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Abstract: Non-rigid multi-modal image registration plays an important role in medical 

image processing and analysis. Existing image registration methods based on similarity 

metrics such as mutual information (MI) and sum of squared differences (SSD) cannot 

achieve either high registration accuracy or high registration efficiency. To address this 

problem, we propose a novel two phase non-rigid multi-modal image registration method by 

combining Weber local descriptor (WLD) based similarity metrics with the normalized 

mutual information (NMI) using the diffeomorphic free-form deformation (FFD) model. 

The first phase aims at recovering the large deformation component using the WLD based 

non-local SSD (wldNSSD) or weighted structural similarity (wldWSSIM). Based on the 

output of the former phase, the second phase is focused on getting accurate transformation 

parameters related to the small deformation using the NMI. Extensive experiments on T1, 

T2 and PD weighted MR images demonstrate that the proposed wldNSSD-NMI or 

wldWSSIM-NMI method outperforms the registration methods based on the NMI, the 

conditional mutual information (CMI), the SSD on entropy images (ESSD) and the 

ESSD-NMI in terms of registration accuracy and computation efficiency. 
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1. Introduction  

Non-rigid image registration is one of the most challenging problems in medical image processing. 

Given two medical images, the objective of the registration process is to find a reasonable non-rigid 

transformation, such that a transformed version of the float image is similar to the reference one. Despite 

phenomenal progress in medical image resolution, one modality is often not sufficient to produce a 

precise diagnosis since different imaging modalities differ in interpreting the anatomy, tissue and organ 

that they may capture, so multi-modal medical image registration is useful for relating clinically 

significant information from different images. For example, it can be used to improve the diagnostic 

tasks and image-guided interventions. However, accurate non-rigid multi-modal registration is highly 

challenging because of intensity variations and non-rigid transformations between images.  

In general, image registration involves three main components: deformation model, similarity metric 

and optimization strategy. In the non-rigid image registration, the deformation model can be divided into 

two main categories [1].The first category is originated from physical models of materials including 

elastic body models [2], fluid flow models [3] and diffusion models [4]. Another category is relevant to 

interpolation and approximation theory including radial basis functions [5], elastic body splines [6], 

free-form deformations (FFD) [7,8].  

As regards optimization strategy, numerous optimization methods have been proposed to optimize 

the parameters of the deformation model in the non-rigid image registration. Examples include gradient 

descent, Newton’s method, Powell’s method and discrete optimization [9,10]. Especially, the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [11] has been used to handle the large number 

of variables and constraints of registration and is included in the Insight Segmentation and Registration 

Toolkit (ITK) [12–14]. 

Apart from deformation model and optimization strategy, similarity metrics have received much 

attention in the field of image registration. Many similarity metrics have been proposed for different 

applications [15]. The well-known metrics such as sum of squared differences (SSD) and sum of 

absolute difference (SAD) have been successfully used for mono-modal image registration, but they are 

not appropriate for direct application to multi-modal image registration because it is required that the 

image intensities at corresponding points of two images should be similar [16]. To address this problem, 

the generalized divergence measure based on Renyi Entropy [17], Kullback-Leibler Divergence [18], 

mutual information (MI) and cross-cumulative residual entropy (CCRE) [19] have been proposed. 

Among these metrics, MI has been investigated in-depth and widely applied to multi-modal image 

registration. MI was firstly introduced to realize the rigid registration of multi-modal scans by Maes  

et al. [20] and Viola et al [21]. Rueckert et al. [7] extended this similarity metric to non-rigid image 

registration. Studholme et al. proposed the normalized mutual information (NMI) as an overlap invariant 

generalization of mutual information [22]. Conditional mutual information (CMI) was introduced for 

non-rigid multi-modal image registration by Loeckx et al. to reduce the negative influence of bias  

fields [23]. However, the traditional global MI approach involves such disadvantages as high 

http://en.wikipedia.org/wiki/Charles_George_Broyden
http://en.wikipedia.org/wiki/Roger_Fletcher_(mathematician)
http://www.columbia.edu/~goldfarb/
http://rutcor.rutgers.edu/~shanno/
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computational complexity, tendency to get trapped in local minima and suffering from erroneous 

transformations of anatomical images even though the MI between the fixed image and the float image 

achieves the maximum value with this transform [24,25].  

