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Abstract: To overcome the effect of temperature on laser gyro zero bias and to stabilize 

the laser gyro output, this study proposes a modified radial basis function neural network 

(RBFNN) based on a Kohonen network and an orthogonal least squares (OLS) algorithm. 

The modified method, which combines the pattern classification capability of the Kohonen 

network and the optimal choice capacity of OLS, avoids the random selection of RBFNN 

centers and improves the compensation accuracy of the RBFNN. It can quickly and 

accurately identify the effect of temperature on laser gyro zero bias. A number of 

comparable identification and compensation tests on a variety of temperature-changing 

situations are completed using the multiple linear regression (MLR), RBFNN and modified 

RBFNN methods. The test results based on several sets of gyro output in constant and 

changing temperature conditions demonstrate that the proposed method is able to 

overcome the effect of randomly selected RBFNN centers. The running time of the method 

is about 60 s shorter than that of traditional RBFNN under the same test conditions, which 

suggests that the calculations are reduced. Meanwhile, the compensated gyro output 

accuracy using the modified method is about 7.0 × 10−4 °/h; comparatively, the traditional 

RBFNN is about 9.0 × 10−4 °/h and the MLR is about 1.4 × 10−3 °/h. 

Keywords: laser gyro; temperature compensation; radial basis function neural network; 

Kohonen network; orthogonal least squares 
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1. Introduction 

The stability of the output of a laser gyro, which is a high-precision optical angular rate sensor, 

directly affects the accuracy of the laser inertial navigation system (LINS) [1]. A laser gyro is usually 

operated in complex temperature-changing environments. Temperature changes affect the physical 

properties, geometry and gas flow field of the laser gyro. Such changes can also activate the 

anomalous dispersion effect of a medium, resulting in scale factor error and the zero bias of a laser 

gyro [2]. Numerous experiments have demonstrated that the laser gyro scale factor changes slightly 

under different temperature conditions, but the zero bias is known to be the most susceptible to this  

change [3,4]. In fact, the zero bias of laser gyro is closely related to the temperature of its operating 

environment and to temperature change rate; thus, addressing the negative effect of temperature and 

temperature change rate on the zero bias of laser gyro improves the accuracy of the LINS [5,6]. The 

traditional modeling of zero bias temperature compensation is widely used in the LINS as a relatively 

simple and inexpensive scheme for relieving the temperature effect [7,8]. A temperature compensation 

model based on multiple linear regression (MLR) [9] has been used to improve the traditional 

compensation effect. However, the model parameters of MLR have to be identified. A limited zero 

bias improvement is achieved as a result of the accuracy and timeliness of the identified parameters. 

Many factors with complicated nonlinear characteristics can affect the temperature characteristics 

of laser gyros because of the working environment. A neural network possesses excellent approximation 

ability for complex nonlinear functions, and it is relatively similar to the nonlinear function model, 

except that the training of a neural network must meet specific requirements [10]. A back propagation 

neural network (BPNN) has improved identification accuracy significantly by accurately fitting the 

temperature characteristics of laser gyros [11,12]. Relative to that for the BPNN, the temperature 

compensation method for the radial basis function neural network (RBFNN) has achieved higher 

accuracy and speed [12–18]. In [12], a set of static test data from 25 °C to 55 °C had been collected. 

Some comparative results demonstrated that the bias decreased to 0.016 °/h from 0.029 °/h using the 

BPNN compensation method, meanwhile, 0.012 °/h was obtained using the RBFNN compensation 

method. In [14], the RBFNN could have a ten-fold improvement in accuracy for a digital closed-loop 

fiber optic gyroscope. As a result of structure and principle analysis, [18] held that the RBFNN was 

faster than BPNN; however, a specific numerical result was not reported. By using the least squares 

method and clustering techniques to train the RBFNN and the simplified network structure, a 

significantly small compensation error was demonstrated in [19–21]. However, the RBFNN centers 

have to be randomly selected [22]. If the number of the RBFNN centers is too large, then heavy 

calculations have to be endured. This requirement degrades the efficiency of the algorithm in the 

process of forward selection. Meanwhile, if the number of the RBFNN centers is too small, then  

a numerical ill-conditioned problem emerges and leads to the poor generalization ability of the  

model, because the training set cannot objectively summarize the statistical characteristics of the 

overall sample.  

The structure of the paper is as follows. In Section 2, the RBFNN and the Kohonen network are 

described. In Section 3, a modified RBFNN algorithm based on the Kohonen network and orthogonal 

least squares (OLS) is proposed for laser gyro temperature compensation. First, the algorithm classifies 

the randomly selected RBFNN centers preliminarily using the pattern classification feature of the 
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Kohonen network. Second, the classified RBFNN centers and the OLS algorithm are applied to get a 

sorted hidden layer output vector. Third, the sorted vector is applied to train the RBFNN. 

Consequently, a modified RBFNN model is obtained. These steps are performed to avoid heavy 

calculations caused by the random selection of the RBFNN centers. A realizable flow chart of laser 

gyro temperature compensation is also presented in this section. In Section 4, a variety of comparable 

temperature compensation tests using different methods are designed. Interesting results and analyses 

are also provided in this section. In Section 5, conclusions are provided. 

