EEMD, the amplitude of the added white noise must be large 

enough to generate the change of extrema required for EMD. This is true when the investigated 

signal has a large gradient. Although the added white noise may result in some errors, its effects 

can be reduced to a negligible level. Generally, an ensemble number of a few hundred will 

produce an accurate result, and the remaining noise would cause no more than a fraction of one 

percent error if the amplitude of the added noise is a fraction of the standard deviation of the 

investigated signal [20]. 

3.3.2. Amplitude of Added White Noise 

Because it is truly dyadic, EMD decomposition is a noise-friendly method. Within a certain range 

of noise amplitude, the decomposition results of EEMD have a minimal sensitivity to the noise 

amplitude. The decomposition results change very little with increasing noise amplitude and ensemble 

number, provided the added noise has a moderate amplitude and the ensemble number is large enough. 

However, to reduce the contribution of the added noise to the decomposition results, the ensemble 

number should increase with the noise amplitude. Therefore, decomposition results using EEMD, 

different from those of EMD, are unique and robust. The proper amplitude of added noise should be 

about 0.2 times the standard deviation of the investigated signal, although this is not always possible 

and there is not a specific principle to guide selection of the noise amplitude. Consequently, it is 

necessary to try several different noise levels to determine the most appropriate one [20]. 

3.4. Spectral Analysis using Welch Method 

The Welch method is a power spectrum density estimator that applies the periodgram. It is based on 

Bartlett’s idea of splitting of the data into segments and finding the average of their priodograms. The 

difference is that the segments are overlapped, usually by 50% or 75%, and the data within the 

segments are windowed. If L is the length of the segments, the ith segment is denoted by 1-L
0i[n]}{x , and 

the offset of the successive sequences is D samples, then: 

( 1)N L D k    (5) 

where N is the total number of observed samples and K = N/L, and if there is 50% overlap, K = 2N/L − 1. 

The ith sequence is: 

[ ] [ ( 1) ],       {0,1, , 1}ix n x n i D n L      (6) 

where i = 1, 2,…, K, and its periodogram is defined by: 
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21
( ) 2

1

ˆ ( ) 1/ [ ] [ ]
L

i j fn
M i

n

P f L w n x n e 




   (7) 

Here, )(ˆ )( fP i
M is the modified periodogram of the data because the samples x[n] are weighted by a 

nonrectangular window w[n]. The Welch spectrum estimate is then given by: 

1

ˆ ˆ( ) 1/ ( ( ))
K

i
B M

i

P f K P f


   (8) 

By permitting the overlap of sequences, more segments can be formed than in the case of Bartlett’s 

method. Also, by using the same number of segments, the overlap allows for longer segments. The 

increased number of segments reduces the variance of the estimators, and the longer segments improve 

its resolution. Thus, the Welch method generates a more favorable trade-off of reduction in variance 

for improvement in resolution than Bartlett’s method [28]. 

4. Identification Method 

The proposed approach consists of three stages: preprocessing, feature extraction, and classification. 

A general block diagram of the proposed identification system is shown in Figure 6. Heartbeat 

normalization and quality measure is proposed to eliminate the effects of noise and HRV. Then ECG is 

decomposed into IMFs by EEMD and the power spectrum of each IMF component is estimated by 

Welch method. The IMFs and power spectrum constitute the feature set, the size of which is reduced 

substantially by using PCA to reduce the dimensions of the feature coefficients. In end, The K-nearest 

neighbors (K-NN) method is applied as the classifier. 

Figure 6. Block diagram of the proposed human identification system. 
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4.1. Preprocessing 

During the ECG recording, the signal may be corrupted by noise from sources such as baseline 

drift, power line interference, electrode motion artifacts, and electromyography. This noise alters 

the waveform of the ECG trace from its original structure. HRV also affects the waveform of the 

heartbeat signal. To obtain high-quality ECG signals, a robust preprocessing step is proposed to 

eliminate the effects of noise and HRV. A block diagram of the proposed processing scheme is 

shown in Figure 7. 