In addition to information theory measures-based registration methods, structural representation 

methods have been investigated for multi-modal medical image registration. Pluim et al. [26] utilized 

the local gradient orientation and Nigris et al. [27] used gradient orientations of minimal uncertainty for 

image registration. In [28], Liu et al. proposed a registration method based on the local frequency 

estimated by calculating the local phase gradient of the most significant Gabor filter response. This 

method has the advantage that the local frequency is the same for corresponding structures in the two 

images, even when edge strength and contrast have significant differences. However, the above three 

methods were used for rigid registration, and not discussed for the non-rigid registration in [26–28]. 

Heinrich et al. [29] utilized modality independent neighbourhood descriptor (MIND) which is not a 

scalar representation but a vector-valued image descriptor for multi-modal deformable registration. 

Wachinger et al. proposed two structural representation methods. One method utilized the entropy of an 

image patch to assign a new intensity value and used the SSD on entropy images (ESSD) as  

similarity metric. Another method firstly used Laplacian Eigenmaps to embed image patches in a 

lower-dimensional manifold that preserves local distances and then computed L2 distance of Laplacian 

images. However, the entropy image based method can only meet certain requirements of a relaxed 

version of the theoretical properties, and the Laplacian image based method involves high computational 

complexity [30].  

To achieve both accuracy and efficiency of the non-rigid multi-modal registration method, a 

similarity metric based on the Weber local descriptor (WLD) proposed in [31] is combined with the NMI 

to realize a two phase image registration in this paper. The introduction of the WLD in this paper results 

from the fact that it can extract image features more effectively than the well-known scale-invariant 

feature transform and local binary patterns. In the proposed method, the first phase aims at obtaining the 

parameters (i.e., the control points) relevant to the large deformation, ensuring that the anatomical 

features of the reference and float images are not destroyed, and reducing the opportunities of getting 

trapped in local minima by integrating the WLD with the non-local SSD or the structural similarity 

(SSIM) proposed in [32]. The second phase is focused on getting the parameters related to the small 

deformation using the NMI to obtain high registration accuracy.  

This paper is structured as follows: Section 2 presents the novel two phase non-rigid multi-modal 

image registration method. Section 3 provides discussions of key parameters in the proposed method and 

comparisons of registration accuracy and efficiency among our method and the NMI, CMI, ESSD and 

ESSD-NMI methods. Finally, the conclusion is given in Section 4.  

2. Methods  

2.1. Registration Framework 

In general, image registration is stated as the following minimization problem: 

                     (1) 
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where            denotes an objective function defined by the similarity metric, and T denotes the 

transformation which is defined as coordinate mapping from the domain of the reference image IR to that 

of the float image IF. To obtain the optimal transformation   , an appropriate optimization method 

should be employed.  

In Equation (1), it is highly challenging to tackle large deformations. On the one hand, coarse-to-fine 

deformation schemes have been commonly applied. Wu et al. [33] used a wavelet-based deformation 

model to treat global and local information in a coarse-to-fine approach. The combination of 

coarse-scale landmark and B-splines deformable registration techniques was proposed in [34]. A hybrid 

method that combined surface and volume information to register cortical structures was proposed  

in [35]. Postelnicu et al. [36] started with a geometric registration which was used as the initialization 

and refined it with a non-linear optical flow registration method. On the other hand, to prevent from 

folding artifacts and preserve local orientation in case of large deformations, the deformation field 

should be diffeomorphisms. Rueckert et al. [8] enforced the transformation of FFD model to be a 

diffeomorphism by limiting the control points displacement.  