2. Structure Description of the RBFNN and the Kohonen Network 

2.1. Structure of the RBFNN 

The RBFNN is typically a three-layer forward network. It includes an input layer, a hidden layer 

and an output layer. Each layer serves a different function [23].  

The first layer is the input layer. It consists of a number of source nodes (perception neurons) 

connected with the external environment. The second layer is the hidden layer comprising several 

hidden nodes. Only one hidden layer exists in the RBFNN, because of the output characteristics of the 

RBFNN. The third layer is the output layer, which responds to the input layer. It comprises some 

output nodes in the form of a linear summation unit. The nodes of the input layer transfer input signals 

to the hidden layer. The transfer from the input layer space to the hidden layer is nonlinear, whereas 

that from the hidden layer to the output layer space is linear [24,25]. The output nodes in the network 

calculate a linear combination of basic functions given by the output layer. The weights between the 

input layer and the hidden layer are known to be constant (one in this case); thus, only the weights 

between the hidden layer and the output layer are adjustable [26]. 

The structure of the RBFNN with n inputs and one output is shown in Figure 1. The numbers of 

nodes for the three layers are n, m and one, respectively. x1, x2,…, xn are the first, second,…, and n-th 

input, which compose one input vector. ω1, ω2,…, ωm represent the weights between the hidden layer 

and the output layer. These weights are adjustable.  

Figure 1. Typical structure of the radial basis function neural network (RBFNN). 
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This network realizes the mapping fr: Rn→R. 

0
1

( ) ( )
m

r i i
i

f x x cω ω
=

= + Φ −    (1) 

where nx R∈  is the input vector, ( )Φ   is the nonlinear transformation function,  ( 1, 2, , )i i mω =   are 

the weights (or parameters), ( 1,2, , )n
ic R i m∈ =   are the centers of the neurons used in nonlinear 

transformation function of RBFNN, with the same dimensions as x, and m is the number of the centers. 

The structure of the RBFNN in Figure 1 shows that the neuron weights are set between the input 

layer and the hidden layer. The center of each neuron and the local receptive field in the hidden layer 

determine the location and width of the RBFNN. The hidden layer in the RBFNN is weighted and 

superimposed by neurons in the output layer. As long as the number of neurons in the hidden layer is 

adequate and the selected centers, local receptive field and weights are appropriate, the RBFNN can fit 

any function with accuracy. In this study, a Gaussian function is selected as a nonlinear transform 

function Φ(·) for the RBFNN [27]. This function is given by: 

2

2( ) exp( )uu
δ

Φ = −  (2) 

where δ is the local receptive field, which determines the width of the nonlinear transformation 

function surrounding the central points. 

2.2. Structure of the Kohonen Network 

The Kohonen network is a self-organizing competitive neural network based on stimulation of 

outside information to the cerebral cortex. When the brain receives specific temporal and spatial 

information outside through the senses, particular areas of the cortex are excited. Additionally, the 

mappings to the similar information from outside world are continuous [28]. The Kohonen network 

classifies the input set by adjusting the weights of the neurons. More specifically, the Kohonen 

network is a neural network procedure in which a layer of neurons is initialized with random weights 

and subsequently organized by inspection of the data to be classified. The organization procedure uses 

progressive adjustment of weights based on data characteristics and lateral interaction, such that the 

neurons with similar weights will tend to spatially cluster in the neuron layer. In this way, the irregular 

inputs can be classified automatically. A similar weight distribution and probability density 

distribution for input samples are obtained in the process of weight adjustment. The basic Kohonen 

network has a simple two-layer structure comprising an input layer and a competitive layer [29]. As 

shown in Figure 2, the competitive layer is also known as the output layer. A weight vector is 

associated with each neuron. Each output neuron is connected to the input layer via that weight vector. 

The dimensionality of the weight vector of each output neuron is the same as the dimensionality of the 

input vector. These weight vectors of the output neurons are compared with the input vectors, in order 

to determine the degree of activation of that neuron. This kind of connection enables the Kohonen 

network to learn “competitively,” which means that the neurons in the competitive layer compete for 

the classification of input patterns. During training, the output neuron that provides the highest 
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activation to a given input pattern is declared the winner and is moved closer to the input pattern, 

whereas the remaining neurons are left unchanged.  

Figure 2. Structure of the Kohonen network. 
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where c
jx  represents the output state of the j-th neuron in the competitive layer. Sj is the dot product of 

weights vector of the j-th neuron in output layer and input vector. A maximum Sj means that the 

Euclidean distance between the weight vector and input vector is closest. 

For a single input in the Kohonen network, the weights are updated after the winning neuron is 

identified. The weight of the winning neuron is increased to generate a large sum of neuron inputs 

when the input pattern appears again. The weight update rule is as follows: 

( )iji jixω η ωΔ = −  (4) 

where η is a learning factor that represents the update rate of weights.  