Figure 7. Block diagram of proposed processing scheme. 

 

4.1.1. Noise Elimination 

The noise elimination process consists of two main stages: detrending and wavelet minimax 

thresholding noise elimination. The detrending method is based on the prior smoothness approach and 

operates as a time-varying finite impulse response high-pass filter, which can eliminate baseline drift 

and other low frequency noise. Next, the input ECG signal is decomposed into three levels by 

biorthogonal spline wavelet, and a threshold is selected on the basis of the minimax thresholding method 

to remove high frequency noise. The wavelet shrinkage denoising can effectively reduce the noise of 

non-stationary signal but preserve the local regularity. 

The wavelet shrinkage can be decomposed into three steps as follows [29]: 

1. Decomposition: compute the wavelet decomposition coefficients of observed signal. 

2. Thresholding wavelet coefficients: for each decomposition level (except for the approximation), 

select a threshold value and threshold function, then apply shrink wavelet coefficients according 

the threshold value and threshold function. 

3. Reconstruction: Wavelet reconstructions based on the modified coefficients, and then restore 

noiseless signal.  

In the wavelet shrinkage, how to select the threshold function and how to select the threshold value 

are most crucial. Donoho introduced two kinds of threshold functions: “hard threshold function” and 

“soft threshold function”. 

Hard threshold function can be defined as follows: 
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Hard threshold function removes the coefficients that are smaller than the threshold and leaves the 

other ones unchanged. 

Soft threshold function can be defined as follows: 
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Soft threshold function also removes the coefficients that are smaller than the threshold but shrink 
the other ones. 

Donoho and Johnstone proposed a sure shrink thresholding rule based on minimizing unbiased risk 

estimate. The estimate of the risk can be obtained for a particular threshold value . Minimising the risk 

gives a selection of the threshold [30]. A comparison of the ECG signal before and after noise 

elimination is shown in Figure 8. 

Figure 8. Comparison of ECG signal before and after denoising (ECG record s20051m 

selected from ST long term). 

 

4.1.2. Heartbeat normalization 

Typically, the heart rate of a normal sinus rhythm is 60–100 bpm. During ECG recording, the signal 

is not constant and can be significantly affected by emotions such as stress and anxiety, or other factors 

like exercise, shock, or body chemistry, in turn affecting the morphology of the ECG. To eliminate the 

effects of HRV, a method was proposed to linearly normalize the heartbeat to 75 bpm. A block diagram 

of the heartbeat normalization process is shown in Figure 9. 

To achieve a normalized heartbeat signal, each heartbeat M(i) in an input ECG segment S must be 

extracted first. QRS complex detection is implemented using the wavelet-based QRS delineation 

method to determine characteristic point of QRS complexes in ECG signal [31]. Using a biorthogonal 

spline wavelet to detect the QRS complex of the ECG signal, the signal is decomposed with the 

equivalent filter of a biorthogonal spline wavelet by Mallat algorithm. The signal singularity's Lipschitz 

exponent is used to analyse the relationship between the signal singularity (R peak) and the 

zero-crossing point of the modulus maximum pair of its wavelet transform. After the R-peak detection in 
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the ECG signal, the location of the R peaks are denoted as p(i), i = 1,2,3, …, m. The fiducials of the QRS 

complex are delineated according to the location of R peak. The characteristic wave intervals of the ECG 

will be influenced by heart rate changing in some cases [32,33]. The QRS wave shows great stability 

with the change of the heart rate on the contrary to both the T and P waves which show a variation with 

the change of the heart rate. According to [34], an adaptive adjusting method is adopted to acquire the 

characteristic wave intervals of the ECG. Data points are selected from the position of the R peak 

backward (0.06 × fs)th point to forward (0.1 × fs)th point, which can be denoted as: 

