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Abstract: Two new coumarin-based “turn-off” fluorescent probes, (E)-3-((3,4-

dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS1) and (E)-3-((2,4-

dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS2), were synthesized and 

their detection of copper(II) and iron(III) ions was studied. Results show that both 

compounds are highly selective for Cu
2+

 and Fe
3+

 ions over other metal ions. However, 

BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to 

regenerate 3-amino-7-hydroxycoumarin (3) and 3,4-dihydroxybenzaldehyde, of which 3 is 

able to react with copper(II) or iron(III) ions. The interaction between the tested 

compounds and copper or iron ions is associated with a large fluorescence decrease, 

showing detection limits of ca. 10
−5

 M. Preliminary studies employing epifluorescence 

microscopy demonstrate that Cu
2+

 and Fe
3+

 ions can be imaged in human neuroblastoma 

SH-SY5Y cells treated with the tested probes. 
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Abbreviations 

(E)-3-((3,4-Dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one: BS1. 

(E)-3-((2,4-Dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one: BS2. 

Fetal bovine serum: FBS. 

Modified Eagle Medium-F12: MEM-F12. 

Histidine: His. 

Ligand to metal charge transfer: LMCT. 

(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid): HEPES. 

Nitrilotriacetic acid: NTA. 

Dimethyl sulfoxide: DMSO. 

Dimethyl formamide: DMF. 

Nitrilotriacetic acid-Fe(III): Fe-NTA.  

1. Introduction 

Fluorescent probes may be defined as synthetic small molecules that react specifically with analytes 

to induce a marked change in their fluorescence properties; on the basis of such changes, the analytes 

can be determined [1–5]. These probes have been extensively investigated and widely used in many 

fields because of their powerful ability to improve analytical sensitivity, and in particular to be used in 

in vivo imaging studies. Of particular interest is the development of fluorescent probes for transition 

metal ions, such as Cu
2+

 and Fe
3+

, due to their biological relevance [6–8]. However, due to the low 

concentrations at which these metal ions are present in biosystems [9], high-sensitivity probes are 

necessary for practical applications. In recent years the literature has reported a large number of probes 

for Cu
2+

 and Fe
3+

 detection [10–13]. For the former ion, most of the probes involve a turn-off process, 

since copper ion often acts as a quencher via energy- or electron-transfer processes. However there are 

some probes designed on the basis of rhodamines, which show a fluorescence off-on response with 

reversible behavior upon complexation [14,15]. 

It is well known that Cu
2+

 can induce the hydrolysis of activated esters, Schiff bases, and hydrazones, 

which provides alternative approaches for the design of Cu
2+

 probes. These probes show a change in 

their fluorescence response to Cu
2+

 via Cu
2+

-promoted hydrolysis of the ester, imine or hydrazone 

function [16–18]. Interestingly, regarding Fe
3+

 ion detection, Lee et al. [19] have demonstrated that  

the strategy of a combination of Fe
3+

-induced Schiff-base hydrolysis and rhodamine spirolactam  

ring-opening in one system is an efficient model to achieve specific detection of Fe
3+

. Other fluorochromes 

with excellent photophysical properties, such as coumarin-based sensors, have also been reported for 

these metal ions [20]. However, in most of the cases studied, a high percentage of organic solvents is 

required due to the low water solubility of these probes. Thus, based on the fluorescent properties of 

coumarin derivatives and the importance of the presence of a Schiff base for the sensing mechanism of 
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Cu
2+

 and Fe
3+

 ions, we have now synthesized, characterized and assessed two coumarin-based fluorescent 

probes for these biologically relevant ions, namely (E)-3-((3,4-dihydroxybenzylidene)amino)-7-

hydroxy-2H-chromen-2-one (BS1) and (E)-3-((2,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-

chromen-2-one (BS2). 

2. Experimental Section 

2.1. Instruments and Reagents 

All analytes were purchased from Sigma-Aldrich (Santiago, Chile) and were used as received. 