3. Modified RBFNN and Temperature Compensation Model for Laser Gyro 

As mentioned previously, the RBFNN centers, local receptive field and weights of output neurons 

are the most important parameters in RBFNN training [30,31]. The RBFNN suffers from a large 

network scale and the numerical ill-conditioned problem when randomly selecting its centers. In the 

present work, first the gyro outputs are provided to the Kohonen network and are classified according 

to adjusted weights. Thus, each class of data is processed to get an input with the same statistical 

properties for the RBFNN. Then, as an optimal searching strategy, the OLS algorithm is used to 

calculate independently the contribution of the regression operator to the expected model, and a sorted  

hidden layer output vector is obtained. The OLS algorithm would be able to improve the RBFNN 

training efficiency.  
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The modeling steps for laser gyro temperature compensation based on the modified RBFNN are 

designed as follows: 

Step 1: Conform the sample space by preprocessing the laser gyro zero bias and the temperature data. 

Step 2: Process the sample data using the Kohonen network and record the classified data. The learning 

steps of the Kohonen network are as follows: 

(1) Randomly initialize the weights ωij between the input layer and the RBFNN, and set the 

initial learning rate η (0). Here, i = 1,…, n; j = 1,…, m; n represents the number of nodes in 

the input layer of the Kohonen network and m represents the number of nodes in the input 

layer of the RBFNN. 

(2) x(k) represents the n-dimensional input vector at time k. Let x(k) be the input of the Kohonen 

network. The k is discrete sampling time. 

(3) Substitute x(k) into Equation (5), and calculate the distance dj of each output node. 

2

1

( ( ) ( )) , 1, ,
n

j i ij
i

d x k k j mω
=

= − = ⋅⋅⋅  (5) 

where ωij(k) represents the weight at time k. 

(4) Choose node j* with minimum distance dj as the winning output node. 

(5) Update the weight of node j* according to the following equation:  

( 1) ( ) ( ) ( ( ) ( ))ij ij i ijk k k x k kω ω η ω+ = + ⋅ −  (6) 

where η(k) represents the learning rate at time t, which decreases with time; ωij(k + 1) 

represents the weight at time k + 1. 

(6) If the variation of ωij is equal to zero or is considerably small, then the learning process is 

completed. Otherwise, proceed to Step (2). 

Step 3: Preprocess the data classified by the Kohonen network, and let the preprocessed data be the 

RBFNN centers. Then, sorted hidden layer output P and sorted RBFNN centers are obtained using the 

OLS algorithm. The main steps are as follows: 

(1) Choose 2 2( ) exp( )x x δΦ =  as the transform function of the RBFNN and set the local 

receptive field δ . Then, set the maximum number N of network training and the threshold ρ, 

and set the preprocessed data as the RBFNN centers. 
(2) Obtain the hidden layer output vector P ( Q QP ×⊆ ℜ ) through the transform function. Then, the 

steps for getting sorted P using the OLS algorithm are as follows (as an accessory, sorted 

RBFNN centers have been also obtained): 

Step (1): When k = 1, for 1 ≤ I ≤ Q, set: 

( )
1

i
ib P=  (7) 

Calculate the error reduction rate for the i-th center as: 
( ) 2
1

( ) ( )1
1 1

( )i T
i d

i T i T
d d

b y
err

b b y y
   =

⋅
 

(8) 

Search the maximum of the error reduction rate using the following equation: 
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Select:  

1 1ib P=  (10) 

and set the center as c1 = ci1. 

Step (k): If k ≥ 2, for 1 ≤ i ≤ Q, i ≠ i1,…, i ≠ ik−1, then calculate: 

( ) 1 1
T
j ii

jk T
j j

b P
a j k

b b
= ≤ ≤ −  (11) 

Set: 
1

( ) ( )

1

k
i i

k i jk j
j

b P a b
−

=

= −  (12) 

Calculate: 

( ) 2
( )

( ) ( )1

( )i T
i k d

i T i T
k k d d

b y
err

b b y y
   =

⋅
 (13) 

Search and obtain: 

[ ] [ ]{ }1 2 1max ,1 , , , ,
ik i

kk k
err err i Q i i i i i i −= ≤ ≤ ≠ ≠ ⋅⋅⋅ ≠  (14) 

Select: 

( )ki
k kb b=  (15) 

and set ck = cik. 

Step (k+1): Repeat Step (k) until: 

1

1
1

N

j
j

err ρ
=
  − <  

(16) 

Stop at Step N1. 

Step 4: Complete the RBFNN training using the sorted hidden layer output P and obtain an 

expected laser gyro temperature compensation model. 

