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Abstract: A near-infrared (NIR) hyperspectral imaging system was developed in this 

study. NIR hyperspectral imaging combined with multivariate data analysis was applied to 

identify rice seed cultivars. Spectral data was exacted from hyperspectral images. Along 

with Partial Least Squares Discriminant Analysis (PLS-DA), Soft Independent Modeling 

of Class Analogy (SIMCA), K-Nearest Neighbor Algorithm (KNN) and Support Vector 

Machine (SVM), a novel machine learning algorithm called Random Forest (RF) was 

applied in this study. Spectra from 1,039 nm to 1,612 nm were used as full spectra to build 

classification models. PLS-DA and KNN models obtained over 80% classification 

accuracy, and SIMCA, SVM and RF models obtained 100% classification accuracy in both 

the calibration and prediction set. Twelve optimal wavelengths were selected by weighted 

regression coefficients of the PLS-DA model. Based on optimal wavelengths, PLS-DA, 

KNN, SVM and RF models were built. All optimal wavelengths-based models (except 

PLS-DA) produced classification rates over 80%. The performances of full spectra-based 

models were better than optimal wavelengths-based models. The overall results indicated 

that hyperspectral imaging could be used for rice seed cultivar identification, and RF is an 

effective classification technique. 
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1. Introduction 

Rice is one of the most common food crops in China and many other countries. The yield and 

quality of rice, which are mainly influenced by rice variety and growing conditions, are the biggest 

concerns of rice planting regions and consumers. Determination of rice seed variety and quality is the 

primary and essential step of rice planting [1]. In some cases, rice seed cultivars with good quality can 

be faked using poor quality cultivars or mistaken for other cultivars, which significantly affects the 

quality, yield and value of rice, thus, identification of rice seed cultivars is of great interest.  

Different cultivars of rice show variations in size, shape, color and constitution, which cannot be 

accurately identified by human visualization. Traditional techniques used for rice variety identification 

like HPLC [2], or GC-MS [3] are time consuming and difficult to apply. Some new techniques such as 

machine vision and visible/near-infrared spectroscopy have been developed and applied to determine 

rice varieties. Machine vision is used to identify rice varieties based mainly on the morphology and 

texture [4,5]. Machine vision can capture image data of the entire sample, but the compositional 

detection is limited. Visible/near infrared spectroscopy has been proven to be efficient in determining 

rice quality and variety [6–9]. Visible/near-infrared spectroscopy acquires spectral information of a 

small area to get complete information on the chemical constituents, and spectral acquisition of the 

entire sample need repetitive measurement in different places of the sample which is always ignored, 

but no morphology or texture information is obtained. Machine vision and visible/near-infrared 

spectroscopy both acquire partial information about the sample, so a technique that acquires both 

spatial information and spectral information should be developed. 

Hyperspectral imaging is an emerging technique combining the machine vision and spectroscopy 

techniques. Hyperspectral imaging acquires spatial images of samples at different wavelengths across 

regions of the electromagnetic spectrum (nowadays, UV-visible/near infrared region data is available), 

resulting in a three-dimensional hypercube. Hyperspectral imaging has recently gained popularity in 

many fields due to the spectral and spatial information it provides [10–12]. Hyperspectral imaging has 

been applied to identify some crop seed varieties and showed significant performance [13,14], but 

there are no studies using hyperspectral imaging to identify rice seed varieties. 

Hyperspectral imaging acquires spectral and spatial information simultaneously, which provides a 

full dataset of internal and external features of samples. In hyperspectral imaging, spectral and spatial 

information is acquired from each pixel of the Region of Interest (ROI) in the image. The mean 

spectrum of all pixels in the ROI is used as the spectrum of the sample. Another advantage of 

hyperspectral imaging is the visualization of chemical images, which can map the spatial distribution 

of the chemical constituents in the sample and provide intuitive information. 