Different from above-mentioned coarse-to-fine deformation registration methods, the proposed two 

phase image registration method aims at resolving the above minimization problem by using different 

similarity metrics in two registration phases as shown in Figure 1. In the large deformation phase, the 

structural representations of IR and IF are firstly obtained using the WLD to compute similarity metric 

wldNSSD or wldWSSIM. Then, the iterative optimization of the objective function f1 defined by the 

wldNSSD or the wldWSSIM is realized to obtain a relatively good initial transformation T1 while 

reducing the opportunities of getting trapped in the local minima. However, only using the wldNSSD or 

the wldWSSIM cannot ensure accurate registration results especially for medical images with 

complicated deformations because some useful image information may be lost when using the WLD to 

extract image features. Therefore, a refined registration is implemented by using the original image 

intensities. In the small deformation phase, the float image IF is firstly deformed to generate the image 

  
  using T1 which can provide a good initial value, and then the small deformation for   

  is processed 

for minimizing the objective function f2 defined by the NMI to obtain the final transformation T2.  

Figure 1. Two phase non-rigid multi-modal image registration. 
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In our method, we used the diffeomorphic FFD model as the deformation model which uses a 

multi-resolution way by concatenating the FFDs with different grid sizes and limiting the control points 

displacement less than 0.4 × the grid sizes [8]. Meanwhile, we selected the BFGS algorithm as the 

optimization method because it is particularly suited to the registration problem with very large numbers 

of variables without requiring explicit computations.  

2.2. Large Deformation Phase 

2.2.1. Weber Local Descriptor 

Ernst Weber observed that the ratio of the increment threshold to the background intensity is a 

constant in human perception [37]. This relationship between the physical magnitudes of stimuli and the 

perceived intensity of the stimuli was known as Weber’s Law which can be expressed as: 

  

 
   (2) 

where    represents the increment threshold, I denotes the initial stimulus intensity and k signifies that 

the proportion on the left side of Equation (2) remains constant despite the variation of I.  

Although Weber's Law describes fundamental relationships of the human perception, i.e., in a 

biological setting rather than for digital images, several researchers have extended its application to 

signal and image processing. Dabeer and Onkar introduced a regularized Weber sampler for smooth 

deterministic signals [38]. Bruni et al. used Weber’s Law for scratch detection on digital film  

materials [39]. By using Weber's Law, Chen proposed a Weber local descriptor (WLD) which was used 

to extract local features [31].  

The WLD has two components: differential excitation (ξ) and orientation (θ). In our paper, only 

differential excitation is used for registration because using both differential excitation and orientation 

result in increased computational complexity, and differential excitation has such advantages as 

detecting edges elegantly, robustness to noise and illumination change, and its powerful representation 

ability for textures [31]. Specifically, a differential excitation       of a current pixel    is computed as 

illustrated in Figure 2. The symbols   
   and   

   are the outputs of the filters f00 and f01. It is easy to 

understand that   
     . The difference   

   between the center point    and its neighbors is given by: 

  
         

   

   

     

   

   

     (3) 

where xi (i = 0,1,···, p−1) denotes the i-th neighbors of    and p is the number of neighbors. The 

difference   
   is a discrete representation of the Laplace operator. The constancy of Laplacian images is 

a well-known assumption and has been used e.g., in [40] in the context of optical flow. Normally, this 

feature is used for invariance under directional changes. 

By applying the arctangent function which can limit the output to prevent from increasing or 

decreasing too quickly when the input becomes larger or smaller [31], the differential excitation       

of the pixel    is computed as: 
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   (4) 

From Equation (4), we can see that although the WLD is not invariant under global brightness 

changes, it is robust to changes in image contrast. The reason lies in the fact that a change in image 

contrast in which each pixel value is multiplied by a constant will multiply differences by the same 

constant, and this contrast change is canceled by the division between   
   and   

   [31]. Here it should 

be noted that to avoid dividing by zero in Equation (4), a small constant is added to the denominator in 

practical implementation. 

Figure 2. Differential excitation of Weber local descriptor. 

 

To tailor the WLD to our non-rigid multi-modal registration method, it is expressed as: 

                             (5) 

where R denotes the radius of the square symmetric neighborhood.  