The flow chart of the modified RBFNN modeling is shown in Figure 3. The inputs for the designed 

laser gyro temperature compensation experiment are composed of the gyro temperature T and the 

temperature change rate dT/dt. The temperature change rate is calculated by the temperature. The bias 

of the laser gyro is the desired output yd. In the main process of modeling for the modified RBFNN 

laser gyro temperature compensation, the samples are classified by the Kohonen network, and a set of 

new data is obtained. The new data are classified RBFNN centers. Then, a sorted hidden layer output 

vector P is carried out and applied to train the RBFNN; as a training result, the modified RBFNN 

model for laser gyro zero bias temperature compensation would be obtained. 
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Figure 3. Flow chart of modified RBFNN modeling. OLS, orthogonal least squares. 
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4. Laser Gyro Zero Bias Temperature Compensation Test and Analysis 

4.1. Laser Gyro Data Acquisition and Preprocessing 

To achieve a comprehensive assessment of the proposed temperature compensation scheme, the 

following three experiments were set up for obtaining the typical test data. The main performance 

parameters of the used laser gyro are as follows: bias stability is 0.008 °/h; the dynamic range is  

±400 °/s; the bandwidth is 800 Hz; the resolution is less than 0.001°; and the operating temperature 

range is from −54 °C to 85 °C. The zero bias of the laser gyro and the temperature data were collected 

under six kinds of environments, as well as under normal temperature, low temperature and high 
temperature; the temperature changing rates were 1 °C/min, 3 °C/min and 5 °C/min. The experiments 

were performed twice and obtained two data sets, each of which comprised six groups of data. The two 

data sets were used in modeling and examination. In the experiments, an inertial measurement unit 

(IMU) with three laser gyros was in a static state, and the three orthogonal laser gyros pointed to the 

east, to the north and upward. The outputs of the east laser gyro were zero biased, because of the zero 

component of the Earth rotating in the east. 

Normal temperature data acquisition: The laser gyro was placed in a large temperature-controlled 

cabinet, and the constant temperature was set to 20 °C. The laser gyro was then powered and kept on 

for one hour. The laser gyro outputs and the changes in temperature were recorded. The sampling 

frequency was 100 Hz. Eight-hour laser gyro outputs and temperature data were acquired.  

r array exposed to different odors/gases. acquisition: The temperatures in the  

temperature-controlled cabinet were set to −40 °C and 60 °C for the low temperature and high 
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temperature data acquisition, respectively. The other steps were the same as those in the normal 

temperature data collection.  

Variable temperature data collection: the range of temperature was controlled between −40 °C and 

60 °C. The initial temperature of 0 °C was maintained for one hour. The laser gyro was then powered 

on after setting the temperature change rate to 1 °C/min. The laser gyro outputs and temperature data were 

recorded. When the temperature reached 60 °C, it was maintained for two hours, after which the 

temperature started to decrease by 1 °C/min. When the temperature reached −40 °C, it was maintained 

for two hours, after which the temperature rose by 1 °C/min. The process above was repeated, and 

eight-hour data were obtained by a 100-Hz sampling frequency. In the same way, the laser gyro and 

temperature data were collected when the temperature change rates were 3 °C/min and 5 °C/min.  

Equipment was set up (Figure 4) to collect the above data. The temperature-controlled cabinet and 

the temperature sensor in the laser gyro provided the temperature parameters. The temperature in the 

temperature-controlled cabinet was controlled by a specific software. The temperature parameters and 

the output pulses of the laser gyro were collected.  

Figure 4. Data collection experiment setup. 

 

The laser gyro outputs acquired using the above equipment were not likely to change with the 

temperature, because of the presence of high-frequency noise. The outputs should be preprocessed by a 

low-pass filter before temperature compensation. The low-pass filter was designed for a simple 

averaging filter with 100 s; meanwhile, the temperature data were also filtered using the filter. Filtered 

laser gyro outputs with temperature changes are shown in Figure 5. In the figure, the scale of the 

horizontal axis is set to 100 s. The succeeding figures use the same scale. 

In Figure 5, the zero bias is relatively stable under constant temperature conditions, with the 

average zero bias at 20 °C being 6.796 × 10−3 °/h. Compared with that under normal temperature 

conditions (20 °C), the values of the average zero bias under the high and low temperature conditions are 
7.218 × 10−3 °/h and 7.194 × 10−3 °/h, respectively, both of which are greater than that under 20 °C. 

The stability of the laser gyro zero bias weakens when temperatures are not constant and, instead, 

continuously change. The change trends with temperature are obvious and considerably unstable under 

quick temperature changes. In sum, both temperature and temperature change rate affect the accuracy 

of the laser gyro output, especially the zero bias. 
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Figure 5. Filtered zero bias and for the laser gyro: (a) constant temperature;  

(b) variable temperature. 