Unless indicated otherwise, all solutions employed in this study were prepared in Chelex-100-treated 

HEPES buffer (30 mM; pH 7.4). Melting points were determined on a Reichert-Jung Galen III hot-plate 

microscope equipped with a thermocouple. 
1
H-NMR spectra were recorded with a Bruker Avance 400 

MHz spectrometer. All measurements were carried out in DMSO-d6. Absorption spectra were recorded 

at 25 °C using a Hewlett-Packard model HP 8453 instrument. The emission spectra were recorded at 

25 °C on an Agilent Technologies Cary Eclipse fluorescence spectrophotometer. The fluorescence 

imaging was evaluated using a Zeiss Hal 100 epifluorescence inverted microscope. 

2.2. Synthesis of the Probes 

2.2.1. (E)-3-((3,4-Dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS1) 

3-Amino-7-hydroxy-2H-chromen-2-one (3, 0.56 g, 31 mmol) and 3,4-dihydroxybenzaldehyde (0.44 g, 

31 mmol) were dissolved in absolute EtOH (10 mL) and refluxed for 2 h, during which a precipitate 

formed. After cooling, the product was collected and washed with an excess of hot EtOH to afford the 

product as a red solid, 0.93 g, 92%. m.p. > 320 °C. 
1
H-NMR (DMSO-d6): δ 10.46 (br, 1H, O-H), 10.17 

(br, 1H, O-H), 9.87 (br, 1H, O-H), 8.80 (s, 1H, -N=CH-Ar), 7.72 (s, 1H, =C-H), 7.52 (d, 1H, Ar-H,  

J = 8.0 Hz) 7.49 (s, 1H, Ar-H), 7.30 (d, 1H, Ar-H, J = 8.0 Hz), 6.89 (d, 1H, Ar-H, J = 8.0 Hz), 6.80 (d, 

1H, Ar-H, J = 8.0 Hz), 6.74 (s, 1H, OCH3). 

2.2.2. (E)-3-((2,4-Dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS2) 

3-Amino-7-hydroxy-2H-chromen-2-one (3, 0.56 g, 31 mmol) and 2,4-dihydroxybenzaldehyde (0.43 g, 

31 mmol) were dissolved in absolute EtOH (10 mL), and treated as above to give a red solid, 0.91 g, 98%. 

m.p. > 320 °C. 
1
H-NMR, δ 13.36 (s, 1H, O-H- -O=C), 10.57 (br, 1H, O-H), 10.37 (br, 1H, O-H), 9.02 

(s, 1H, -N=CH-Ar), 7.93 (s, 1H, =C-H), 7.52 (d, 1H, J = 8.6 Hz), 7.39 (d, 1H, J = 8.6 Hz),  

6.81 (dd, 1H, J = 8.0, 2.0 Hz), 6.75 (s, 1H), 6.40 (dd, 1H, J = 8.0, 2.0 Hz), 6.28 (d, 1H, J = 2.0 Hz). 

2.3. Association Constant (Benesi-Hildebrand Plot) 

Fluorescence intensity data for the complexes were plotted according to the Benesi-Hildebrand 

equation [21]: 

1/(F − F0) = 1/{Ka × (Fmax−F0) × [M
n+

]} + 1/(Fmax − F0) (1) 



Sensors 2014, 14 1361 

 

 

where Ka is the stability constant for complex formation, F0 is the fluorescence intensity of the probe at 

the emission λmax in the absence of metal ion, for BS1 at 458 nm (with 340 nm excitation), for BS2 at 

437 nm (with 364 nm excitation) and for 3 at 454 nm (with 336 nm excitation). F is the observed 

fluorescence intensity as a function of the metal concentration ([M
n+

]: Cu
2+

 or Fe
3+

 ions) and Fmax is 

the maximal fluorescence intensity in the presence of an excess of these ions in solution (600 µM). 