The development of multivariate statistics techniques shows significant benefits and potential in 

spectroscopic techniques, including hyperspectral imaging. After spectra or hyperspectral image 

acquisition, data analysis has a direct effect on the performance. Principal Component Analysis  
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(PCA) [15], Partial Least Squares Discriminant Analysis (PLS-DA) [16], Soft Independent Modeling 

of Class Analogy (SIMCA) [17], Linear Discriminant Analysis (LDA) [18], K-Nearest Neighbor 

Algorithm (KNN) [19], Artificial Neural Network (ANN) [20], Support Vector Machine (SVM) [21] 

and Least-squares Support Vector Machine (LS-SVM) [22] have all been used to deal with 

classification issues, and these methods have proved to be effective. In recent years, modern applied 

mathematics has offered some new methods. Random forest (RF) [23,24] is a classifier containing 

many decision trees, and each decision tree forms a classifier. RF shows better accuracy and reliability 

than a single classifier, and it has been proved efficient in classification issues in many fields. In this 

study, RF is used as a classification method for rice seed cultivar identification. 

The objective of this study is to explore the feasibility of rice seed variety identification using 

hyperspectral imaging and multivariate data analysis. The specific objectives are as follows:  

(a) Develop a hyperspectral imaging system in the NIR region (874–1,734 nm) to acquire 

hyperspectral images of rice seeds. (b) Extract spectral information, and build classification models by 

multivariate analysis methods. (c) Select sensitive wavelengths most relevant to rice seed cultivar 

identification, and build multivariate analysis models. 

2. Experimental Section  

2.1. Sample Preparation 

Four cultivars of rice seed were obtained from a local seed company for our experiments, including 

Zhongzheyou No.1, Zhongzheyou No.5, Zhongzheyou No.8 and Zhongzheyou No.86. These four rice 

seed cultivars were hybridized from other rice seed cultivars. The rice seed cultivars were produced in 

the same year to avoid any effect of seed age. The rice seeds were placed in Petri dishes with a 

diameter as 10 cm and height of 1 cm. The rice seeds in one Petri dish represented one sample, and 

225 samples (56 samples of Zhongzheyou No.1, 56 samples of Zhongzheyou No.5, 55 samples of 

Zhongzheyou No.8 and 58 samples of Zhongzheyou No.86) were acquired. 

2.2. Hyperspectral Imaging System 

Hyperspectral images of rice seeds were acquired by a laboratory-based hyperspectral imaging 

system shown in Figure 1. The developed system consists of an imaging spectrograph (ImSpector 

N17E; Spectral Imaging Ltd., Oulu, Finland) covering the spectral range of 874–1,734 nm with  

256 bands, a high performance 320 × 256 camera (Xeva 992; Xenics Infrared Solutions, Leuven, 

Belgium), a camera lens (OLES22; Specim, Spectral Imaging Ltd.) , two 150 W tungsten halogen 

lamps (Fiber-Lite DC950 Illuminator; Dolan Jenner Industries Inc., Boxborough, MA,USA) for 

illumination, a conveyer belt driven by a stepper motor (Isuzu Optics Corp., Taiwan, China), data 

acquisition and preprocessing software (Xenics N17E, Isuzu Optics Corp.), a computer and a 

darkroom. To acquire clear and non-deformed images, three parameters of this scheme are set, 

including the speed of movement of the conveyer belt, the exposure time of the camera and the height 

between the lens of camera and the sample, and these three parameters influence each other. In this 

study, as the height between the lens and the sample was set as 31 cm, the speed of the conveyer was 

set at 30 mm/s to ensure the same spatial shape of sample in the image and the exposure time was set 
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as 3,000 μs to ensure a suitable light intensity. The samples were scanned in a line-scanning 

configuration. The acquisition of hyperspectral images includes the linear array scanning by the 

detector along the Y-axis and the moving of the sample on the X-axis. The images were saved as  

raw format. 

Figure 1. Hyperspectral imaging system. 