QRS(i) = S[p(i) − 0.06 × fs : p(i) + 0.1 × fs] (11)

where fs is the ECG recording sample frequency. The waveform of the P-Q duration will change slightly 

with changes in heart rate, so an adaptive adjusting method for P-Q duration measuring position is 

selected, which can be calculated using Equation (12): 

PQ(i) = S[p(i) − 2.24 × fs + dt : p(i) – 0.06 × fs] (12)

where dt is a variable threshold depending on the change in heart rate, and it can be expressed as: 

10     65
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10     80 95

20     95

ms HR bpm

ms bpm HR bpm
dt

ms bpm HR bpm

ms HR bpm

 
     
 

 (13)

Figure 9. Block diagram of heartbeat normalization process. 

 
Experiments have demonstrated an almost linear correlation between the duration of the T wave 

and the heart rate; thus, the waveform is segmented into two parts after the S wave, which is denoted 

as s(i) = S[p(i) + 0.1 × fs]. The two segments, called the S-T duration and the T wave, can be obtained 

using Equations (14) and (15): 

ST(i) = S[s(i) : s(i) + 0.08 × RR] (14)

T(i) = S[s(i) + 0.08 × RR : s(i) + 0.4 × RR] (15)

The heart-rate-dependent sections of each heartbeat, P-Q duration, S-T duration, and T wave, are 

resampled to 216, 100 and 320 ms, respectively, which represent the common lengths of these 

segments at a resting heart rate. After resampling, these segments are again combined with the 

heart-rate-independent section, the QRS complex, to recreate the entire heartbeat. The normal length of 
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a resting heartbeat is 800 ms. The amplitude of the heartbeat signal was also normalized to a mean of 

zero and a standard deviation of one because the amplitude of the ECG signal varies during each ECG 

recording. The waveform of ECG after normalization is shown in Figure 10. The ECG normalization 

method effectively eliminates the effects of HRV. 

Figure 10. ECG waveform of record 302 m after normalization. 

 

4.1.3. Quality Measure 

After heartbeat normalization, a quality measure method based on periodicity transforms (PTs) is 

used to measure the quality of the ECG signal [35]. The M-best algorithm is used to carry out the 

transform. The heartbeat signal Si extracted from the heartbeat normalization method is combined with a 

new synthesis signal F, defined as 1 2[ , , , ]nF S S S  . During PT, a quality measure Qi is estimated for 

each synthesis signal and expresses the confidence that the synthesis signal is free of major artifacts. To 

this end, the PT method is used to project the signals into a sum of periodic sequences. The rationale for 

the use of PTs is that the synthesis signal is a quasi-periodic signal, and any variation can usually be 

attributed to the recording error or noise effects. The period of the synthesis signal is 200 sample points; 

therefore, the PT projects the signal into a periodic sequence period of 200 sample points. The Qi  is 

then estimated as: 

/Q x X xi i i i   (16)

where xi is the ith signal input and Xi is its periodic projection onto the best period approximating the 

heart rate. Qi describes the comparative energies between the original and best projected periodic 

signals. Accordingly, Qi measures the strength of repetition of the ECG signal. As Qi for the ECG signal 

increases, confidence in the collected signal increases. Based on several previous experiments, the 

threshold was set as 0.8; thus, if Qi > 0.8, the signal is saved, otherwise another ECG segment is input until 

the quality of the selected ECG segment can satisfy the threshold requirement [36]. Four ECG segments 

from subject in MIT-BIH Arrhythmia database with different quality are illustrated in Figure 11. 
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Figure 11. ECG segments from subject in MIT-BIH Arrhythmia database. (a)(b) 

High-quality ECG signal with Qi > 0.8. (c)(d) Low-quality ECG signal with Qi < 0.8. 
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4.2. Feature Extraction Based on EEMD and PSD 

EEMD is adaptive and applicable to complex nonlinear and non-stationary series data, such as the 

ECG signal. When using EEMD, the first decomposed IMF corresponds to the highest frequency, and 

throughout the sifting process, the frequencies of decomposed IMFs decrease with the residue RN 

corresponding to the lowest frequency. 