2.4. Calculation of the Fluorescence Quantum Yield 

The fluorescence quantum yield was determined using quinine sulfate dissolved in 0.05 M H2SO4 

(  
   = 0.49) as standard and was calculated using Equation (2) [22,23]: 

  
  

        
 

        
 
  

   (2) 

where   
  and   

   are photoluminescence quantum yields and the subscripts s and r denote sample and 

reference, respectively. F
s
 and F

r
 are the integrated intensities (area under the curve) of sample and 

reference spectra, respectively. The terms fr and fs represent the absorption factors for sample and 

reference, respectively, i.e., fx = 1−10
−Ax

 (where the term A is the absorbance). Finally, η is the 

refractive index of the medium. 

2.5. Computational Details 

Optimization calculations were performed to find the ground state, transition state, intermediate and 

reaction product structures for BS1 and BS2. The systems were optimized using the M05–2X method 

and 6-311G(d,p) basis set. The same method was used with Cu(II), but the LANL2DZ basis set was 

included. All other atoms of the molecule (C, H, O and N) and structures were optimized using the 

GAUSSIAN 03 suite of programs [24]. 

2.6. Cell Culture and Fluorescence Imaging for Cu
2+

 

Human neuroblastoma SH-SY5Y cells (CRL-2266, American Type Culture Collection, Rockville, 

MD, USA) were cultured in MEM-F12 medium supplemented with 10% FBS, non-essential amino 

acids, antibiotic-antimycotic mixture, and 20 mM HEPES buffer, pH 7.2. The medium was replaced 

every 2 days. Cells were washed and the basal fluorescence was measured. They were then treated 

with the tested compounds (5 μM, 20 min) and washed with FBS, after which their fluorescence was 

determined. The cells were then incubated with Cu-His (200 μM, 15 min). The fluorescence was 

measured using an epifluorescence microscope  at 63× amplification [25]. 

2.7. Cell Culture and Fluorescence Imaging for Fe
3+

 

SH-SY5Y cells were cultured as described above. The cells were exposed to 20 µM Fe-NTA  

for 24 h and then incubated with the tested compounds (10 μM, 20 min). The fluorescence was 

measured as before. 
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3. Results and Discussion 

3.1. Synthesis of BS1 and BS2 

As shown in Scheme 1, resorcinol (1) was formylated (Vilsmeier-Haack conditions) giving  

2,4-dihydroxybenzaldehyde (2), which was subsequently condensed (Knoevenagel reaction) with 

acetylglycine and hydrolysed in one step to afford 3-amino-7-hydroxycoumarin (3). The coumarin was 

condensed with 3,4-dihydroxybenzaldehyde or 2,4-dihydroxybenzaldehyde to obtain BS1 and BS2, by 

analogy with a literature procedure [26,27]. 

Scheme 1. Synthetic route to BS1 and BS2. 

 

Reagents and conditions: (a) POCl3, DMF, acetonitrile, 0–5 °C, 2 h; (b) acetylglycine, acetic anhydride, 

anhydrous sodium acetate, reflux 4 h; (c) 2:1 HCl/H2O reflux, 2 h; (d) 3,4-dihydroxybenzaldehyde; 

(e) 2,4-dihydroxybenzaldehyde, EtOH, reflux, 4 h. 

3.2. Spectral Characterization Studies 

The compounds were characterized by 
1
H-NMR (in DMSO-d6), UV-Vis and fluorescence 

spectroscopy, the latter (in aqueous solution) as described in the Experimental section. 

Figure 1A,B shows the absorption spectra of BS1 and BS2. The former displays a well-defined 

band at 360 nm (molar extinction coefficient of 22,830 M
−1

 cm
−1

). In the case of BS2 its absorption 

spectrum exhibits a well-defined band at 364 nm (molar extinction coefficient of 18,600 M
−1

 cm
−1

). 

