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Abstract: Sintering is a complex industrial process that applies heat to fine particles of
iron ore and other materials to produce sinter, a solidified porous material used in blast
furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone
reaches the bottom of the material just before the discharge end. This is known as the burn-
through point. Many different parameters need to be finely tuned, including the speed and
the quantities of the materials mixed. However, in order to achieve good results, sintering
control requires precise feedback to adjust these parameters. This work presents a sensor
to monitor the sintering burn-through point based on infrared thermography. The proposed
procedure is based on the acquisition of infrared images at the end of the sintering process.
At this position, infrared images contain the cross-section temperatures of the mixture. The
objective of this work is to process this information to extract relevant features about the
sintering process. The proposed procedure is based on four steps: key frame detection,
region of interest detection, segmentation and feature extraction. The results indicate that the
proposed procedure is very robust and reliable, providing features that can be used effectively
to control the sintering process.
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1. Introduction

Sintering is a primary process in steel production that applies heat to fine particles of iron ore to
transform them into a coarse-grained product [1]. This is a very complex process in which many
chemical reactions occur at the same time. Therefore, monitoring sintering is a challenging task.
However, temperature can be a very good indicator about the behavior of the sintering process.

Temperature measurement and monitoring is a mandatory requirement for most steps in steel
manufacturing [2]. Measuring, monitoring and controlling steel temperature throughout the
manufacturing process ensures that materials meet product specifications, preventing defects in the final
product [3,4]. Temperature can also be used to detect objects, where images taken in the visible spectrum
are not adequate [5].

Sintering applies a heat treatment process to the material. Thus, temperature measurement and
monitoring during and after the sintering process are critical to achieve optimal results [6]. Only if the
heat treatment is correct will sintering produce the desired results. Inappropriate control of the sintering
process may lead to cracking, distortion and other defects in the final product [7].

During the sintering process, a mixture of fine particles of iron ore and other materials, such as coke
and limestone, are charged onto a set of sintering pallets and leveled to form a bed. Then, the material is
ignited. Combustion begins in the top layers of the mixture and moves down through the bed, while the
sintering pallets move forward. The sintering process needs to be carefully adjusted, so that the flame
front reaches the bottom of the bed, known as the burn-through point (BTP), just before the discharge
end. The BTP must be near a desirable set-point at approximately the discharge end, so that adequate
fusion of sintering materials occurs.

Many different parameters need to be finely tuned in the sintering process. Control is mostly based on
models that calculate the inputs of the process depending on predictions. Different techniques are used,
including fuzzy logic, neural networks, finite state machines and genetic algorithms [8–13]. All these
models require precise feedback to fine-tune the parameters.

This paper presents a sensor-to-monitor sintering BTP based on infrared thermography. It uses an
infrared camera to acquire 2D infrared images from the material at the discharge end of the sintering
process. The sequence of images is processed in order to detect the most appropriate images to monitor
this process. Only some of these images provide relevant information about the process, those where
the position of the flame front can be clearly seen. Thus, the first step is to identify these images. Then,
the selected images must be analyzed to extract different features to provide feedback for the process
control. The system needs no configuration; it automatically detects the material in the images and the
regions of interest. The information provided by the system can be used to control many parameters of
the sintering process, including the strand speed, the bed height, the quantity of coke, water and other
materials in the mixture.

The proposed system has been installed in one of the two sintering machines of ArcelorMittal in
Gijón, Spain. Sinter production in this plant is about 3,000,000 tons of product per year.

This paper is organized as follows: Section 2 describes the sintering process; Section 3 presents the
proposed approach for sintering BTP monitoring; Section 4 discusses the results obtained and finally,
Section 5 reports conclusions.
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2. The Sintering Process

Sintering is an agglomeration process in which iron ore fines and other products such as coke
fines are mixed and fired at a temperature high enough to achieve a certain degree of vitrification. This
process produces a solidified porous material known as sinter. The initial mixture is made up of particles
with a diameter smaller than 3 mm, and the resulting sinter has a diameter of approximately 30–60 mm.
Blast furnaces that produce pig iron use sinter as one of the principle raw materials.