Figure 12. EEMD decomposition result of record 302 m ECG signal. 

 

Because the spectral content of the ECG signal is primarily located between 1 and 50 Hz, the main 

IMFs (MIMFs) can be selected according to the corresponding frequency of each IMF. The spectrum of 

each IMF was estimated by the Welch spectral analysis method. Figure 12 shows the EEMD result of 

record 302 m from the MIT-BIH ST change database containing the original signal (signal), IMF 

components (IMF 1–IMF 6), and the residual component (res). The Welch method was then used to 
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analyze the power spectrum of each IMF component, and the simulation results are shown in Figure 13. 

The power spectrum of each IMF component reflects the distribution of the signal energy in different 

frequency scales. The power spectrum shows that most of the signal energy is concentrated in IMFs 1–4. 

These four IMF components contain the most important information of the heartbeat signal and are 

considered to be the MIMFs. Consequently, the temporal waveforms and power spectra of these four IMF 

components were selected as the feature coefficients. The MIMFs and their power spectra for the 302 m 

ECG record from the MIT-BIH ST change database are shown in Figures 14 and 15, where the heartbeat 

signals from different sessions have similar shading. 

Figure 13. Power spectrum of IMF components for record 302 m. 

 

Figure 14. MIMFs from different sessions of record 302 m ECG signal. 
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Figure 15. Power spectra of MIMFs from different sessions of record 302 m. 

  

The MIMFs and power spectra of ECG records 300 m, 302 m, 303 m, 306 m, and 308 m from the 

MIT-BIH ST change database are shown in Figures 16–19, where the different ECG records indicate 

distinctive characteristics. The waveform and the power spectrum of the heartbeat signal are 

subsequently fused into an eight-dimension matrix as a feature space. 

Figure 16. Waveforms of IMF 1 and IMF 2 from different ECG records. 
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Figure 17. Waveforms of IMF 3 and IMF 4 from different ECG records. 

 

Figure 18. Power spectra of IMF 1 and IMF 2 from different ECG records. 
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Figure 19. Power spectra of IMF 3 and IMF 4 from different ECG records. 

 

4.3. Classification 

After feature extraction, the size of the gallery set is reduced substantially by using PCA to reduce the 

dimensions of the feature coefficients, thus increasing the classification speed. PCA is an unsupervised 

learning technique that provides an optimal representation of the input data, with respect to least mean 
square error, in a lower-dimensional space [37]. Given a training set { } 1

CZ Zi i  , containing C classes 

with each class { } 1
CiZ Zi jij   consisting of a number of heartbeats zij, for a total of 


C

i iCN
1

 heartbeats, 

PCA is applied to the training set Z to find M eigenvectors of the covariance matrix: 
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i zNz

1 1
/1  is the average of the ensemble. The eigen heartbeats are the first M(≤N) 

eigenvectors corresponding to the highest eigenvalues, denoted as . The original heartbeat is 

transformed into the M-dimension subspace by linear mapping as: 

( )T
ij ijy z z   (18)

where the basis vectors are orthonormal. Subsequent classification of heartbeat patterns can be 

performed in the transformed space. PCA uses an orthogonal transformation to convert a set of 

variables into a set of principal components, which reduces dimension by retaining those 

characteristics of the data set that contribute most to its variance. The first four components of IMFs 

and their power spectrum are constituted the feature coefficients. The IMF feature coefficients matrix 

is 4 × 200 and their power spectrum coefficients matrix is 4 × 129. PCA is made by eigenvalue 

decomposition of two coefficients covariance matrix respectively. That is, it is applied twice. 