Figure 1. Absorption spectra of (A) BS1; (B) BS2; and (C) compound 3; all in aqueous 

solution (30 mM HEPES buffer, pH 7.4, 1% DMSO). 
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The emission spectra were recorded by exciting BS1 and BS2 at 360 nm and 364 nm, respectively. 

To obtain the excitation spectra, the emissions were fixed at 458 nm and 437 nm, respectively, as 

shown in Figures S1 and S2 (Supplementary Data). 

The Stokes shift values (the differences between excitation and emission maxima) were calculated 

from spectral data and are given in Table 1. 

Table 1. Emission and excitation spectrum-related data of tested compounds. 

Compound 

UV-Vis Fluorescence 

λmáx  

(nm) 

  

(M
−1

 cm
−1

) 

λexc  

(nm) 

λem  

(nm) 

Relative Quantum  

Yield (  
  ) 

Stokes’  

Shift (nm) 

BS1 360 22,830 340 458 nd 118 

BS2 364 18,600 364 437 0.09 73 

3 336 12,919 336 454 0.44 118 

nd = not determined. 

To examine the molecular recognition of a variety of different metal cations by BS1 and BS2 we 

conducted fluorescence spectroscopy studies. As shown in Figure 2A,B, the fluorescence exhibited by 

each compound decreases in the presence of Cu
2+

/Fe
3+

 ions. It is important to note that other metal ions 

of interest (at 200 μM concentration) failed to show any significant interference at 458 nm for BS1 and 

at 437 nm for BS2. However, for BS2 a slight fluorescence increase was observed when a concentration of 

200 μM of Zn
2+

 was added. 

Figure 2. Change in fluorescence intensity of (A) BS1 (2 μM) and (B) BS2 (2 μM) upon 

addition of various metal ions (200 μM) (Fe
2+

, Fe
3+

, Ca
2+

, Co
2+

, Mg
2+

, Mn
2+

, Zn
2+

, Cd
2+

, 

Pb
2+

 and Hg
2+

). 

 

Considering the ability of BS1 and BS2 to interact with free Cu
2+

 or Fe
3+

 ions in aqueous solution, 

we assessed the effect of the addition of increasing concentration of these ions on the fluorescence 

intensity of BS1 and BS2. Controls conducted with solutions containing either BS1 or BS2 showed 

that, under the conditions of the assay (e.g., incubation at 25 °C during 360 s), BS1 exhibits–in the 

absence of metal- an almost threefold increase of its fluorescence intensity (see Figure 3). In the case 

of BS2 no changes in fluorescence intensity were observed under identical experimental conditions 

(not shown). 
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Figure 3. Fluorescence spectra of BS1 recorded at different times. The black line represents 

the fluorescence intensity of a freshly prepared solution of BS1 (2 µM) in 30 mM HEPES 

buffer, pH 7.4, 1% DMSO; the blue line represents the fluorescence intensity of the same 

solution after 360 s of incubation; and the red line represents the fluorescence intensity of 

the same solution after 720 s of incubation. Excitation at 340 nm (slit = 5.0/5.0). Inset: 

Time-dependent fluorescence spectra of BS1 (2 μM) at 25 °C, λexc = 340 nm, t = 0–450 s. 

 

In view of the results presented in Figure 3 and considering the reported susceptibility to hydrolysis 

of compounds containing a Schiff base, we decided to evaluate the possibility that BS1 might, in 

addition to its sensing action, be decomposing in the buffered aqueous medium. With the aim of 

elucidating the chemical nature of the compound(s) that might be arising during the incubation of a 

BS1 solution, we conducted suitable 
1
H-NMR experiments. 

Figure 4. (A) 
1
H-NMR spectra (DMSO-d6) of BS1; (B) BS1 after adding water;  

(C) 3,4-dihydroxybenzaldehyde and (D) 3-amino-7-hydroxy-2H-chromen-2-one (3). 