The most common machine used for sintering is the Dwight-Lloyd machine. Figure 1 shows a
schematic representation of the sintering process using this type of machine. The sinter is prepared
in a continuous process. Different materials are meticulously mixed: iron ore fines are mixed with other
materials such as limestone and coke, which is used as fuel. Water is also added to the mixture to increase
the relative humidity. Furthermore, included in the mixture are pieces of sinter, which have been returned
for reprocessing, because they were too small. The mixture is loaded onto a layer of hearth sinter (coarse
sinter) on a moving strand and leveled to form a bed. The mixture is moved using sintering pallets on
rails. The sintering mixture forms a sintering bed that passes under an ignition hood, where the fine coke
in the upper layer is ignited by gas flames.

Figure 1. Sintering process using a Dwight-Lloyd machine.
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The hot gas produced by the combustion is sucked in through the material from the wind boxes placed
below. Combustion begins in the top layers and moves down through the bed, due to the burning air that
flows throw the ignited bed from the top towards the bottom of the bed. A portion of the material in the
high temperature region, known as the flame front, melts. This partial melting causes the particles to
agglomerate [14]. It takes between 15 and 20 min for the flame front of the mixture to reach the bottom
layer of the bed, depending largely on permeability. Strand speed must be controlled, so that sintering is
completed before the discharge end. The BTP, the point where the flame front reaches the bottom of the
bed, must occur near a desirable set-point very close to the discharge end. Only this way will fusion of
sintering materials be correct.
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The resulting solidified sinter is crushed and screened to a size suitable for a blast furnace feed.
Material of acceptable size is transported in a conveyor belt to the blast furnace to proceed to the next
step of the steel-making process. Undersized material is recycled back to the process.

Figure 2 shows two images of the sintering process. Figure 2(a) shows the mixture just after the
ignition hood. Figure 2(b) shows the sinter bed. As can be seen, the mixture is moved in a big structure,
around one hundred meters long and three meters wide.

Figure 2. Ignition hood and sinter bed. (a) Mixture bed just after the ignition hood;
(b) mixture bed on the sintering pallets.

(a) (b)

3. Proposed Approach

The camera used in the system is at the discharge end of the sintering process. The position of the
camera can be seen in Figure 1. Figure 3(a) shows an image taken from this position in the visible
spectrum. This image shows the flame front in the material, although in images taken in the visible
spectrum, the position is barely appreciable. In contrast, Figure 3(b) shows an infrared image taken from
the same position, where the flame front can be seen much more clearly. These images show why it is
necessary to use infrared thermography. A sensor based on infrared thermography is not only able to
measure the temperature of the flame front, but can also be used to detect the position of the flame front.
This position is extremely important to determine the BTP and to regulate the process parameters that
can be used to optimize sintering. The infrared camera used in this system is a Flir ThermoVision A325,
which provides infrared images of 320 × 240 pixels. The maximum acquisition frequency of the camera
is 60 Hz, i.e., a new image can be acquired every 16.67 ms. The temperature range is configurable within
several available ranges. In the experiments, the range, [300, 2,000 ◦K], was selected. The manufacturer
reports a measurement accuracy of ±2 ◦K and a sensitivity lower than 50 mK. The camera communicates
with the computer using a dedicated Gigabit Ethernet cable. The long-wave infrared camera operates at
eight to 12µm. The camera is configured with an emissivity of 0.9, an estimated value for rough iron
and porous materials, and adjusted using other readings.
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Figure 3. Discharge end of the sintering process. (a) Image taken in the visible spectrum;
(b) infrared image.

(a) (b)

Temperature measurement with infrared devices is largely affected by the emissivity of the material.
Emissivity calibration is especially complicated in low emissivity objects, such as polished steel or
aluminum, because small variations in emissivity lead to large variations in the resulting temperatures.
However, in objects with high emissivity, such as a sintering mixture, slight variations in the chosen
emissivity value cause only minor changes in the resulting surface temperatures.

