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Abstract: Regenerated Fibre Bragg Gratings have the potential for high-temperature 

monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later 

regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in  

high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg 

resonances corresponding to the slow and fast axis that are characterized in temperature 

terms. As the temperature increases the separation between the two Bragg resonances is 

reduced, which can be used for low cost interrogation. The proposed interrogation setup is 

based in the use of optical filters in order to convert the wavelength shift of each of the 

Bragg resonances into optical power changes. The design of the optical filters is also 

studied in this article. In first place, the ideal filter is calculated using a recursive method 

and defining the boundary conditions. This ideal filter linearizes the output of the 

interrogation setup but is limited by the large wavelength shift of the RFBG with 

temperature and the maximum attenuation. The response of modal interferometers as 

optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The 

output of the proposed interrogation scheme is simulated in these conditions improving  

the sensitivity. 

Keywords: optical fibre sensor; high-temperature; Regenerated Fibre Bragg Grating; 
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1. Introduction 

Optical fibre sensors offer a good performance under extreme conditions because they have small 

dimensions and low weight, they are immune to electromagnetic interference, chemically inert and 

spark free [1]. Among the various types of optical fibre sensors, Fibre Bragg Gratings (FBGs) offer 

greater multiplexing capabilities for multipoint measurement and the fluctuations of the received 

power do not affect the measurements. However, for high-temperature monitoring FBGs present a 

progressive decay, limiting the range of operation [2]. Several techniques have been proposed to 

extend the operating temperature range of the FBGs: modifications of the composition of the fibre, 

inscription of Type II gratings and high-temperature annealing [3–5]. Regenerated Fiber Bragg 

Gratings (RFBGs) are obtained from a seed FBG after a high-temperature annealing process. During 

the annealing process, the reflected optical power of the seed FBGs decays, followed by an increase. 

This is known as the regeneration process, and gives rise to a RFBG with improved temperature 

stability. In the last years, the regeneration process has been studied under different conditions and 

with several optical fibres [6–10]. 

In this paper the fabrication of RFBGs in high-birefringence optical fibres is shown. The optical 

spectrum shows two resonances corresponding to the fast and slow polarizations which show a 

different wavelength shift with temperature. This effect is going to be used to reduce the complexity 

and cost of the interrogation of the high-temperature sensor. The proposed interrogation setup is based 

on the use of optical filters in order to convert the wavelength shifts of each of the polarizations into 

changes in the optical power. The optical filters have a significant influence in the output of the 

interrogation setup and their design is also addressed. The paper is organized as follows: Section 2 

details the fabrication process of the RFBG in high-birefringence optical fibre. Section 3 presents the 

proposed interrogation setup and the design of the ideal filter. In Section 4, the use of modal 

interferometers as the optical filters is discussed. Finally, concluding remarks are provided. 

2. RFBG Regeneration 

A Fibercore HB1500T high-birefringence optical fibre is used. The core of the optical fibre is 

flanked by areas of high-expansion, boron-doped glass that shrink-back more than the surrounding 

silica as the fibre is drawn and freeze the core in tension. This tension induces birefringence and when 

a FBG is inscribed originates two grating peaks at different wavelength for the slow and fast axis. The 

difference in the thermal expansion coefficient of the boron-doped areas makes that the wavelength 

separation of the two Bragg resonances changes with temperature. 

In order to be able to measure high-temperatures a RFBG is needed. In first place the optical fibre is 

introduced in a hydrogen loading chamber. The seed FBGs is then inscribed in the optical fibre using 

an argon-ion frequency doubled laser at 244 nm and a phase mask technique. Finally, the FBG is 

introduced in a tubular oven and a high-temperature annealing is performed. The optical spectrum is 

continuously monitored using during the annealing process by a Micron Optics SM125 FBG interrogator. 

Figure 1a shows the optical spectrum of one of the seed gratings and the RFBG obtained after the 

regeneration process described in Figure 1b. The regeneration process consist in a 10 °C/min 

temperature ramp up to 900 °C followed by a 5 °C/min temperature ramp up to 1,000 °C where the 
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temperature is stabilized for 2 h. After this stabilization period, the oven is allowed to return to ambient 

temperature. It can be noticed the two resonances corresponding to the fast and slow polarizations. At 

the same temperature, the obtained RFBGs present a permanent wavelength shift and have a reduced 

reflectivity compared to the original FBG but the dynamic range is still around 20 dB. 

Figure 1. (a) Spectra of the seed FBG and RFBG; (b) Maximum reflected optical power of 

the fast and slow axis during the regeneration process. 

  

(a) (b) 

The wavelength shift of the two resonances in the RFBG is characterized using temperature cycles. 

These characterization cycles use three concatenated temperature cycles that follows the same heating 

scheme of the regeneration process previously described. Nonetheless, in contrast with the 

regeneration process, between two consecutive temperature cycles the temperature is left to drop only 

down to 300 °C avoiding the long period of time needed to cool down the oven to ambient temperature. 

For temperatures higher than 800 °C the birefringence is smaller and is no longer possible to 

distinguish the two resonances with the instrumentation used and only one resonance is observed. The 

results and the fitting with a fifth order polynomial are shown in Figure 2a. Figure 2b shows the 

separation between the slow and fast axis Bragg resonances and the error between the fitting and the 

experimental data. 

Figure 2. (a) Wavelength shift with temperature of the slow and fast axis Bragg resonances; 

(b) Separation between the slow and fast axis Bragg resonances. 