Actually, WLD features can be extracted from a square symmetric neighborhood of size  

(2R + 1) × (2R + 1). Figure 3 shows examples of the neighborhood with R = 1 and R = 2. It should be 

noted that for extracting WLD features, only the border pixels (highlighted in blue in Figure 3) are used 

instead of all the pixels in the square neighborhood to reduce computation time.  

Figure 3. The square symmetric neighborhoods with different R for extracting WLD 

features. (a) The neighborhood with R = 1. (b) The neighborhood with R = 2. 

 

(a) (b) 
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To demonstrate the performance of the WLD with different R and its advantage over the entropy 

image for structural representation, the WLD and the entropy image for deformed T1, PD and original 

T2 weighted MR images are shown in Figure 4. The comparison between Figure 4(b) and  

Figure 4(c–e) shows that the detail information in the entropy image of T1 weighted MR images is 

blurrier than that in the WLD, which indicates that the WLD can provide better structural 

representation than the entropy image for registration. It should be noted that there exist the black 

squares and dots in Figure 4(b) because the considered pixel is set to be zero when the minimum 

intensity is equal to the maximum one in the image patch centered at this pixel. Meanwhile, it is easy 

to understand that the performance of the WLD changes with different R.  

Figure 4. Entropy image and WLD with different R of the various MR images. (a) deformed 

T1 image; (b) Entropy image of (a); (c) WLD with R = 1 of (a); (d) WLD with R = 2 of (a);  

(e) WLD with R = 3 of (a); (f) deformed PD image; (g) Entropy image of (f); (h) WLD with  

R = 1 of (f); (i) WLD with R = 2 of (f); (j) WLD with R = 3 of (f); (k) original T2 image;  

(l) Entropy image of (k); (m) WLD with R = 1 of (k); (n) WLD with R = 2 of (k); (o) WLD with  

R = 3 of (k). 

 

From Figure 4(c–e), (h–j) and (m–o), we can see that the WLD with a small R (e.g., R = 1) generates 

relatively weak but thin edges and thus facilitates the accurate localization of relatively strong edges. By 



Sensors 2013, 13 7606 

 

comparison, the WLD with a larger R (e.g., R = 2) produces thicker but stronger edges and thus assists 

with detecting the weak edges while a much larger R (e.g., R = 3) results in poor edge localization. The 

zooming of features marked with the red square in Figure 4(c–d) and those marked with the blue square 

in Figure 4(d–e) can further illustrate the above characteristics. Obviously, the combination of multiple 

selected R for the WLD produces “multi-granuality” features especially in regions with rich textures and 

discontinuities. Therefore，using the various radii in the WLD is preferable to using a single radius for 

the effective structural representation of medical images with complicated features. Based on the above 

analysis, we use the WLD with R = 1 and R = 2 for structural representation of images. 

2.2.2. Weber Local Descriptor Based Non-Local Sum of Squared Differences 

To describe the difference between the extracted WLD feature of IR and that of IF, the traditional SSD 

is improved to resist the disadvantageous influence of noise in the medical images. Inspired by the idea 

of non-local means proposed by Buades et al. [41], which aims at image denoising, that the pixel 

similarity can be represented more effectively using image patches than using individual pixels, the 

non-local SSD (NSSD) is introduced to represent the difference between the WLD features. The NSSD 

between two images IA and IB is presented as:  

            
                 

  
   

     
 (6) 

where N is the image size,      denotes the Euclidean norm,        and        mean the square patch 

of size SP1 centered at    of images IA and IB, respectively.  

As discussed in Section 2.2.1, by combining the WLD using the neighborhoods of different radii  

R1 = 1 and R2 = 2 with the NSSD, we can obtain the following similarity metric wldNSSD:  

                    
                   

 
 
                   

 
  (7) 

Based on the wldNSSD, we define the objective function f1 as: 

                                         (8) 

where            is a regularization term to constrain the FFD transformation to be smooth,   is the 

weighting parameter which defines the tradeoff between the alignment of the two images and the 

smoothness of the transformation. The regularization term takes the following form: 

           
 

 
   

    
   

      

 

   
    
   

      

 

  
    
   

      

  

   

 

   

 (9) 

where N denotes the number of pixels in IR or IF.  