The movement of the material is slow compared to the maximum acquisition rate of the camera.
For this application, it is not necessary to use a high frame rate. An acquisition rate of 15 frames
per second provides more than enough resolution to obtain images with the best possible view of the
flame front.

The proposed approach for sintering BTP monitoring is broken down into several steps, which are
outlined in the following sections. Figure 4 shows a summary of the steps.

Figure 4. Summary of the proposed approach for sintering burn-through point
(BTP) monitoring.
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3.1. Detection of the Key Frames

The system acquires images from the discharge section of the sintering process. Not all the images
acquired contain useful information. Most of them show the top layer of the sinter, and the flame front
is hidden. Thus, it is necessary to identify the images where the flame front is visible from the sequence
of infrared images. These images are called key images, since they are the key to extracting relevant
features about the BTP in the sintering process. Figure 5 shows several consecutive images acquired
while the sinter is being discharged. As can be seen, the material moves forward until it falls into the
crusher located a few meters below. At the beginning, the flame front is hidden under the sinter. However,
as the point where the sinter falls into the crusher gets closer, the flame front starts to become visible in
the images. The flame front is clearly seen just after the sinter falls. At this point, the part of the material
that is falling stops hiding the flame front. Therefore, this would be the best image to extract features
about the flame front and to determine where the BTP occurred.

Figure 5. Infrared images acquired while the sinter is being discharged. (a) Image at t = 0;
(b) image at t = 1.6 s; (c) image at t = 3.2 s; (d) image at t = 4.8 s; (e) image at t = 6.4 s;
(f) image at t = 8 s key frame where the flame front is clearly visible.

(a) (b) (c)

(d) (e) (f)

When the sinter is discharged, the temperature of the top layer of the sinter is much lower than
the temperature of the sintering pallets used to move the material. Thus, when the sinter falls and the
sintering pallets become visible, the average temperature in the infrared image is much higher. This can
be seen in Figure 5. These images are shown using the same color scale as in Figure 3(b). Temperature
in the sintering pallet is similar to the temperature in the flame front, while temperate in the top layer
of the sinter is several hundred degrees lower. Figure 5(f) shows a key frame, where the sinter has just
fallen, and the flame front is clearly visible. Furthermore, the average temperature in this frame is higher
than the others. As the sinter moves, the sintering pallet will gradually be hidden again, and the average
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temperature of the image will decrease. Thus, the average temperature of the images is a good indicator
to identify key frames.

Figure 6 shows the average temperature per frame over a period of three and a half minutes. In the
resulting signal, several peaks are clearly appreciable. These peaks correspond to frames where the
sinter has just fallen, that is, these are the key frames. In other words, the key frames can be detected by
detecting the peaks in the average temperature signal.

Figure 6. Average temperature per frame at 15 frames per second.
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In order to detect the peaks in the average temperature signal, a procedure based on derivatives is
used. The first step is to calculate the first derivative of the signal. Possible peaks are detected, because
the first derivative of a peak has a downward-going zero-crossing at the peak maximum. However, the
presence of random noise causes many false zero-crossings. Possible peaks are filtered based on two
conditions: the slope must exceed a minimum, and the original signal at that point must exceed another
minimum value. In this way, small peaks are ignored. Figure 6 shows all the peaks detected in the
average temperature signal using this procedure. The proposed procedure is very robust and provides
very good results under different conditions. When this procedure is applied in real time, a very small
delay is necessary to calculate the first derivative with a window centered around each point, but this
does not affect the results.

The position of the peaks in the average temperature signal makes it possible to identify the key frames
in the sequence of infrared images. The position of a peak corresponds to a key frame. Figure 7 shows
some of these key frames. These are the images where the flame front is best seen and, thus, the images
used for the subsequent processing. Figure 7(f) will be used as an example to describe further processing.
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Figure 7. Examples of detected key frames. (a) Frame 1; (b) Frame 2; (c) Frame 3;
(d) Frame 4; (e) Frame 5; (f) Frame 6.

(a) (b) (c)

(d) (e) (f)

3.2. Detection of the Region of Interest

The position of the flame front is not always at the same level. This is because the sinter does not
always fall from the same position, as it varies with the density and porosity of the mixture. Thus, it is
necessary to identify the region in the image where the flame front is located.