 

2.3. Image Acquisition and Correction 

In the laboratory-based NIR hyperspectral imaging systems, the Petri dishes filled with rice seeds 

were placed on the conveyer belt to be scanned line by line at a speed of 30 mm/s. A hyperspectral 

image was formed by 256 congruent gray scale sub-images representing the intensities of  

256 wavelength bands. Thus, a 3D hypercube data representing the hyperspectral images contains the 

spectral and spatial information which could be used to identify rice seed cultivars.  

Before hyperspectral image acquisition, white correction and dark correction were performed to 

acquire white (W) and dark (B) reference images. The acquisition of the dark reference image (B) is to 

remove the influence of dark current in the camera. The dark reference image (B) was acquired by 

turning off the light source together with covering the camera lens completely with its opaque  

cap while the white reference image (W) was acquired by using a white Teflon tile with nearly  

100% reflectance. 

Then the calibrated image (Ic) was calculated by using the raw hyperspectral image (Iraw), white 

reference image (W) and dark reference image (B) according to the following equation: 

Iraw B
Ic

W B





 (1) 

2.4. Spectra Data Exaction 

After the hyperspectral images were corrected, the ROI with size of 15 × 15 pixels were plotted in 

the sample regions of images. The spectrum of each pixel was exacted, and the average spectrum of all 

pixels in the ROI was used as the spectrum of the sample. In total, 225 spectra of 225 samples  

were acquired.  



Sensors 2013, 13 8920 

 

 

2.5. Multivariate Analysis Methods 

2.5.1. Principal Component Analysis 

Principal Component Analysis [15] is a data description and dimension reduction method which is 

widely used to deal with large datasets like spectral data. The large datasets are transformed into a 

small number of uncorrelated variables (called Principal Components, PCs). Each PC is a linear 

combination of the original data, and the number of PCs is as many as the original variables. The first 

few PCs could explain most of the sample data, which results in the data dimension reduction. PCA 

could reveal the variables that determine some inherent structure in the data, which could be 

interpreted in chemical or physico-chemical terms. Scores scatter plot of PC1 and PC2 shows the most 

significant variability among samples. 

2.5.2. Partial Least Squares-Discriminant Analysis 

Partial Least Squares-Discriminant Analysis [16] is a discriminant technique based on PLS 

regression (PLSR). Unlike PLSR, the response variable Y in PLS-DA is a set of dummy variables 

representing the classes of the samples (In this study, 1 for Zhongzheyou No. 1, 2 for Zhongzheyou  

No. 5, 3 for Zhongzheyou No. 8 and 4 for Zhongzheyou No. 86). The predicted value in PLS-DA is a 

real number, but not a dummy integer. Thus, a cut off value needs to be set to determine which class 

the sample belongs to. Generally, the cut off value is set as 0.5. PLS-DA is calculated with full cross 

validation methods.  

2.5.3. Soft Independent Modeling of Class Analogy  

Soft Independent Modeling of Class Analogy [17] is a supervised discriminant analysis method 

based on PCA. For each class, a PCA model is built and then the residual variance of the modeled 

class with the residual variance of the unknown sample is compared to determine which category the 

sample belongs to. The number of PCs used in each class should be selected to achieve the best 

classification results. 

2.5.4. K-Nearest Neighbor Algorithm  

K-Nearest Neighbor Algorithm [19] is a classification method based on the closest training 

examples in the feature space. If the majority of an unknown sample’s K-nearest neighbors in training 

set belong to a certain class, then this unknown sample is classified as this class. The parameter K 

influences the performance of KNN model. The Euclidean distance is the most common algorithm 

used in KNN. 

2.5.5. Support Vector Machine  

Support Vector Machine [21] is a widely used supervised statistical learning algorithm. SVM shows 

advantages in dealing with small sample, non-linear and high dimensional data. SVM is based on the 

structural risk minimum (SRM) and SVM has high generalization capacity and could provide a 

flexible and easy-to-compute solution. Selection of kernel function in SVM models has significant 
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influence in model performance, and in this study, the commonly used Radial Bias Function (RBF) is 

used as kernel function. The regularization parameter c, which controls trade-off between the 

minimum training error and minimum model complexity, along with the kernel parameter g of the 

kernel function, which represents the width of the kernel function and reflects the degree of 

generalization are determined by a grid-search procedure in SVM. 