2.2.3. Weber Local Descriptor Based Weighted Structural Similarity  

Given two images IA and IB to be compared, the SSIM involves such components as a luminance 

(mean) distortion term l(IA, IB), a contrast (variance) distortion term c(IA, IB) and a correlation term  

s(IA, IB). By combining the three comparisons, the resultant SSIM index between IA and IB is presented in 

a simplified form as [32]:  
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(10) 

where   ,   and    are small constants for characterizing the saturation effects of the visual system at the 

regions of low luminance and contrast and ensuring numerical stability when the denominators are close to 

zero;    ,    ,    
 ,    

 , and        represent the local mean of    and   , the local variance of    and   , and 

the local covariance between    and   , respectively. The first two terms l(IA, IB) and c(IA, IB) account for 

nonstructural distortion of the image, whereas the last term accounts for structural distortion of the image.  

The SSIM index is not a metric. However, the distance                        is a single 

scalar-valued distance measure [42]. In [32], a mean SSIM has been used for image quality assessment. 

However, it is helpful to improve the performance of image quality assessment algorithms by giving 

different weights to different image patches [43]. Therefore, the WLD difference based weighted SSIM 

(wldWSSIM) is adopted as a metric:    

                
                                                    

 
   

                  
 
   

 (11) 

where        and        mean the square patch of size SP2 centered at    of images IA and IB, N is the 

image size and the weight                  is computed as:  

                 
 

                  

 (12) 

Similar to the wldNSSD, the similarity metric wldWSSIM is defined as:  

                      
                   

 
 
                   

 
  (13) 

Based on the wldWSSIM, the objective function f1 is defined as:  

                                           (14) 

where the regularization term            and the constant   are given as in Equation (8). 

2.2.4. Analysis of the wldNSSD and the wldWSSIM 

To demonstrate the advantage of the wldNSSD and the wldWSSIM over such metrics as the NMI 

and the ESSD, we compute the four distance measures on ten pairs of T1 and T2 weighted MR images 

rotated around the domain center with different angles and translated in x and y directions. Figure 5 

shows an excerpt of the corresponding computation results. We can see from Figure 5 that the wldNSSD 

and wldWSSIM have no local extremes while the NMI has local extremes in Figure 5(a–c), and the 

ESSD involves local extremes in Figure 5(b). Similar findings also exist for other computation results, 

which indicate that the wldNSSD and the wldWSSIM are more effective similarity metrics for 

registration than the NMI and the ESSD. 
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Figure 5. Distance measures for T1 and T2 weighted MR images. (a) Distance versus 

rotation angles; (b) Distance versus translation in x direction (mm); (c) Distance versus 

translation in y direction (mm).  

 

(a) 

 

(b) 

 

(c) 

2.3. Small Deformation Phase 

To obtain more accurate registration results, the small deformation phase is needed for the refined 

registration. In this phase, the float image IF is firstly deformed using T1 which is the output of the large 

deformation phase. So, we have   
         . The small deformation is processed by minimizing the 

objective function f2 defined by the NMI between   
  and IR: 

           
              

               (15) 

where            and   are given as in Equation (8), and the NMI is defined as:  

         
   

          
  

       
  

 (16) 

where H denotes the Shannon entropy.        
  ,       and     

   are defined as: 
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(17) 

                      

    

 
(18) 

    
                   

    

 (19) 

where    and    are sets of regularly spaced intensity bin centres, p is the discrete joint probability, 

   and    are the marginal discrete probabilities of the reference image IR and the float image   
 , 

respectively [44].  