PCA reduces dimensions to 4 × 20 respectively. Then 8 × 20 feature matrixes is input into the classifier. 
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The comparison of the application of PCA and without the application of PCA is made. For 10 s ECG 

input, the application of PCA can reduce the running time above 1 s and improve the efficiency. 

The K-NN classifier is a statistics-based tool that is often applied for classification. Its primary 

objective is to find the k classified features that are most similar to the test features and confirm the 

categories of the test features according to the k feature categories. The similarity between two features 

is measured by the Euclidean distance between the two features, where decreasing distance indicates 

increasing similarity. 

5. Experimental Results 

The experimental procedure used to evaluate the proposed method is shown in Figure 2. The overall 

identification performance was measured on the basis of ECG segment recognition rates, or the rate of 

accurate subject identification based on one 10 s ECG segment. Each input 10 s test ECG segment was 

first subjected to the noise reduction process, followed by heartbeat normalization of the denoised 

ECG segment to extract the normalized heartbeat signal. The quality measure was then used to 

measure the quality of the extracted heartbeat signal, and if Qi of the signal did not satisfy the 

threshold, another ECG segment was input into the system. If the Qi of the heartbeat signal did satisfy 

the threshold, the feature extraction module then extracted the feature coefficients from the signal. This 

process involved decomposition of the heartbeat signal by the EEMD method. The waveforms and 

power spectra of IMFs 1–4 were fused to serve as the feature coefficients, forming an 

eight-dimensional matrix. Because this dimensionality of feature space is considerably high and 

unsuitable for a cost-efficient system, the PCA is used to reduce the dimensionality. An 8 × 20 matrix 

is generated using PCA to reduce the dimensionality, and then put into the classifier. Classification is 

performed by the K-NN classifier using Euclidean distance. 

5.1. ECG Data 

To evaluate the proposed system for subject identification, a series of experiments was conducted 

using data from three common public databases: the MIT-BIH ST change database, the long-term ST 

database, and the PTB database [16]. The MIT-BIH ST change database includes 28 ECG recordings 

of varying lengths, most of which were recorded during exercise stress tests and exhibit transient ST 

depression. The last five records (323 through 327) are excerpts of long-term ECG recordings and 

exhibit ST elevation. The sampling frequency of this database is 360 Hz. For this experiment,  

15 subject ECG records were selected with measurements representing a range of heart rate for the 

same subjects. To compare results among the databases, the records were resampled at 250 Hz. 

Because this database offers only one recording for each subject, several 10 s ECG segments were 

selected from different sessions in each record with varying heart rates. The gallery set consisted of 

ECG segments at resting heart rates of 50–70 bpm, and the remaining ECG segments were used to test 

the performance of the system. 

The long-term ST database contains 86 lengthy ECG recordings from 80 human subjects, selected 

to represent a variety of events causing ST segment changes, including ischemic ST episodes, 

axis-related non-ischemic ST episodes, episodes of slow ST level drift, and episodes containing 

mixtures of these phenomena. The database was created to support development and evaluation of 
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algorithms for accurate differentiation of ischemic and non-ischemic ST events, as well as basic 

research into the mechanisms and dynamics of myocardial ischemia. The sampling frequency of this 

database is 250 Hz. A subset of the database containing 18 subjects with a range of heart rates for the 

same subject was selected for evaluation. Several 10 s ECG segments from different sessions in each 

record were chosen to reflect different heart rates. The resting ECG recordings were used to build the 

gallery set and the remaining ECG segments were used to test system performance. The selected ECG 

records from the two databases contain a range of heart rates for the same subject as shown in Figure 20. 

Figure 20. Changes in heart rate for each subject. 

 
The PTB database was compiled by the National Metrology Institute of Germany and contains  

549 ECG recordings from 294 subjects. This database includes ECG signals for subjects diagnosed 

with a variety of clinical conditions (e.g., myocarditis, valvular diseases, and myocardial infarction). 