2.5.6. Random Forest 

Random Forest [23,24] is a novel machine learning algorithm combining Breiman’s ‘bagging’ idea 

and Ho’s “random subspace method”. A RF classifier contains many decision trees, and each tree is 

grown from a bootstrap sample of the response variable. The best split is selected from a random 

subset of variables at each node of the tree, and then grows the tree to the maximum extent without 

pruning. Prediction can be made from new data by aggregating the outputs of all trees. RF is effective 

and fast to deal with a large amount of data. RF has shown the advantages to reduce variance and 

achieve comparable classification accuracy.  

2.6. Wavelength Selection 

Optimal wavelength selection is widely applied in spectral data analysis due to the redundancy and 

colinearity of spectral data. Besides, optimal wavelength selection helps to reduce dimension and build 

simple, stable and practical calibration models. The wavelengths carrying the most useful information 

could be selected as optimal wavelengths. Many variable selection methods have been applied in 

spectral data analysis. In this study, weighted regression coefficients of PLS-DA model are used to 

select optimal wavelengths [25,26]. The peaks and valleys in weighted regression coefficients plot 

with absolute value over a certain cutoff value are selected as optimal wavelengths, and the remaining 

wavelengths are thought to carry little or no information. Precondition for wavelength selection by 

weighted regression coefficients is the good performance of PLS-DA models. Hyperspectral images 

were analyzed by ENVI 4.6 (ITT, Visual Information Solutions, Boulder, CO, USA), and multivariate 

data analysis were applied on Unscrambler® 10.1 (CAMO AS, Oslo, Norway) and Matlab R2009b 

(The Math Works, Natick, MA, USA). 

3. Results and Discussion 

3.1. Spectral Features of Rice Seeds 

Despite the fact the hyperspectral images were corrected before analysis, noises still existed. To 

avoid obvious noises, spectra from 1,039 to 1,612 nm (bands 50 to 220) were used for analysis. Raw 

spectral profiles of the four rice seed cultivars are shown in Figure 2a. The noises in the spectral range 

from 1,039 to 1,612 nm could still influence the performance of classification models, so a first 

derivative (1-Der) was applied to preprocess the raw spectra, and the resulting preprocessed spectral 

profiles are shown in Figure 2b. The 1-Der preprocessed spectra could be seen to retain and strengthen 

the information of the raw spectra. Spectral curves in Figure 2a,b showed overlaps and no obvious 

differences which indicated rice seeds could not be identified directly from these two figures. To solve 

this problem, classification models based on chemometrics were developed. 



Sensors 2013, 13 8922 

 

 

Figure 2. (a) Raw spectra of rice seeds. (b) first derivative preprocessed spectra of  

rice seeds. 

 
(a) 

 
(b) 

3.2. Multivariate Data Analysis 

3.2.1. PCA Analysis 

The advantage of PCA is to use a few PCs to represent original data. Generally, the first two PCs 

could explain most of the variance. In this study, PCA was performed on the raw spectra of calibration 

set with full cross validation. PC1 explained 92.20% variance and PC2 explained 6.39% variance, PC1 

and PC2 explained 98.59% of the total variance. Figure 3 shows the scores plot of the NIR spectra 

from four rice seed cultivars. No clear separation between different cultivars was observed, and 

samples were distributed all along the space and overlapped. The scores plot indicated that global 

classification models could be built for rice seed cultivar identification. 
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Figure 3. Scores scatter plot of PC1 and PC2 of raw spectra. 

 

3.2.2. Multivariate Data Analysis Based on Full Spectra 

Classification models were built based on the preprocessed spectra. The reliability of classification 

models was on the basis of classification accuracy. The classification results of PLS-DA, SIMCA, 

KNN, SVM and RF are shown in Table 1. 

Table 1. Results of classification models based on full spectra. 