3. Experiments  

In this section, to determine the key parameters in the proposed method and make comparisons of 

registration performance among our method, the NMI method, the CMI method, the ESSD method and 

the ESSD-NMI method, extensive experiments have been performed on thirty T1, T2 and PD-weighted 

MR images of size 256 × 212 pixels from the BrainWeb database [45]. Registration efficiency of all 

these evaluated methods is appreciated by their computation time (in seconds) when implemented in a 

multi-resolution way by rescaling the FFD grid spacing 2
k
 × 2

k
 (each image is rescaled to a square of size 

2 to the kth power) [8] using MATLAB 2010 on a personal computer with 2.40 GHz CPU and 4 GB 

RAM. Registration accuracy is appreciated by target registration error (TRE) [46] with simulated 

deformation and expert landmark annotations as ground truth, respectively.  

As regards the simulated deformation   , it is used as the ground truth to deform one of two 

different weighted MR images (e.g., T1 and T2). By implementing the various registration methods on 

the float image and the generated reference image, the estimated deformation    will be obtained. 

Based on the whole image domain,      is computed as:  

     
              

   
 (20) 

where     denotes the size of the whole image domain I. 

When we use expert landmark annotations as ground truth, for a estimated deformation    and a set 

of anatomical landmark pairs          = {       ,         } (i=1, 2,···, m, where m is the number of 

anatomical landmarks),      is defined as:  

     
              

 
 (21) 

Considering that expert landmark annotations based evaluation requires the anatomical landmarks in 

the reference image IR and the float image IF to be marked, we have invited five experts to manually 

select twenty landmarks defined according to the anatomical structures including the left and right 

lateral ventricles for the deformed T1, PD and original T2 images shown in Figure 6.  
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Figure 6. Landmarks in the deformed T1, deformed PD and original T2 images.  

(a) Landmarks in the Deformed T1; (b) Landmarks in the Deformed PD; (c) Landmarks in 

the original T2. 

   

(a) (b) (c) 

3.1. Choice of Parameters 

3.1.1. Choice of the patch size  

The patch sizes SP1 and SP2 are very important for the similarity metrics wldNSSD and wldWSSIM. 

To quantitatively determine these parameters, we discuss their influence on registration accuracy and 

efficiency by using fifteen images.  

Figure 7 shows the      for the wldNSSD and wldWSSIM methods using various patch sizes. 

Figure 8 shows the computation time for the two metrics using various patch sizes. We can see from 

Figure 7 that a too small or too large patch size has a disadvantageous influence on registration accuracy. 

For the wldNSSD method, the      can achieve the minimum value of 7.5 mm when the patch size is  

7 × 7 or 9 × 9 while the optimal patch size is 11 × 11 for the wldWSSIM method. Meanwhile, it is shown 

in Figure 8 that the computation time increases with the increasing patch size because a larger patch size 

means that more pixels need to be processed. Therefore, to achieve the tradeoff between registration 

precision and efficiency, the patch size is chosen to be 7 × 7 for the wldNSSD method and 11 × 11 for the 

wldWSSIM method in our experiments. It should be noted that the wldWSSIM method needs bigger 

patches for higher registration performance than the wldNSSD. The reason can be explained in this way. 

The wldNSSD depends on the difference of intensities of two WLD feature images while the wldSSIM 

takes into account not only the local mean and the local variance, but also the local covariance of two 

WLD feature images for representing their structural similarity. Therefore, for the wldWSSIM method, 

a larger patch size is needed to ensure the statistical significance.  

Figure 7.      (in mm) for the wldNSSD and wldWSSIM using various patch sizes.  

(a) wldNSSD; (b) wldWSSIM. 
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Figure 8. Time (in seconds) for the wldNSSD and wldWSSIM using various patch sizes.  

(a) wldNSSD; (b) wldWSSIM. 

  

(a) (b) 

3.1.2. Choice of the Weighting Term    

The weighting term   is specific to the processed images. To quantitatively determine  , we make 

some tests on   with fifteen T1, T2 and PD-weighted MR images.  