Region of interest (ROI) is the commonly used term to refer to the portion of an image of particular
interest. In this case, the ROI is the portion of the image where the flame front is located. The part of
the image where the sintering pallet is located is not of interest and must be removed. Once the ROI
is defined, there is no need to process the whole image to detect the position of the flame front. Thus,
the computational cost is greatly reduced.

The ROI in the image is located above the sintering pallet. In the moving strand, there are many
sintering pallets moving on rails. When the pallet reaches the discharge end of the sintering process, it
rotates, and the sinter falls into the crusher. It is at this point where the key frames are detected. When
the pallet rotates, a space appears between consecutive pallets that can be seen in Figure 7. This space
appears in all the key frames and can be used as a limit between the ROI (the part of the image above)
and the part of the image with no interest for processing.

ROI detection starts by applying a gradient detector to a key frame. The gradient of the infrared
image is calculated vertically using the method proposed in [15], which is significantly more accurate
than previous methods. The gradient is only calculated vertically, because the space between sintering
pallets appears as a semi-horizontal fringe in the image. Figure 8(b) shows the resulting gradient using
this method for the image shown in Figure 8(a).
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Figure 8. Detection of the regions of interest. (a) Key frame; (b) absolute value of the
gradient; (c) edges after thresholding, thinning and opening; (d) Hough transform; (e) lines
detected in the image; (f) final region of interest after removing the unwanted area.

(a) (b) (c)

(d) (e) (f)

Next, the absolute value of the gradient is thresholded. Two different morphological operations
are applied to the resulting binary image: thinning and opening. Thinning is an operation used for
skeletonization and reduces all lines to single-pixel thickness. Opening is an operation used to remove
small objects. Pixels are connected, and the objects that have fewer than a specific number of pixels are
removed. The connectivity matrix used to decide if two pixels are connected is shown here:

1 0 1

1 1 1

1 0 1


This connectivity matrix is selected, because it connects horizontal lines as valid objects, but not

vertical lines. The final result of this process can be seen in Figure 8(c). This figure shows the resulting
edge map over the original image. It can be seen that the edges of the space between pallets are
clearly detected.

The Hough transform is applied next to the edge map. The Hough transform is the most commonly
used method for line detection in an image, because it can be used without prior knowledge and under
extreme noise conditions [16]. In the Hough transform, pixels are mapped to lines in a discretized 2D
parameter space using radius-angle parameterization. By restricting the angle parametrization to specific
ranges of valid angles, only some of the lines of the image are detected [17]. Figure 8(d) shows the Hough
transform. The two points highlighted in this image correspond to the two lines shown in Figure 8(e).
The angle parametrization has been restricted in order to search for only these two lines: the top and
bottom limits of the space between sintering pallets.



Sensors 2013, 13 10296

The top line seems to be a good division between the part of the image where there is interesting
information and the part of the image that must be removed. However, careful examination reveals a
small gap between the top line and the bottom of the sinter bed. The real line should be a few pixels
above the detected top line. However, the distance from the top line to the bottom of the sinter bed
depends on the position of the top line. Due to the position of the camera, when the position of the top
line is low in the image, the distance is greater than when the position is high in the image. This issue can
be solved by creating a small lookup table that indicates the required distance depending on the position
of the top line. This table is created off-line and depends on the relative position between the camera and
the scene.

Using the top line detected by the Hough transform and the described lookup table, a new line is
calculated: this line corresponds to the bottom of the sinter bed in the image. Figure 8(e) shows the ROI
in the image, that is, the part of the image above this line. The rest of the image is removed and will be
ignored in the next steps.

3.3. Segmentation of the Frame Front

Image segmentation divides the image into sets of segments with similar attributes, in this case,
temperature. Segmentation is one of the oldest and most widely studied aspects of computer vision [18].
However, non-uniformities and blurry edges in the images make many traditional image analysis routines
unsuitable for infrared image processing [19,20]. This is why many applications process infrared images
using ad hoc algorithms [21–23].