0 50 100 150 200 250 300
0.00676

0.00686

N
or

m
al

 t
em

pe
ra

tu
re

(o /h
) 

  
  

  
  

 

 

0 50 100 150 200 250 300
20

25

30

35

Te
m

pe
ra

tu
re
（

℃
）

 

 
Bias

0 50 100 150 200 250 300
0.00718

0.00728

Lo
w

 t
em

pe
ra

tu
re

 (
o /h

) 
  

  
  

  

 

 

0 50 100 150 200 250 300
-40

-35

-30

-25

-20

Te
m

pe
ra

tu
re
（

℃
）

 

 

0 50 100 150 200 250 300
0.00716

0.00726

H
ig

h 
te

m
pe

ra
tu

re
(o /h

）
  

  
  

 

time(100s)

 

 

0 50 100 150 200 250 300
60

70

76

Te
m

pe
ra

tu
re
（
℃
）

 

 

Temperature

0 50 100 150 200 250 300
0.0067

0.0068

0.0069

1℃
/m

in
（

o /h
）

 

 

0 50 100 150 200 250 300
-100

0

100

T
em

pe
ra

tu
re
（
℃

）

 

 
Bias

0 50 100 150 200 250 300
0.0067

0.0068

0.0069

3℃
/m

in
（

o /h
）

 

 

0 50 100 150 200 250 300
-100

0

100

T
em

pe
ra

tu
re
（
℃

）

 

 

0 50 100 150 200 250 300
0.0067

0.0068

0.0069

5℃
/m

in
（

o /h
）

Time(100s)

 

 

0 50 100 150 200 250 300
-100

0

100

T
em

pe
ra

tu
re
（
℃

）

 

 

Temperature

(a) (b) 

4.2. Temperature Compensation Results and Analysis for Laser Gyro Zero Bias 

The modeling procedure for laser gyro zero bias using the proposed temperature compensation 

scheme was designed as a flow chart (Figure 3). For comparison purposes, the MLR and the traditional 

RBFNN were also employed in this work.  

The MLR model was used in selecting regression variables using approximate Bayesian information 

criteria to eliminate unimportant variables in the compensation model. When the criterion function 

achieves the smallest value, the selected variables suggest the best compensation model. In this work, 

the best model comprised a constant term, temperature T, and temperature changing rate dT/dt. The 

coefficients of the selected regression variables were calculated, and the model was verified. The 

detailed modeling steps using MLR are available in [9]. 

For the traditional RBFNN scheme, the value of ρ in Equation (16) should be between zero and one, 

and the sum of errors should be equal to 3.0 × 10−4. These parameters must be considered because of 

the accuracy of the laser gyro and the root mean square of the sum of target errors, which was equal to 

the standard deviation of the laser gyro zero bias. The neuron numbers of the traditional RBFNN 

training were 108, 112, 115, 121, 129 and 135 for the six-group data. The final model for laser gyro 

zero bias could finally be obtained.  

Comparable identification results using MLR, traditional RBFNN and modified RBFNN are shown 

in Figures 6–8. 

Although MLR successfully tracked the trend of the laser gyro zero bias, it was unable to completely 

describe the zero bias. Such failure would naturally affect the compensation results to a certain extent. 

This condition is attributable to the fact that influential factors were ignored in the selection of regression 

variables in MLR modeling. The training of the neural network is quite different from that of MLR. The 

neural network trains the model by updating the weights instead of confirming the coefficients through 

select regression variables. The forecasting results of both the traditional RBFNN and the modified 

RBFNN are available. Note that the forecasting curve obtained through the traditional RBFNN model 

cannot properly track the zero bias. The modified RBFNN has already achieved accurate results under 
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different constant temperatures and temperature change rates. This phenomenon is attributable to the 

classified centers obtained from the Kohonen network; because the Kohonen network is able to 

generalize data characteristics instead of randomly selecting RBFNN centers. 

Figure 6. Forecasting curves using multiple linear regression (MLR): (a) constant 

temperature; (b) variable temperature. 
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Figure 7. Identification curves using traditional RBFNN: (a) constant temperature;  

(b) variable temperature; (c) enlarged (a) in the horizontal axis from 50 to 100;  

(d) enlarged (b) in the horizontal axis from 50 to 100. 

0 50 100 150 200 250 300
0.00677

0.00679

0.00681

0.00683

 N
or

m
al

 t
em

pe
ra

tu
re

  
  

 
  

  
 b

ia
s(

°/
h)

  
  

  
  

  

 

 
Original bias

Network output

0 50 100 150 200 250 300
0.0072

0.00722

0.00724

Lo
w

 t
em

pe
ra

tu
re

  
  

  
  

bi
as

(°
/h

) 
  

  
 

 

 

0 50 100 150 200 250 300
0.00717

0.00719

0.00721

time(100s)

H
ig

h 
te

m
pe

ra
tu

re
  

  
 

  
  

 b
ia

s(
°/

h)
  

  
  

 

 

 

0 50 100 150 200 250 300
0.00676

0.00678

0.0068

0.00682

0.00684

0.00686

1
/m

in
 b

ia
s(

°/
h)

℃

 

 

0 50 100 150 200 250 300
0.00676

0.00678

0.0068
0.00682

0.00684
0.00686

3
/m

in
 b

ia
s(

°/
h)

℃

 

 

0 50 100 150 200 250 300
0.00676
0.00678
0.0068

0.00682
0.00684
0.00686

5
/m

in
 b

ia
s(

°/
h)

℃  

 

time(100s)

Original bias

Network output

(a) (b) 