Model  
1  2  3  4  Total  

a Nr/Nt b accu Nr/Nt accu Nr/Nt accu Nr/Nt accu Nr/Nt accu 

PLS-DA 
c Cal 32/37 86.49% 36/37 97.30% 37/37 100% 38/39 97.44% 143/150 95.33% 
d Pre 13/19 68.42% 17/19 89.47% 17/18 94.44% 16/19 84.21% 63/75 84.00% 

SIMCA 
Cal 37/37 100% 37/37 100% 37/37 100% 39/39 100% 150/150 100% 

Pre 19/19 100% 19/19 100% 18/18 100% 19/19 100% 75/75 100% 

KNN 
Cal 34/37 91.89% 37/37 100% 30/37 81.08% 39/39 100% 140/150 93.33% 

Pre 17/19 89.47% 19/19 100% 13/18 72.22% 19/19 100% 68/75 90.67% 

SVM 
Cal 37/37 100% 37/37 100% 37/37 100% 39/39 100% 150/150 100% 

Pre 19/19 100% 19/19 100% 18/18 100% 19/19 100% 75/75 100% 

RF 
Cal 37/37 100% 37/37 100% 37/37 100% 39/39 100% 150/150 100% 

Pre 19/19 100% 19/19 100% 18/18 100% 19/19 100% 75/75 100% 
a Nr is the number of rightly classified samples; Nt is the total number of samples. b accu is the classification 

accuracy. c Cal represents the calibration set of the samples. d Pre represents the prediction set of the samples. 

As seen from Table 1, the rice seed cultivars were accurately identified. The PLS-DA model and 

KNN model showed relatively low effectiveness, with classification accuracy of prediction of more 

than 80%. SIMCA, SVM and RF models obtained classification rates of 100% in both the calibration 

set and prediction set, which indicated that rice seed cultivars could be accurately identified. Among 

all four cultivars, Zhongzheyou No. 5 and Zhongzheyou No. 86 were well identified in all 

classification models, misclassification of Zhongzheyou No. 5 and Zhongzheyou No. 86 occurred only 
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in the PLS-DA model with at most three misclassified samples. The misclassification rate of 

Zhongzheyou No. 1 in the PLS-DA model was over 10%, and the misclassification rate of 

Zhongzheyou No. 86 in the KNN model was also over 10%. In all, SIMCA, SVM and RF were 

deemed the optimal methods for rice seed cultivar identification.  

3.2.3. Optimal Wavelength Selection 

The full spectra contained 171 variables, and it was necessary to select sensitive wavelengths which 

carried more information to reduce dimension, computation complexity and simplify the calibration 

models. Weighted regression coefficients (BW) of PLS-DA model (shown in Figure 4) were used to 

select optimal wavelengths in this study. Strong peaks and valleys of BW with absolute value over 150 

were selected as optimal wavelengths. As seen from Figure 4, 12 optimal wavelengths (1,069, 1,079, 

1,139, 1,167, 1,183, 1,227, 1,281, 1,304, 1,328, 1,389, 1,467, 1,558 nm) were selected.  

Figure 4. Weighted regression coefficients of PLS-DA model with selected wavelengths. 

 

3.2.4. Multivariate Data Analysis Based on Optimal Wavelengths 

As a consequence of optimal wavelength selection, the selected 12 wavelengths were used as inputs 

of PLS-DA, KNN, SVM and RF. The performances of these models are shown in Table 2. PLS-DA 

model obtained the worst result, 45 samples out of 150 samples in calibration set and 25 samples out of 

75 samples in prediction set were misclassified, with classification accuracy of 70% and 66.67%, 

respectively. Classification rates of KNN, SVM and RF models in the calibration set and the prediction 

set were all over 80%. The KNN model obtained the highest classification accuracy of 90.67% in the 

prediction set and the RF model obtained highest classification accuracy of 100% in the calibration set. 

Considering the prediction performance, KNN was the best classification model based on the optimal 

wavelengths. Zhongzheyou No. 1, and Zhongzheyou No. 8 showed poor prediction accuracy in all 

models. This result is similar to full spectra based models, which implied that Zhongzheyou No. 1 and 

Zhongzheyou No. 8 were difficult to identify, and appropriate models could help to obtain more 

accurate identification. 
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Table 2. Results of classification models based on optimal wavelengths. 