For segmentation of the flame front in infrared images, many methods (such as thresholding, edge
detection, region growing or watershed) fail or provide inaccurate results. The proposed method for
this task is an image segmentation based on active contours models [24,25], using a region-based active
contour model.

There are many advantages of active contour models over classic image segmentation methods.
For example, active contour models can achieve sub-pixel accuracy of object boundaries and can
incorporate prior knowledge, such as shape and intensity distribution. They also provide smooth closed
contours as segmentation, which can be used for shape analysis and recognition. Particularly important
is their ability to perform in images with intensity heterogeneities, which often occur in real images taken
from both the visible and the infrared spectrum.

Active contour segmentation aims to minimize an energy function by evolving the current contour
towards image features. The energy function is defined based on the specific active contour model [26].
The original model is based on three forces: internal, external and image forces. Internal forces give the
model tension and stiffness. External forces come from human operators or initialization procedures.
Images forces are driven by image features, such as light and dark regions. The total energy of the model
can be represented as Equation (1), where x (s) represents the position of the contour parametrically.

E =

1∫
0

Eelement (x (s)) ds (1)

The total energy can be rewritten in terms of the three basic energy functions as Equation (2).
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E =

1∫
0

Eint (x) ds+

1∫
0

Eext (x) ds+

1∫
0

Eimg (x) ds (2)

Existing active contour models can be divided into two major classes: edge-based models and
region-based models. Edge-based models use local edge information to evolve the contour toward
the object boundary using, for example, an energy function based on a two-dimensional spline curve.
Region-based models use an energy function based on a certain region descriptor, which guides the
motion of the active contour.

In this work, the precise segmentation of the flame front is carried out using a region-based
active contour model in a variational level set formulation [27]. This active contour model defines a
region-scalable fitting energy function in terms of a contour and two fitting functions that locally
approximate the image intensities on the two sides of the contour. This segmentation method can be
used to segment images with intensity heterogeneity and also with weak object boundaries. The flame
front in the infrared images considered in this work has weak boundaries. Furthermore, the temperature
in this flame front could vary in different parts of the image, provoking intensity heterogeneities in the
image. Thus, the segmentation method fits this problem perfectly.

Figure 9. Segmentation of the flame front. (a) Input image; (b) image after contrast
enhancement; (c) median filtering of the image; (d) binary image after thresholding;
(e) initial contours; (f) final segmentation.

(a) (b) (c)

(d) (e) (f)

Before carrying out segmentation based on active contour, it is necessary to prepare the image. First,
a contrast enhancement procedure is applied to the image [28]. This procedure improves the contrast in
the image, making the edges of the flame front sharper. Figure 9(b) shows the result of this procedure
for the image shown in Figure 9(a). The resulting image is then filtered using the median with a small
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window size (3 × 3). This procedure removes noise and improves the results of the segmentation using
active contours. The resulting image is now ready for the segmentation of the flame front. The image
after median filtering can be seen in Figure 9(c).

Segmentation using active contours requires the specification of an initial contour. In this case, the
initial contours are established by applying a thresholding process [29]. The resulting binary image after
image thresholding is a rough approximation for the segmentation of the flame front. However, it is a
good starting point to continue the processing and obtain a final adjusted boundary.

Figure 9(d) shows the binary image obtained after thresholding. The boundaries of this mask represent
the initial contours. Figure 9(e) shows the starting point of the active contour segmentation. The initial
contours evolve towards an accurate segmentation of the flame front. The final result in Figure 9(f)
clearly identifies the regions of the flame front in the image. In this case, the initial and final contour
do not differ greatly. This is because the temperature of the flame front is homogeneous, and the
thresholding is able to detect it very well. Nevertheless, the boundary of the region on the right is
much more adjusted and accurate in the final image.

3.4. Feature Extraction

In general, the objective of feature extraction is to characterize an object by measurements whose
values are very similar for objects in one category and very different from objects in others [30]. This
leads to the idea of seeking distinguishing features. However, the goal in this work is to measure one or
more of the properties of the material, so that its quality can be assessed; in this case, the quality based
on the BTP obtained from the information about the flame front at the end of the sintering process. These
features can then be used as feedback to fine-tune the parameters of the sintering process. Thus, different
features that provide information about the BTP are explored and analyzed.