50 55 60 65 70 75 80 85 90 95 100
0.00677

0.00679

0.00681

0.00683

 N
or

m
al

 t
em

pe
ra

tu
re

  
  

 
  

  
 b

ia
s(

°/
h)

  
  

  
  

  

 

 
Original bias

Network output

50 55 60 65 70 75 80 85 90 95 100
0.0072

0.00722

0.00724

Lo
w

 t
em

pe
ra

tu
re

  
  

  
  

bi
as

(°
/h

) 
  

  
 

 

 

50 55 60 65 70 75 80 85 90 95 100
0.00717

0.00719

0.00721

time(100s)

H
ig

h 
te

m
pe

ra
tu

re
  

  
 

  
  

 b
ia

s(
°/

h)
  

  
  

 

 

 

50 55 60 65 70 75 80 85 90 95 100
0.00676

0.00678

0.0068

0.00682

0.00684

0.00686

1
/m

in
 b

ia
s(

°/
h)

℃

 

 

50 55 60 65 70 75 80 85 90 95 100
0.00676

0.00678

0.0068
0.00682

0.00684
0.00686

3
/m

in
 b

ia
s(

°/
h)

℃

 

 

50 55 60 65 70 75 80 85 90 95 100
0.00676
0.00678
0.0068

0.00682
0.00684
0.00686

5
/m

in
 b

ia
s(

°/
h)

℃  

 

time(100s)

Original bias

Network output

(c) (d) 



Sensors 2014, 14 18722 

 

 

Figure 8. Identification curves using modified RBFNN: (a) constant temperature;  

(b) variable temperature; (c) enlarged (a) in the horizontal axis from 50 to 100;  

(d) enlarged (b) in the horizontal axis from 50 to 100. 
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The compensated laser gyro zero biases obtained using the three different methods are shown in 

Figures 9–11. 

Figure 9. Compensated zero bias history using MLR: (a) constant temperature;  

(b) variable temperature. 
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Figure 10. Compensated zero bias history using traditional RBFNN: (a) constant temperature; 

(b) variable temperature. 
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Figure 11. Compensated zero bias history using modified RBFNN: (a) constant temperature; 

(b) variable temperature. 
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The results suggest that all the compensated results for zero bias are not affected by temperature 

change trends. The different levels of accuracy for the compensated laser gyro outputs result from the 

different identification abilities of the three methods. The MLR method shows a relatively lower 

performance than the other two methods. Given the same number of training samples, the modified 

RBFNN method achieves more accurate laser gyro output compared with the traditional RBFNN. The 

detailed comparison of the three methods based on the test results is shown in Table 1. 

In Table 1, the constant temperatures −40 °C, 20 °C and 60 °C represent the low temperature, 

normal temperature and high temperature condition, respectively. As shown in the table, the 

compensated laser gyro produces higher accurate outputs. The compensated outputs accuracies with 

MLR method are improved to 1.4 × 10−3 °/h from 7 × 10−3 °/h under all temperature conditions. This 

result is due to the estimated parameters accuracy in the MLR model. The compensated laser gyro 

outputs of both the RBFNN and the modified RBFNN reach 10−4 °/h within the entire range of 
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temperature change. However, the compensation error of the MLR method is slightly larger than those 

of the other two methods. The MLR, traditional RBFNN and modified RBFNN methods show  

five-fold, eight-fold and ten-fold improvements in accuracy, respectively.  

Table 1. Comparison of compensation results of the three methods. 

Constant Temperature −40 °C 20 °C 60 °C 

Before Compensation σ(°/h) (×10−3) 7.218 6.796 7.194 

After Compensation 
σ(°/h) (×10−4) 

MLR 13.953 13.953 13.954 

RBFNN 8.93 8.944 8.93 

Modified RBFNN 6.918 6.922 6.926 

Accuracy 
Improvement 

( Before compensation

After compensation
) 

MLR 5.17 4.87 5.15 

RBFNN 8.08 7.60 8.05 

Modified RBFNN 10.43 9.82 10.39 

Running Time (s) 

MLR — — — 

RBFNN 140.8 142.4 141.3 

Modified RBFNN 79.5 82.6 81.7 

Variable Temperature 1 °C/min 3 °C/min 5 °C/min  

Before Compensation σ(°/h) (×10−3) 6.804 6.804 6.806 

After Compensation 
σ(°/h) (×10−4) 

MLR 14.276 14.180 14.122 

RBFNN 8.916 8.928 8.944 

Modified RBFNN 6.930 6.922 6.912 

Accuracy 
Improvement 

( Before compensation

After compensation
) 

MLR 4.77 4.80 4.82 

RBFNN 7.63 7.62 7.61 

Modified RBFNN 9.818 9.832 9.847 

Running Time (s) 

MLR — — — 

RBFNN 141.6 140.2 139.8 

Modified RBFNN 80.4 82.6 80.3 

Before compensation, the accuracy of the outputs in normal temperature is higher than that in low 

or high temperature conditions, and the accuracy of the outputs under variable temperatures is slightly 

lower than that under constant temperatures. A high temperature change rate equates to low accuracy. 