Model  
1 2 3 4 Total 

a Nr/Nt b accu Nr/Nt accu Nr/Nt accu Nr/Nt accu Nr/Nt accu 

PLS-DA 
c Cal 20/37 54.05% 26/37 70.27% 28/37 75.68% 31/39 79.49% 105/150 70% 
d Pre 11/19 57.89% 15/19 78.95% 10/18 55.56% 14/19 73.68% 50/75 66.67% 

KNN 
Cal 36/37 97.30% 34/37 91.89% 32/37 86.49% 38/39 97.44% 140/150 93.33% 

Pre 17/19 89.47% 19/19 100% 13/18 72.22% 19/19 100% 68/75 90.67% 

SVM 
Cal 37/37 100% 36/37 97.30% 36/37 97.30% 37/39 94.87% 146/150 97.33% 

Pre 17/19 89.47% 16/19 84.21% 16/18 88.89% 18/19 94.74% 67/75 89.33% 

RF 
Cal 37/37 100% 37/37 100% 37/37 100% 39/39 100% 150/150 100% 

Pre 17/19 89.47% 15/19 78.95% 13/18 72.22% 18/19 94.74% 63/75 84% 
a Nr is the number of rightly classified samples; Nt is the total number of samples. b accu is the classification accuracy.  
c Cal represents the calibration set of the samples. d Pre represents the prediction set of the samples. 

3.2.5. Comparison of Full Spectra Based and Optimal Wavelengths Based Models 

As seen from Tables 1 and 2, full spectra-based classification models gave better performances than 

optimal wavelengths-based models. Since SIMCA is a classification method based on PCA, it was not 

used to build models based on optimal wavelengths. The optimal wavelengths-based PLS-DA model 

showed the poorest performance in all models. The performance of PLS-DA models showed a sharp 

decline from full spectra to optimal wavelengths. Meanwhile, the performances of KNN, SVM and RF 

showed little changes in the two cases. Optimal wavelengths-based models used 12 wavelengths 

instead of 171 wavelengths, i.e., the number of wavelengths was decreased 92.98%, and performances 

of models decreased 16% at most in both calibration set and prediction set (except in the PLS-DA 

models). On the other hand, optimal wavelengths-based models gave a classification accuracy over  

80% (except the PLS-DA model), which indicated that optimal wavelengths could be used for rice 

seed cultivar identification. In all, the full spectra-based SIMCA, SVM and RF models obtained 100% 

accuracy in the calibration set and the prediction set, which implied that full spectra would be better 

for rice cultivar identification than optimal wavelengths selected by weighted regression coefficients. 

Generally, wavelength selection had the advantage in improving the performance, and many 

wavelength selection methods have been applied in spectral data analysis. In this study, optimal 

wavelengths obtained reliable but not very reliable performances. For further study, different wavelength 

selection methods would be applied to explore the best one for rice seed cultivar identification. 

4. Conclusions 

NIR hyperspectral imaging combined with multivariate data analysis was applied to identify rice 

seed cultivars. Spectral information was exacted from hyperspectral images of rice seeds, and different 

classification models were built. PLS-DA, SIMCA, KNN, SVM and RF models based on full spectra 

obtained good performance, and the SIMCA, SVM and RF models showed 100% classification rates 

in both the calibration set and prediction set. Optimal wavelengths were selected based on the 

weighted regression coefficients, and PLS-DA, KNN, SVM and RF classification models were built. 

The results showed that the optimal wavelengths-based PLS-DA model gave the worst performance 

with a classification accuracy lower than 80%. Full spectra-based models performed better than 
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optimal wavelengths-based models, RF as a classification methods showed good performance like the 

KNN, SIMCA and SVM models. The overall results indicated that it was feasible to use hyperspectral 

imaging for rice seed cultivar identification, and that RF was an effective modeling method. 
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