3.4.1. Sinter Discharge

The first set of features is related to how the sinter is discharged. In order to extract these features,
the information about the detection of key frames and ROI is sufficient: segmentation of the flame front
is not required.

The frequency at which the sinter mixture falls is an important feature. The value of this feature
depends on the speed of the strand. However, it also depends on other parameters of the sintering
process. This feature can be calculated as the number of peaks in the average temperature per frame in a
period of one minute. In the example shown in Figure 6, the value of this feature is 3.63. A high value
in this feature indicates an early disintegration of the sinter mixture. On the other hand, a low value
indicates that the sinter mixture is too solid. In either of these two cases, the sinter mixture is not correct,
and the amount of coke and water needs to be adjusted to change the moisture content and agglomeration
of the material.

A complementary feature related to the same issues is the position of the line that divides the region
of interest. When this line is at the top of the image, the sinter mixture disintegrates easily. If this line is
towards the bottom of the image, the sinter mixture is stuck to the sintering pallet. These issues are also
related to problems in the mixture.
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3.4.2. Hot Zone

The hot zone is the maximum temperature zone in the flame front. The position of this zone compared
with the bottom of the sinter bed is a good indication of the BTP. In this case, interesting features are
extracted by subtracting the position of the maximum temperature in the flame front and the position of
the line that divides the region of interest.

Figure 10(a) shows the position of the maximum temperature values in the flame front. Ideally, they
should all be part of a straight line parallel to the the bottom limit of the ROI. In this case, the set of
points could be fitted to a line (Figure 10(b)), and the coordinates of this line would be the features.
However, as can be seen in the images, not all the points lie on this line. A better approach is to measure
the distance from each of these points to the the bottom limit of the ROI, as shown in Figure 10(c).

Figure 10. Maximum temperature zone in the flame front. (a) Position of the maximum
temperature values in the flame front; (b) values fitted to a line; (c) distance from the values
to the bottom limit of the region of interest (ROI).

(a) (b) (c)

The best way to analyze the distribution of a set of points is with a histogram. Figure 11(a) shows the
histogram of the distance from the maximum temperature values in the flame front to the bottom limit of
the ROI. The frequent distances are very close to zero. However, some values on the right-hand section
of the figure indicate spurious behavior. The BTP should have occurred before the discharge end of the
sintering process, but in this part of the flame front, BTP has yet to occur. This means that in this zone,
some of the material has not received proper heat treatment.

The maximum temperature in the flame front is also a very good quality metric of the sintering
process. Figure 11(b) shows the histogram of the maximum temperature values in the flame front.

Many useful features can be extracted from the histograms with the distribution of distances and
temperature, such as, for example, the center of the data or the spread. It can also be used to calculate the
skewness and the presence of outliers and multiple modes. All these features are of utmost importance
to improve the result of the sintering process.
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Figure 11. Histograms for the hot zone. (a) Histogram of the distance from the maximum
temperature values in the flame front to the bottom limit of the ROI; (b) histogram of the
maximum temperature values in the flame front.
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3.4.3. Flame Front Zone

Another set of features can be extracted from the flame front zone. The first set of features is related
to the heights of the zone. The heights of this zone can be computed from the binary image produced
by the segmentation. The top and bottom limits of the zone are calculated (Figure 12(a,b)). Then, the
distance is computed finding the difference between them (Figures 12(c) and 13(a) show the histogram
of the heights in the flame front).

The temperature distribution in the flame front is also important. Figure 13(b) shows the histogram of
the temperature values in the flame front. This histogram can be compared with Figure 11(b), which only
uses maximum temperature values. As can be seen, the shape of the histogram in this case is completely
different. Features from both histograms can provide a full view of the temperatures at the end of the
sintering process.

Figure 12. Heights in the flame front. (a) Top position. (b) bottom position. (c) heights.