The comparison results of registration precision with different   for similarity measures wldWSSIM 

and wldNSSD are shown in Figure 9. We can see from this figure that a value of  =0.01 provides good 

registration results for the various weighted MR images. The reason lies in two aspects. On the one hand, 

the target registration error TREl becomes unstable with a larger   because it will reduce the impact of 

the similarity measure which is important for registration precision. On the other hand, the regularization 

term which is used to constrain the FFD transformation to be smooth is less important because we have 

limited the control point displacement less than 0.4 × the grid sizes in the FFD model. 

Figure 9. Comparison of registration precision with different   for wldWSSIM and 

wldNSSD. (a) wldWSSIM; (b)wldNSSD. 

 

(a) 

  

0 

50 

100 

150 

200 

250 

300 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 

Ti
m

e
 (

S)
 

patch size 

T1-T2 

T1-PD 

PD-T2 
0 

50 

100 

150 

200 

250 

300 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 

Ti
m

e
 (

S)
 

patch size 

T1-T2 

T1-PD 

PD-T2 

0 

2 

4 

6 

8 

10 

12 

14 

16 

TR
E l  

(m
m

) 

γ 

T1-T2 

T1-PD 

PD-T2 



Sensors 2013, 13 7612 

 

Figure 9. Cont. 

 

(b) 

3.2. Comparison of Registration Performance  

To demonstrate the advantage of the wldNSSD and wldWSSIM, wldNSSD-NMI and wldWSSIM-NMI 

methods, they are compared with other evaluated methods in terms of registration accuracy and efficiency. 

The mean and standard deviation (std) of      and      for all the evaluated methods are shown 

in Table 1 and Table 2. Here, “/” in Tables 1 and 2 means that no registration is implemented. Obviously, 

the wldNSSD and wldWSSIM methods can achieve a smaller      and      than the NMI, CMI and 

ESSD methods. Meanwhile, we can see that the wldNSSD-NMI and wldWSSIM-NMI methods for two 

deformation phases can achieve higher registration accuracy than the corresponding wldWSSIM and 

wldNSSD methods, which demonstrates the advantage of combining the WLD similarity metrics with 

the NMI. It should be noted that the NMI method can be seen as a two phase method since it was 

implemented in a multi-resolution way in our test, but this method achieves a bigger      and      

than the wldWSSIM-NMI and wldNSSD-NMI methods because the NMI method is easy to get trapped 

into local minima only using the image intensity information. Besides, the intra-observer errors and 

inter-observer errors are listed in Table 2 for reference. It is shown that the smallest registration error 

     for the wldWSSIM-NMI method is 6.1 mm and it is still higher than the inter-observer errors. 

The main reason is that experts were requested to repeat the marking procedure if necessary to ensure 

that the inter-observer errors are less than 5.0 mm in the case of the large simulated deformation 

among different weighted MR images. 

Table 1.      (in mm) for all the evaluated methods. 

Similarity Metric 

     (mm) 
T1-T2 T1-PD PD-T2 

mean std mean std mean std 
/ 2.8 2.2 3.0 2.4 2.9 2.4 

NMI 1.5 1.1 1.7 1.2 1.7 1.3 
CMI 1.4 1.0 1.5 1.2 1.6 1.2 
ESSD 1.4 0.9 1.6 1.1 1.5 1.1 

ESSD-NMI 1.4 0.9 1.5 1.1 1.5 1.1 
wldNSSD 1.2 0.7 1.3 0.8 1.3 0.9 

wldNSSD-NMI 0.9 0.5 1.0 0.7 1.0 0.6 
wldWSSIM 1.0 0.6 1.1 0.7 1.1 0.7 

wldWSSIM-NMI 0.8 0.4 0.9 0.5 0.9 0.5 
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Table 2.      (in mm) for all the evaluated methods. 