 

Figure 4 depicts the spectra of BS1 (1 mM in part A), when adding 10% of water to BS1 (part B), and 

of its precursors, 3,4-dihydroxybenzaldehyde (part C) and 3-amino-7-hydroxy-2H-chromen-2-one (3) 

(part D). Spectrum (B) shows the disappearance of some characteristic resonances of BS1 and depicts 
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features that are present in both spectra (C) and (D). Based on these NMR results we propose that BS1 

indeed undergoes hydrolysis giving rise to its precursors, i.e., 3-amino-7-hydroxy-2H-chromen-2-one (3) 

and 3,4-dihydroxybenzaldehyde. 

In line with the previous observation, the fluorescence spectra of BS1 (Figure S1) show an excitation 

band at 340 nm and an emission band at 461 nm, spectral features that are practically indistinguishable 

from those presented by the precursor 3 (Figure S3). The latter result is consistent with the NMR  

data and strongly suggests that the compound formed by decomposition of BS1 in solution is  

3-amino-7-hydroxy-2H-chromen-2-one (3), as indicated in Scheme 2. 

Scheme 2. Decomposition reaction proposed for BS1. 

 

Regarding the stability of precursor 3, it is important to note that its NMR spectrum recorded after 

10 h of incubation with added water is identical to that obtained for the freshly prepared solution in 

DMSO-d6 (see Supplementary Data, Figure S4). 

The stability of 3 in aqueous solution suggests that this compound might be the substance actually 

involved in the Cu
2+

/Fe
3+

 ion detection presented in Figure 2A. Therefore, we focused our study 

further on evaluating whether the fluorescence intensity of 3 might decrease as a result of its 

interaction with these metal ions. 

Figure 5. (A) Fluorescence spectra (2 µM) of 3 recorded upon the addition of copper ion 

(0–300 equiv.) in aqueous solution (30 mM HEPES buffer, pH 7.4, 1% DMSO). Excitation 

at 340 nm (slit = 5.0/5.0); (B) Fluorescence spectra (2 µM) of 3 recorded upon the addition 

of iron ion (0–300 equiv.) in aqueous solution (30 mM HEPES buffer, pH 7.4, 1% DMSO). 

Excitation at 340 nm (slit = 5.0/5.0). 

 

As shown in Figure 5, upon incremental addition of Cu
2+

 ion (0–300 equiv.) to a solution containing 3, 

the fluorescence emission is gradually quenched and reaches the saturation state when 300 equiv. of 

Cu
2+

 ion are employed (not shown). This fluorescence quenching of 3 may occur by excitation energy 

transfer from the ligand (probe) to the metal d-orbital and/or LMCT [28]. A similar quenching of 

fluorescence was observed when Fe
3+

 ion was tested. In fact, when 600 μM of Fe
3+

 ion was added to a 
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solution of 3, a quenching efficiency of (I0 − I)/I0 × 100 = 79.80% was observed at 454 nm. Based on 

the evidence presented here, we propose that under our experimental conditions 3 is a good probe for 

detecting both Cu
2+

 and Fe
3+

. 

Recently, other authors [29] have reported the importance of the presence of an o-OH group in the 

benzylidene moiety of the Schiff base, which serves as an additional binding site for Cu
2+

 ion 

coordination to provide a stable complex. In view of the latter and the results presented above related 

to the hydrolysis of BS1, we propose that the o-OH unit of BS2, by forming an intramolecular 

hydrogen bond, makes BS2 more resistant to this decomposition reaction. In fact, we observed that the 

NMR spectrum of BS2 remains unaltered after its exposure to water or a long incubation time  

(Figure S5). Therefore, considering the stability of BS2, we also characterized the sensitivity of this 

probe toward Cu
2+

 and Fe
3+

 ions in aqueous medium. The results are presented in Figure 6. At pH 7.4  

a decrease in the fluorescence emission intensity of BS2, dependent on the metal concentration, was 

observed at 437 nm upon addition of Fe
3+

 ions and a smaller decrease was seen after adding Cu
2+

 ions 

(Figure 6). Quenching efficiencies of (I0 − I)/I0 × 100 = 31.53% and 56.76% for Cu
2+

 and Fe
3+

 ion, 

respectively, were determined at 437 nm. 