Recordings that were consistent with the requirements of the proposed simulations were marked as 

healthy. Every record includes the conventional 12-lead and three-Frank-lead ECG. The sampling 

frequency of these recordings is 1 kHz; therefore, each recording was resampled at 250 Hz for these 

experiments. In addition, for every subject in the PTB database, at least two recordings are available 

that were collected a few years apart. A subset of 12 healthy subjects was formed from the PTB 

database for these experiments. The criteria for selection of the records were the demonstration of 

healthy ECG waveforms and at least two recordings. The older recording of each subject was used in 

the gallery set and the newer one was used to test the system performance. 

5.2. Experimental Results and Discussion 

Each 10 s ECG test segment was subjected to the noise reduction and heartbeat normalization 

processes, resulting in a normalized heartbeat signal from which the effects of HRV have been eliminated. 

5.2.1. Quality Measure 

The quality measure module was used to measure the quality of the extracted heartbeat signal. For 

each ECG segment, a quality measure Qi was estimated using Equation (16). If Qi did not satisfy the 

threshold, another ECG segment was reinput; otherwise, the heartbeat signal was put into the next 

process. For the quality measure, a threshold of 0.8 was selected to distinguish low- and high-quality 
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ECG records. Figure 21 shows the performance of this process in detecting low-quality records. The 

results indicate that if the threshold is set too high, it may err and classify some high-quality ECG 

signals as bad ones. Based on these results, we choose 0.8 as the optimal quality measure threshold. 

The objective of the quality measure module is to enhance the precision of the system. 

Figure 21. Detection rates for different quality measure thresholds. 

 

5.2.2. Performance under Different EEMD Parameters 

Feature coefficients were computed for each heartbeat signal. A number of these parameters could 

affect the identification rate of the system; therefore it was necessary to validate the selection of 

these parameters. 

Figure 22. System performance with different r and N values. 

 

The EEMD method was used to extract the feature coefficients, requiring determination of two 

parameters: the ensemble number N and the ratio of the standard deviation of the white noise to the 

signal r. As r increases, the accuracy of the IMF results also increases, however the waveform of the 

signal will eventually deviate from the normal heartbeat waveform because of the added white noise. 

The larger N becomes, the slower the computation speed. In order to achieve optimal system 

performance, several groups of parameters were evaluated to determine the optimal N and r, as 

shown in Figure 22. This experiment examined the components of IMFs 1–4 using a rectangular 
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window type with a length of 50 sample points, an overlap of 50%, and a fast Fourier transform 

(FFT) length of 256. 

5.2.3. Different Numbers of IMFs 

Figure 22 indicated optimal system performance when r = 0.1 and N = 30. To verify that the 

selected MIMFs achieve the best performance, different numbers of IMFs were tested and the resulting 

system performance is shown in Figure 23. The conditions of this experiment were r = 0.1 and N = 30, 

the window type was rectangular with a length of 50 sample points, an overlap of 50%, and an FFT 

length of 256. 

Figure 23. Performance with Different Numbers of IMFs. 

 

Figure 23 validates the theory discussed in Section 4, which indicated that the selected MIMFs 

should include the most distinctive features to distinguish different subjects.  

5.2.4. Window Types 

The theory of the Welch spectral analysis method involves dividing the data into segments and 

finding the average of their periodogram. The type of window, length of window, and the length of 

FFT are the main factors that may affect the result of the Welch power spectrum. The type of window 

may affect the estimated power spectrum result; however, the rectangular and Kaiser windows have 

narrow main lobes and better resolution, but increase the variances of the estimators. Applying the 

Hamming and Hanning windows, which have wide main lobes and poorer resolution, reduces the 

variance of the estimators.  