However, this phenomenon is not obvious after compensation using all three methods. For instance, 

the output accuracies are 7.218 × 10−3 °/h, 6.796 × 10−3 °/h and 7.194 × 10−3 °/h under normal, low and 

high temperature conditions, respectively, and 6.918 × 10−4 °/h, 6.922 × 10−4 °/h and 6.986 × 10−4 °/h, 

respectively, after compensation with the modified RBFNN model. According to the changes of bias, 

we can conclude that the modified RBFNN model can ideally avoid the effect of temperature and 

temperature change. 

The compensation results of the modified RBFNN and the traditional RBFNN are highly accurate, 

with the former being higher than the latter. Under any type of tested environment, the accuracy of the 

laser gyro can reach 7.0 × 10−4 °/h after compensation using the modified RBFNN. The running time 

of the modified RBFNN for all the tested data is less than 83 s, which is lower than that of the 

traditional RBFNN. Hence, the modified RBFNN is more effective than the traditional method. 
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5. Conclusions 

Given their compensation accuracy, the MLR and the traditional RBFNN compensation method 

require large calculations and result in poor generalization in the random selection of the RBFNN 

centers. A modified RBFNN method based on OLS and the Kohonen network is thus proposed to 

complete high-precision laser gyro zero bias temperature compensation. The new compensation 

principle and the modeling steps for the proposed method are introduced in this paper in detail. Tests 

and analyses within an entire range of temperature change are completed using the three methods. Six 

kinds of temperature environments, normal temperature, low temperature, high temperature and 

varying temperature with temperature changing rates of 1 °C/min, 3 °C/min and 5 °C/min, are 

considered and verified accordingly. A database of the models is then built, and different models are 

selected according to the temperature sensor outputs for specific running environments. The analysis 

results show that the proposed temperature compensation scheme is more stable and achieves higher 

accuracy and efficiency compared with the other two methods. The accuracy of the compensated laser 

gyro output can reach 7.0 × 10−4 °/h, which represents a ten-fold improvement in accuracy. Widely 

used adaptability tests, such as that for low-cost MEMS gyro, and navigation accuracy improvement 

for a final inertial navigation system will be studied further. 

Acknowledgments 

The financial support from the National Science Foundation of China under a grant (No. 61304234) 

and the Fundamental Research Funds for the Central Universities (HEUCFX041403 and HEUCFR1114) 

are gratefully acknowledged. 

Author Contributions 

The work presented here was carried out in collaboration between all authors. Jicheng Ding defined 

the research theme, data processing and manuscript writing. Jian Zhang and Weiquan Huang 

performed the experiments, data processing and manuscript writing. Shuai Chen analyzed literature 

and recorded the test data. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Song, S.W.; Lee, J.C.; Hong, S.K.; Chaw, D. New random walk reduction algorithm in ring laser 

gyroscopes. J. Opt. 2010, 12, 115501. 

2. Cheng, J.C.; Fang, J.C. Comparison of Compensation Methods on RLG Temperature Error and 

Their Application in POS. In Instrumentation and Control Technology; IEEE: London, UK, 2012;  

pp. 189–194. 



Sensors 2014, 14 18726 

 

 

3. Hong, W.S.; Lee, K.S.; Paik, B.S.; Han, J.Y.; Son, S.H. The compensation method for thermal 

bias of ring laser gyro. In Proceedings of the 21st Annual Meeting of the IEEE Lasers and  

Electro-Optics Society (LEOS 2008), Acapulco, Mexico, 9–13 November 2008; pp. 723–724. 

4. Yang, J.Q.; Liao, D.; Jin, X.; Jia, X.Q. The compensation methods of the start-up drift of four 

frequency differential laser gyro. In Proceedings of the 2010 2nd International Conference on 

Advanced Computer Control (ICACC), Shenyang, China, 27–29 March 2010; pp. 237–240. 

5. Guo, W.; Li, G.; Wu, Y. Application of Least Squares-Support Vector Machine in system-level 

temperature compensation of ring laser gyroscope. Measurement 2011, 44, 1898–1903. 

6. Guo, Y.W.; Qi, T.G. Thermal Characteristics and Thermal Compensation of Four Frequency Ring 

Laser Gyro. In Proceedings of 2002 IEEE Position Location and Navigation Symposium,  

Palm Springs, CA, USA, 2002; pp. 271–276. 

7. Ge, W.T.; Chen, M.G.; Lin, Y.R. Dynamic modeling and compensation for thermal error of  

three-axis ring laser gyro. Opt. Precis. Eng. 2007, 15, 1509–1514. 

8. Jia, F.X.; Qiu, A.P.; Shi, Q. Design and experiment of micro machined vibratory gyroscope.  

Opt. Precis. Eng. 2013, 21, 1272–1281. 

9. Zhang, P.F.; Long, X.W. Analysis on temperature characteristic of mechanically dithered RLG’s 

bias with a method of stepwise regression. Opt. Tech. 2006, 32, 738–740.  