Figure 6. Fluorescence responses of BS2 (2 µM) in the presence of copper (▲) or iron (■) 

ions (0–300 μM) in aqueous solution (30 mM HEPES buffer, pH 7.4, 1% DMSO). 

Excitation at 340 nm (slit = 5.0/5.0). 

 

Benesi-Hildebrand plots from fluorescence titration data of BS1, BS2 and 3 with Cu
2+

 or Fe
3+

 ions 

were non-linear, indicating changes in the stoichiometry of the metal-containing complexes (data not 

shown). As can be seen in Table 2, in most cases the detection limits were ca. 5 × 10
−5

 mol/L, based on 

3 × /k (where  is the standard deviation of the blank solution and k is the slope of the calibration plot 

obtained from spectra data in Figures 2,5,S6). These values are similar to values reported in the 

literature for other Cu
2+

/Fe
3+

 probes [28,30]. 

Table 2. Detection and quantification limit for each tested complex. 

Compound Limit of Detection (mol/L) Limit of Quantification (mol/L) 

BS1-Cu2+ 1.27 × 10−4 4.22 × 10−4 

BS1-Fe3+ 5.17 × 10−5 1.72 × 10−4 

BS2-Cu2+ 1.04 × 10−4 3.45 × 10−4 

BS2-Fe3+ 4.87 × 10−5 1.62 × 10−4 

3-Cu2+ 5.41 × 10−5 1.80 × 10−4 

3-Fe3+ 5.03 × 10−5 1.68 × 10−4 
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3.3. Computational Study 

To assess the stability of BS2 in comparison with BS1, a theoretical study within the framework of 

Natural Bond Orbital (NBO) analysis was carried out [31]. This procedure shows that the proposed 

intramolecular hydrogen bond for BS2 has a distance of 1.738 Å and energy of 30.88 kcal mol
−1

. 

These values are within the established range for strong hydrogen bonds [32,33]. Therefore, the 

stability of BS2 could be associated with this intramolecular interaction. In addition, Table 3 and 

Figure 7A,B shows that for BS1 and BS2 their dihedral angles (between atoms depicted inside the red 

circles in Figure 7) decrease from 44.22° for BS1 to 41.03° for BS2. The latter could be another 

consequence of the presence of the intramolecular hydrogen bond formed between the hydrogen of the 

hydroxyl group and the nitrogen atom of the imine group present in BS2. 

Table 3. Dihedral angles and Gibbs free energies of activation for BS1 and BS2. 

Reaction Dihedral Angle ΔG*1 kcal/mol ΔG*2 kcal/mol 

BS1 44.22° 51.03 36.42 

BS2 41.03° 52.84 37.15 

Figure 7. Calculated structures for (A) BS1 and (B) BS2. Atoms forming dihedral angles 

are shown in red circles. 

 

On the other hand, with the aim of understanding why BS1 undergoes a decomposition reaction  

to regenerate its precursors, it is necessary to calculate the reaction profile. This profile is shown  

in Figure S7. This shows that the reaction proceeds through a stepwise mechanism, where the  

rate-determining step is the formation of the first transition state. The activation energies are shown  

in Table 3. 

The data presented in Table 3 indicate that the first step for BS2 requires slightly more energy than 

in the reaction of BS1, which suggest that the reaction should be faster for BS1 than for BS2. Taking 

into consideration the latter and the stability of BS2 (assessed under our experimental conditions), we 

pursued additional theoretical studies to investigate the binding of copper ion to BS2. As shown in 

Figure S8, the imine, carbonyl, and hydroxyl groups present in BS2 can be important coordination 

sites for a copper ion. 