  

(a) (b) 
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3. Interrogation Setup 

In order to reduce the cost of the sensor interrogation, the scheme that is shown in Figure 3 is 

proposed. The light from a non-polarized optical light source illuminates the RFBG. The reflected 

signal is then divided into the two polarizations. A variable attenuator can be used to compensate 

possible differences in the optical power between the two polarizations. Each of the polarizations 

passes through an optical filter that converts the wavelength shift into power changes that is measured 

with a photodiode. Finally, the outputs of the two photodiodes are subtracted to determine the 

temperature variation. Optical power fluctuations are compensated due to the differential detection 

scheme on condition that optical variations affect the two polarizations at the same time. The use of the 

optical fibre filters results in a significant cost reduction compared with tunable lasers and tunable 

filters within the actual commercial interrogation units. 

Figure 3. Proposed interrogation setup. ASE stands for Amplified Spontaneous Emission 

and PD for Photodiode. 

 

The response of the interrogation scheme can be tuned designing the optical spectrum of the optical 

filters. Standard optical edge filters can be used. In this case the output of the interrogation setup would 

show a non-lineal response, according to the temperature characterization, requiring a later electronic 

compensation. Alternately, signal processing can be performed optically designing and implementing 

the optical edge filter [11]. In an ideal situation, the two filters are the same and the output of the 

interrogation setup has a linear dependence with temperature. Since the optical filter is the same for the 

two polarizations the optical spectrum of the optical filter can be determined by a recursive relationship:  

   1 2 ·P h h AT B       (1) 

   1 2 ·h h AT B     (2) 

where P  is the optical power difference measured in the photodiodes,  h   is the spectrum of the 

optical filter where 1  and 2  are the wavelengths of the Bragg resonances for the fast and slow axis. 

A  and B  are the constants that define the linear dependence with temperature. The value of A  is 
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limited by the maximum attenuation of the optical filter and B  can be obtained from the temperature 

MT  where the two Bragg resonances match: 

·MB AT   (3) 

Figure 4a shows the optical spectrum of the ideal filter obtained using the recursive method and the 

temperature characterization of the RFBGs. Figure 4b represents the simulated output of the 

interrogation setup when the ideal filter is used. As can be noticed, the output has a linear dependence with 

temperature, as expected. Nonetheless, the slope of the ideal filter is limited by the high wavelength 

shift of the RFBG reducing the resolution of the interrogation setup. This limitation can be solved 

allowing the output of the interrogation setup be non-lineal. 

Figure 4. (a) Optical spectrum of the ideal filter; (b) Simulated output of the proposed 

interrogation setup using the ideal filter. 

  

(a) (b) 

4. Modal Interferometers 

The use of highly tunable filters permits the use of the same optical filter for both polarizations. 

Tuning one of the optical filters allows one to change the output of the interrogation setup improving 

the sensitivity of the interrogation setup. Using the interrogation setup proposed previously, the use of 

modal interferometers as optical filters is discussed. The spectra of modal interferometers show a 

periodic response that can be modelled as a sinusoidal response [12]. The period of the sinusoid can be 

easily selected during the fabrication of the modal interferometer and strain or temperature can be used 

to shift the spectral response. Figure 5a shows the spectrum of a modal interferometer with a period of 

14.3 nm, where the period of the modal interferometer has been selected to be larger than the wavelength 

shift of the RFBG for high temperatures.  
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Figure 5. (a) Optical spectrum of a modal interferometer with a period of 14.3 nm;  

(b) Simulated output of the proposed interrogation setup using modal interferometers with 

relative phase differences. 

  

(a) (b) 

The output of the interrogation setup is simulated using the measured optical spectra of the modal 

interferometer and the RFBG. As a result of the small separation of the two Bragg resonances the 

performance of the interrogation setup can be improved introducing a wavelength shift between the 

two optical filters. This wavelength shift is equivalent to introduce a phase shift in the sinusoidal 

optical spectrum of the modal interferometers. It is worth to mention that, because of the periodic 

response of the modal interferometers, the unambiguous range is reduced at the same time. Figure 5b 

shows the effect of the relative phase difference induced between the two optical filters. 

Using the modal interferometers the linear range obtained is limited by the period of the modal 

interferometer and the relative phase difference. The sensitivity, which is determined by the slope of 

the output of the interrogation setup, depends on the relative phase difference. The linear range can 

also be tuned applying the same wavelength shift to both optical filters. 

5. Conclusions 

The fabrication and characterization of regenerated fiber Bragg gratings in high-birefringence 

optical fiber for use in high-temperature applications has been shown. The optical spectrum shows two 

Bragg resonances for the slow and fast polarizations. The separation of the two Bragg resonances can 

be used to reduce the cost of an interrogation unit using optical filters to convert the wavelength shifts 

into optical power changes. The spectral response of the optical filter has been studied. The ideal filter 

which linearizes the output of the interrogation setup has been obtained but the sensitivity is limited by 

the large wavelength shift of the RFBG and the maximum attenuation of the filter. To avoid the 

limitations of the ideal optical filter the output of the interrogation setup is studied using modal 

interferometers. Modal interferometers are highly tunable devices which optical spectrum can be easily 

shifted by temperature or strain. Due to the periodic response of the modal interferometers the output 

of the interrogation setup is also periodic with a quasi linear response in a limited range. The range  

and slope of the interrogation setup can be tuned by modifying the phase difference between the  

modal interferometers. 
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