Similarity Metric 

TREl (mm) 

T1-T2 T1-PD PD-T2 

mean std mean std mean std 

Intra-observer errors 0.9 0.7 1.0 0.8 1.0 0.8 

Inter-observer errors 4.9 4.2 5.0 4.4 4.9 4.2 

/ 15.4 9.2 15.7 9.3 15.6 9.5 

NMI 9.5 6.2 9.8 6.3 9.6 6.8 

CMI 8.9 5.8 8.6 5.6 9.1 6.2 

ESSD 8.6 5.7 8.6 5.6 8.9 6.2 

ESSD-NMI 8.4 5.6 8.4 5.6 8.7 5.8 

wldNSSD 7.4 4.9 7.7 5.0 7.6 5.0 

wldNSSD-NMI 6.7 3.8 6.8 3.9 6.8 3.9 

wldWSSIM 7.1 4.0 7.1 4.1 7.2 4.2 

wldWSSIM-NMI 6.1 3.3 6.2 3.4 6.2 3.5 

Table 3 lists the computation time of all these methods. The observation from Table 3 shows that our 

methods have less computation time than the NMI, CMI, ESSD and ESSD-NMI methods and thus they 

outperform these compared methods in terms of registration efficiency. Moreover, the wldWSSIM-NMI 

method is of lower registration efficiency than the wldNSSD-NMI while the former can provide higher 

registration accuracy. Therefore, our two phase methods can be applied according to the clinical 

requirements. If one application attaches more significance to registration accuracy, the wldWSSIM-NMI 

method is better choice. If registration efficiency is more important, the wldNSSD-NMI method  

is preferable. 

Table 3. Computation time (in seconds) for all the evaluated methods.  

Similarity Metric 
Time (s) 

T1-T2 T1-PD PD-T2 

NMI 248 ± 20 268 ± 22 280 ± 31 

CMI 350 ± 28 346 ± 26 366 ± 26 

ESSD 224 ± 16 230 ± 15 246 ± 16 

ESSD-NMI 284 ± 24 292 ± 21 294 ± 28 

wldNSSD 86 ± 7 88 ± 9 84 ± 9 

wldNSSD-NMI 119 ± 12 118 ± 12 123 ± 14 

wldWSSIM 118 ± 11 122 ± 10 125 ± 11 

wldWSSIM-NMI 148 ± 14 152 ± 15 157 ± 15 

Figure 10 shows an example of T1-T2 and PD-T2 weighted MR images and registration results for 

the wldWSSIM-NMI, wldNSSD-NMI and ESSD-NMI methods. From Figure 10(d–f), we can see that 

the results using the wldWSSIM-NMI and wldNSSD-NMI methods are anatomically more similar to the 

reference T2 weighted MR image than those using the ESSD-NMI, especially in the lateral ventricle 

which is marked with a yellow square. Similar results can be seen in Figure 10(g–i).  
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Figure 10. Non-rigid multi-modal registration results for the wldWSSIM-NMI, 

wldNSSD-NMI and ESSD-NMI methods operating on T1-T2 and PD-T2 weighted MR 

images. (a) T2 (the reference image); (b) T1 (the float image which is deformed by 

compressing mainly in the lateral ventricle marked with a yellow square.); (c) PD (the float 

image which is deformed by expanding mainly in the lateral ventricle marked with a blue 

square.); (d) wldWSSIM-NMI (T1-T2); (e) wldNSSD-NMI (T1-T2); (f) ESSD-NMI (T1-T2); 

(g) wldWSSIM-NMI (PD-T2); (h)wldNSSD-NMI (PD-T2); (i) ESSD-NMI (PD-T2).  

 

4. Conclusions 

In this paper, we have proposed a two phase non-rigid multi-modal medical image registration 

method using the Weber local descriptor based similarity metrics and the normalized mutual 

information. In the first phase, the parameters relevant to the large deformation are obtained by 

minimizing the objective function defined by the novel similarity metric wldNSSD or wldWSSIM 

which is focused not on intensities of individual pixels but on structural information of images. With the 

good initial deformation value provided by the output of the large deformation phase, the parameters 

related to the small deformation can be accurately obtained using the NMI in the second phase. The 

non-rigid image registration experiments on the T1, T2 and PD weighted MR images demonstrate that 

compared with the NMI, CMI, ESSD and ESSD-NMI methods, our method can obtain smaller 

registration errors and higher computational efficiency. Future work will be focused on extending our 

method to multi-modal 3D medical image registration. 
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