The observed performance for different types of windows is shown in Figure 24, which suggests 

that the rectangular and Kaiser windows achieve better performance than the other two types of 

windows. The rectangular window produced the best identification accuracy at 98.1%. This 

experiment examined IMFs 1–4 under the conditions r = 0.1 and N = 30, window length of 50 sample 

points, an overlap of 50%, and an FFT length of 256. 
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Figure 24. Comparison of different window types. 

 

5.2.5. Window Length 

The signal was divided into L segments using the Welch method, as L decreases, the variance of the 

estimators and resolution increases, and vice versa. To test the effect of this parameter on the system, 

values of L = 10, 25, 50, 75, and 100 were evaluated and the results are shown in Figure 25. This 

experiment IMFs 1–4 were assessed using r = 0.1 and N = 30, the rectangular window type, an overlap 

of 50%, and an FFT length of 256. 

Figure 25. Comparison of different length of window. 

 

5.2.6. FFT Lengths 

The resolution was dependent on the length of FFT, such increasing length results in increasing 

resolution. The length of the heartbeat signal is 200 sample points, which is too short compared to 

other signals. 

If the length of FFT is set to 200, the resolution is poor and the curve is rough. In order to 

improve the resolution, the length can be set longer than the length of heartbeat signal. A 

comparison of different FFT lengths of is shown in Figure 26. This experiment evaluated IMFs 1–4 

at r = 0.1 and N = 30, using the rectangular window type, an overlap of 50%, and a window length 

of 50 sample points. 
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Figure 26. Comparison of different FFT lengths. 

 

5.2.7. Different Overlaps 

An experiment was also conducted to assess the advantage of the subsequence overlap from the 

Welch method on system performance. The evaluation of IMFs 1–4 was conducted using r = 0.1 and 

N = 30, the rectangular window type, a window length of 50 sample points, and an FFT length of 256. 

The overlap was set at 0, 25%, 50%, and 75%, as indicated in Figure 27, which shows that the overlap 

has a minimal effect on the identification rates. 

Figure 27. Comparison of different overlaps. 

 

Evaluation of these four factors demonstrated that the spectral resolution is the primary factor 

contributing to system performance. As a result, the rectangular window with a length of 50, a 50% 

overlap, and a FFT length of 512 were defined as the parameters for the Welch power spectrum 

estimation method. 

5.2.8. Different Features 

Based on these experiments, the parameters of the feature coefficients were defined as r = 0.1, 

N = 30, IMF components 1–4, rectangular window type, window length of 50 sample points, and 

FFT length of 256. To compare the performances of the two types of feature coefficients, the 
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performance of the MIMFs, the power spectra of the MIMFs, and the combined feature coefficients 

were evaluated and the results are shown in Table 2. Feature coefficients of MIMFs are composed of 

IMF1–IMF4; feature coefficients of power spectrum of MIMFs is composed of power spectrum of 

IMF1–IMF4; IMF1–IMF4 and their power spectrum constitute the feature coefficients of MIMFs 

and power spectrum. These results suggest that the fused feature coefficients produce the best 

identification rates. 

Table 2. Performance with different feature coefficients. 

Feature coefficients Performance

MIMFs 95.3% 

Power spectrum of MIMFs 80.9% 

MIMFs and Power spectrum 98.1% 

5.2.9. Different k in k-nn 

The experiment is performed for the optimal selection of k parameters in k-nn, which is a 

non-parametric method for classifying objects based on closest training examples in the feature space. The 

choice of k depends upon the data; generally, k is a positive integer, typically small. The special case (i.e., 

when k = 1) is called the nearest neighbor algorithm and the object is simply assigned to the class of its 

nearest neighbor [38]. In order to determine to the optimal k value, k is chosen from 1 to 7 by 2 every step, 

illustrated as Figure 28. When k is 1 and 3, the ECG identification system achieves the best result of 

99.78%. Larger values of k reduce the effect of noise on the classification, but make boundaries between 

classes less distinct. k = 1 is the optimal selection, which is actually the nearest neighbor algorithm. 

Figure 28. Comparison of different k. 