(a) (b) (c)
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Figure 13. Histograms for the flame front zone. (a) Histogram of the heights in the flame
front; (b) histogram of the temperature values in the flame front.
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These two new histograms for the flame front zone provide a new set of features that complement
features extracted from the hot zone. A similar procedure could be used to calculate numerical values
from the obtained distributions.

The width distribution of the flame front is another central feature. Uneven distribution of the flame
front across the width of the sinter bed indicates anomalies in the sintering process. It is especially useful
to measure the width of the area where the flame front is missing. In the key frame used in this example,
the value of this feature is 12.5%.

4. Results and Discussion

The proposed image processing and feature extraction procedure has been applied to an extensive
dataset, containing thousands of infrared images. These experiments were used to adjust the parameters
of the system and to validate the procedure. The proposed method provided robust detection of the key
frames and the region of interest. However, in some cases, the line that divides the region of interest
was very low in the image. In these cases, there is not an adequate perspective of the flame front in
the image. These images are discarded, as they cannot be used to extract useful information. Most key
frames show a perfect view of the flame front. In these images, the proposed segmentation procedure
makes it possible to identify the position of the flame front in the image very accurately. The proposed
procedure was very robust and effective.

Figure 14 shows the segmentation results for the key frames shown in Figure 5. The ROI has been
detected correctly. It is the bottom line of the flame front. From this division of the images, the
segmentation procedure detects the boundary of the flame front accurately. The final results clearly
identify the flame front in the infrared image.



Sensors 2013, 13 10302

Figure 14. Results for the segmentation of the flame front in all key frames. (a) Frame 1;
(b) Frame 2; (c) Frame 3; (d) Frame 4; (e) Frame 5; (f) Frame 6.

(a) (b) (c)

(d) (e) (f)

The final step of the proposed procedure is the extraction of features. Figure 15(a) shows a comparison
of the distribution of distances from the maximum temperature values in the flame front to the bottom
limit of the ROI for each key frame. In most of the frames, the distance is very low. As expected, at
the end of the sintering process, the flame front is very close to the bottom of the sinter bed. However,
there are cases, such as Frame 6, where there are long distances that could indicate anomalies in some
areas of the sinter bed. Comparing these distributions can help to assess the BTP and to tune the
sintering parameters.

Figure 15(b) shows a comparison of the distribution of temperature in the flame front for each key
frame. The distribution is quite similar in all frames, with an average value around [700–800 ◦K] and
a maximum around [1,000–1,100 ◦K]. Outliers in temperature distribution can indicate an incorrect
mixture of the materials. In particular, high temperature can indicate an excess of coke.

The information obtained after processing the infrared thermography can be used to extract relevant
features about the sintering process with high accuracy and reliability. The extracted features can be
used to monitor not only the BTP, but also the sinter qualities. Furthermore, real-time information
about the sintering process can be used to fine-tune the operation parameters, including the strand speed,
the solid fuel rate and the return fine rate.
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Figure 15. Histograms for the flame front zone in all key frames. (a) Histogram of the
distance from the maximum temperature values in the flame front to the bottom limit of the
ROI; (b) histogram of the temperature values in the flame front.
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5. Conclusions

This paper proposes a method to monitor the sintering burn-through point based on infrared
thermography. The proposed procedure acquires infrared images from the discharge end of the sintering
process. These infrared images contain the cross-section temperatures of the sintering mixture. The
first step is to detect the frames where the flame front can be seen best. This detection is based on the
average temperature of the frames. The next step detects the region of interest in the images. In this case,
a space between the sintering pallets is used as a reference in the images. A segmentation procedure is
applied to the detected region of interest. A state-of-the-art active contours technique is used to identify
the boundary of the flame front in the images. Finally, different features that can provide useful feedback
for sintering control are analyzed and explored. No user input is required for any of the steps: a great
advantage for deployment and maintenance.