3.4. Competitive Binding Studies 

To examine the interferences of different metal ions with the recognition of Cu
2+

 or Fe
3+

 by 3 and 

BS2, fluorescence competition experiments were subsequently carried out. As shown in Figure S9A,B, 
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the fluorescence intensity of 3 and BS2 solutions, respectively, was not significantly quenched in the 

presence of the selected potential competitive metal ions, whereas subsequent addition of Fe
3+

 ions led 

to strong quenching. Similar results were obtained in the presence of Cu
2+

 ions (data not shown). 

These results demonstrate that the coexisting metal ion does not interfere significantly with Fe
3+

 or 

Cu
2+

 recognition. 

3.5. Application of the Proposed Probes for the Detection of Copper or Iron Ions in Living Cells 

To further demonstrate the practical applicability of the tested probes to detect Cu
2+

 and Fe
3+

 in 

living cells, the fluorescence images of SH-SY5Y cells were recorded before and after addition of Cu
2+

 

and Fe
3+

 ions (Figure 8). 

Figure 8. SH-SY5Y cells were washed and treated with compound BS2 or 3 and the basal 

fluorescence was measured: (A) and (B), respectively. The cells were incubated with  

Cu-His (200 μM, 15 min) and their fluorescence determined (C) and (D). The cells were 

incubated with Fe-NTA (80 μM, 12 h) and their fluorescence determined (E) and (F). The 

fluorescence was measured using epi-fluorescence microscop   at 63× amplification. 

 

First, to determine the cell permeability of BS2 or 3, the cells were initially incubated either with 

BS2 or 3, under physiological conditions. Figure 8A,B shows that both probes have the ability to 

penetrate the cell and generate a fluorescent signal distributed throughout the cytoplasm. From recent 

work [34] showing the intracellular localization of fluorescent probes in living cells it is expected that 

BS2 will be more uniformly distributed in the cytoplasm, while 3 would be expected to accumulate in 

lysosomes. After adding Cu
2+

-histidine complex as a source of Cu
2+

, a decrease in the fluorescence 

intensity is observed (Figure 8C,D). In the case of cells incubated with BS2 the addition of Fe
3+

 as  

Fe-NTA complex was not associated with changes in the fluorescence intensity (Figure 8E). The latter 

result could be explained considering that BS2 is unable to remove Fe
3+

 ion from the Fe-NTA complex, 

due to the high value of the Fe(III)-NTA stability constant (Ka = 10
12

) [35]. 
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On the other hand, when this assay was carried out using 3, the fluorescent hydrolysis product of BS1, 

3 accumulates within the cell (Figure 8B) and responds by fluorescence quenching to Cu
2+

 (Figure 8D) 

and Fe
3+

 (Figure 8F). This behavior is in accordance with the abovementioned results (Figure 5). 

4. Conclusions/Outlook 

Coumarin-based probes (compounds BS1 and BS2) were synthesized and characterized for 

recognition of Cu
2+

/Fe
3+

. Our studies indicate that these compounds present high selectivity for Cu
2+

 

and Fe
3+

 ions over other metal ions. However, the detection mode for such ions is different, being a 

direct reaction in the case of BS2 and an indirect reaction with BS1. The latter involves a hydrolysis 

reaction to generate 3-amino-7-hydroxycoumarin (3) and 3,4-dihydroxybenzaldehyde, where 3 is the 

actual substance reacting with Cu
2+

 or Fe
3+

 ions and undergoing fluorescence quenching. On the basis 

of a theoretical study, a binding mode between 3 and Cu
2+

 is proposed. Finally, the applicability of the 

proposed probes was demonstrated in living cells with satisfactory results: BS2 is suitable for the 

detection of Cu
2+

 ion while 3 allows dual recognition of Cu
2+

 and Fe
3+

 ions in biological systems. 
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