 

5.2.10. Different Time Intervals of ECG 

Another experiment has been done to illustrate the influence of the different time intervals. Three 

different time intervals, 5 s, 10 s and 15 s are chosen. 

Figure 29 shows the identification rates which indicate that the 10 s ECG segment has a higher 

accuracy than 5 s test segment, while 15 s ECG segment and 10 s test ECG segment has a similar 

accuracy, however, the later requires a longer testing time. 10 s time intervals is optimal selection. 
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Figure 29. Comparison of different time intervals of ECG. 

 

5.2.11. Different Dimension Reduction Methods 

After completion of the feature extraction process, PCA was used to reduce the dimensionality of the 

heartbeat signal feature coefficients. Using the first 20 coefficients after PCA and converting the 

eight-dimensional feature matrix into an 8 × 20 matrix, the identification rate was 98.1%. DCT and LDA 

are two well-known dimensionality reduction tools. LDA is a supervised learning technique that can 

reduce the dimensionality to C-1, where C is the number of subjects in the gallery. The LDA generated 

an 8 × 44 matrix, resulting in an identification rate of 76.9%. DCT has an energy compression property, 

resulting in DCT coefficients of near-zero values; therefore, these values can be dropped to reduce the 

dimensionality of the feature coefficients. The identification rate using DCT was low. The DCT 

coefficients of IMF 1 from records 302 m and 300 m are shown in Figure 30, which demonstrate that the 

DCT did not effectively reduce the dimensionalities of the feature coefficients, and that the DCT 

coefficients did not exhibit adequately distinct characteristics for individual identification. Thus, PCA 

was selected to reduce the feature space into an 8 × 20 matrix. 

Figure 30. DCT coefficients of IMF 1 from records 300 m and 302 m. 

 

Identification performance with respect to larger database is made. Another 90 subjects selected 

randomly from the above databases are used to evaluate the performance of biometric systems. The 
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identification results, shown in Table 3, also indicate the identification system achieves better 

performance and the results are also very encouraging across the larger database. 

Table 3. Performance using three public ECG databases. 

Database Number of Subjects (records) Wide Range of HR Accuracy 

MIT-BIH ST change 25 Yes 98.00% 

Long-Term ST 40 Yes 95.75% 

PTB 25 No 96.00% 

Total 90 Yes 95.56% 

6. Conclusions 

ECG is the reflection of electrical changs on the skin that are caused by the eart muscle olarization 
during each heartbeat，which explain the lectrical ctivity of the eart ver a period of ime and is a 

body-internal signal. In this paper the use of a proposed EEMD-based ECG feature extraction method 

for human identification was evaluated. A robust preprocessing scheme was used to compensate for 

noise, HRV, and low-quality ECG signals. EEMD and Welch spectral analysis were applied to each 

single-lead ECG signal to extract morphological and spectral information. These two kinds of features 

were fused and their dimensionality reduced using the PCA method. The system was validated using  

45 subjects from three public ECG databases at a variety of heart rates, and the results demonstrate the 

feasibility of the proposed method as a biometric system. The proposed method performed ideally 

compared to other methods, achieving a high recognition rate. 

ECG identification technology is an emerging new biometric modality. Great progress has been made 

in the research about ECG biometrics, yet there are several open questions. These include factors 

associated with the ECG signal collection, heartbeats affected by different cardiac irregularities, etc. The 

databases used in this paper are typical chest ECGs, while lower quality ECGs can be acquired from the 

hands or at more convenient locations [39]. Chan proposed a scheme that ECG were recorded using a 

pair of 0.5-in Ag–AgCl button electrodes that are held on the pads of the subject’s thumbs using their 

index fingers [8]. In future, the ECG database should be built containing a large number of people with 

varying age, collection position, emotional state and different cardiac irregularities. How to extract the 

features and build classifiers should be further studied to be applicable to more noisy and complex ECGs. 
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