Results indicate that the proposed system is very robust and reliable. Not only can the extracted
features be used to monitor the sintering burn-through point, they can also be effectively used to monitor
many other aspects of the sintering process or to predict sinter qualities. Furthermore, the provided
information can be used to adjust the quantity of coke in the mixture, that is, the solid fuel rate. Therefore,
the integration of this sensor in a sintering plant makes for a far more cost-efficient industrial process.
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11. Posada, R.M.J.; Suárez, R.I.J.; de Sáiz, A.J. Sintering process burn-through point modelization.

Revue de Métallurgie 2009, 106, 225–233.
12. Shang, X.Q.; Lu, J.G.; Sun, Y.X.; Liu, J.; Ying, Y.Q. Data-driven prediction of sintering

burn-through point based on novel genetic programming. J. Iron Steel Res. Int. 2010, 17, 1–5.
13. Zhi-kun, C.; Yu-tian, W.; Fu-bin, W. The Research of Control for Sintering Burn-Through Point

Based on Finite-State Machine. In Proceedings of the 2011 International Conference on Electric
Information and Control Engineering (ICEICE), Wuhan, China, 15–17 April 2011; pp. 1830–1833.

14. Nath, N.K.; Mitra, K. Optimisation of suction pressure for iron ore sintering by genetic algorithm.
Ironmak. Steelmak. 2004, 31, 199–206.

15. Farid, H.; Simoncelli, E.P. Differentiation of discrete multidimensional signals. IEEE Trans. Image
Process. 2004, 13, 496–508.



Sensors 2013, 13 10305

16. Illingworth, J.; Kittler, J. A survey of the Hough transform. Comput. Vis. Graph. Image Process.
1988, 44, 87–116.

17. Usamentiaga, R.; Molleda, J.; Garcia, D.F.; Perez, L.; Vecino, G. Real-time line scan extraction
from infrared images using the wedge method in industrial environments. J. Electron. Imaging
2010, 19, 3017.

18. Szeliski, R. Computer Vision: Algorithms and Applications; Springer-Verlag New York Inc.:
New Yourk, NY, USA, 2010.

19. Zhou, Y.; Omar, M. Dynamic-template processing for passive thermograms: Applied to automotive
stamping split detection. NDT E Int. 2008, 41, 582–588.

20. Ibarra-Castanedo, C.; Gonzalez, D.; Klein, M.; Pilla, M.; Vallerand, S.; Maldague, X. Infrared
image processing and data analysis. Infrared Phys. Technol. 2004, 46, 75–83.

21. Heriansyah, R.; Abu-Bakar, S.A.R. Defect detection in thermal image for nondestructive evaluation
of petrochemical equipments. NDT E Int. 2009, 42, 729–740.

22. Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Lopez, I. Non-destructive inspection of
drilled holes in reinforced honeycomb sandwich panels using active thermography. Infrared Phys.
Technol. 2012, 55, 491–498.

23. Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Lopez, I. Automatic detection of impact
damage in carbon fiber composites using active thermography. Infrared Phys. Technol. 2013, 58,
36–46.

24. Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988,
1, 321–331.

25. Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10,
266–277.

26. Dietenbeck, T.; Alessandrini, M.; Friboulet, D.; Bernard, O. CREASEG: A Free Software for the
Evaluation of Image Segmentation Algorithms Based on Level-Set. In Proceedings of the 2010
17th IEEE International Conference on Image Processing (ICIP), Hong Kong, 26–29 September
2010; pp. 665–668.

27. Li, C.; Kao, C.Y.; Gore, J.C.; Ding, Z. Minimization of region-scalable fitting energy for image
segmentation. IEEE Trans. Image Process. 2008, 17, 1940–1949.

28. Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization. In Graphics Gems IV;
Academic Press Professional, Inc.: San Diego, CA, USA, 1994; pp. 474–485.

29. Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance
evaluation. J. Electron. Imaging 2004, 13, 146–168.

30. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Willey & Sons: New York, NY,
USA, 2001.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	The Sintering Process
	Proposed Approach
	Detection of the Key Frames
	Detection of the Region of Interest
	Segmentation of the Frame Front
	Feature Extraction
	Sinter Discharge
	Hot Zone
	Flame Front Zone


	Results and Discussion
	Conclusions
	Acknowledgments
	Conflict of Interest