10. Xue, B.L.; Jun, W. A recurrent neural network for nonlinear optimization with a continuously 

differentiable objective function and bound constraints. IEEE Trans. Neural Netw. 2000, 11, 

1251–1262. 

11. Jin, J.; Wang, Z.; Zhang, Z.G. Temperature errors modeling for fiber optic gyro using Multiple 

Linear Regression models. J. Astronaut. 2008, 29, 1912–1916. 

12. Yang, P.X.; Qin, Y.Y.; You, J.C. Temperature compensation for RLG based on neural network. 

Proc. SPIE 2010, 7544, doi:10.1117/12.885310. 

13. Han, L.Y.; Gao, B.; Yang, L. Study of temperature compensation for laser gyro SINS of  

land-based missile. Tactical Missile Technol. 2013, 4, 81–85. 

14. Jin, J.; Zhang, Z.G.; Wang, Z. Temperature error compensation for digital closed-loop fiber optic 

gyroscope based on RBF neural network. Opt. Precis. Eng. 2008, 16, 235–240. 

15. Shen, J.; Miao, L.J.; Wu, J.W. Application and compensation for startup phase of FOG based on 

RBF neural network. Infrared Laser Eng. 2013, 42, 119–124.  

16. Yu, X.D.; Wei, X.T.; Li, Y. Application of radial Basis function network for identification of 

axial RLG drifts in single-axis rotation inertial navigation system. J. Natl. Univ. Def. Technol. 

2012, 34, 48–52.  

17. Pang, H.F.; Luo, F.L.; Chen, D.X. Temperature compensation model of fluxgate magnetometers 

based on RBF neural network. Chin. J. Sci. Instrum. 2012, 33, 695–700. (In Chinese) 

18. Jeatrakul, P.; Wong, K.W. Comparing the performance of different neural networks for binary 

classification problems. In Proceedings of the 2009 Eighth International Symposium on Natural 

Language Processing (SNLP’09), Bangkok, Thailand, 20–22 October 2009; Volume 111, pp. 111–115. 

19. Wu, Y.; Zheng, X.L.; Zeng, Z.Q. Research on temperature characteristic of angle sensor. 

Electron. Meas. Technol. 2012, 35, 8–12. (In Chinese) 

20. James, M.; Kenneth, M.; Stefan, W.; Chris, B. Data mining using rule extraction from Kohonen 

self-organizing maps. Neural Comput. Appl. 2005, 15, 9–17. 



Sensors 2014, 14 18727 

 

 

21. Liu, H.Y.; He, J. The application of dynamic K-means clustering algorithm in the Center selection 

of RBF Neural Networks. In Proceedings of the 3rd International Conference on Genetic and 

Evolutionary Computing (WGEC’09), Guilin, China, 14–17 October 2009; pp. 488–491. 

22. Kamalasadan, S.; Ghandakly, A.A. A neural network parallel adaptive controller for dynamic 

system control. IEEE Trans. Instrum. Meas. 2007, 56, 1786–1796. 

23. Deepak, B.; Priyanka, A.; Prabir, B.; Vijay, D. An enhanced MEMS error modeling approach 

based on nu-support vector regression. Sensors 2012, 12, 9448–9466. 

24. Kumar, R.; Das, R.R.; Mishra, V.N.; Dwivedi, R. A radial basis function neural network classifier 

for the discrimination of individual odor using responses of thick-film tin-oxide sensors.  

IEEE Sens. J. 2009, 9, 1254–1261. 

25. Kumar, R.; Das, R.R.; Mishra, V.N.; Dwivedi, R. Wavelet coefficient trained neural network 

classifier for improvement in qualitative classification performance of oxygen-plasma treated 

thick film tin oxide sensor array exposed to different odors/gases. IEEE Sens. J. 2011, 11,  

1013–1018. 

26. Gokhan, A.A.; Cansever, G. Adaptive neural network based fuzzy sliding mode control of robot 

manipulator. In Proceedings of the 2006 IEEE Conference on Cybernetics and Intelligent 

Systems, Bangkok, Thailand, 7–9 June 2006; Volume 1, pp. 7–9. 

27. Merzagora, A.C.; Bracchi, F.; Cerutti, S.; Rossi, L.; Gaggiani, A.; Bianchi, A.M. Evaluation and 

Application of a RBF Neural Network for Online Single-Sweep Extraction of SEPs during 

Scoliosis Surgery. IEEE Trans.Biomed. Eng. 2007, 54, 1300–1308. 

28. Hsu, C.C.; Lin, S.H. Visualized analysis of mixed numeric and categorical data via extended  

self-organizing map. IEEE Trans.Neural Netw. Learn. Syst. 2012, 23, 72–86. 

29. Dlugosz, R.; Kolasa, M.; Pedrycz, W.; Szulc, M. Parallel programmable asynchronous 

neighborhood mechanism for kohonen SOM implemented in CMOS technology. IEEE Trans. 

Neural Netw. 2011, 22, 2091–2104. 

30. Paetz, J. Reducing the number of neurons in radial basis function networks with dynamic decay 

adjustment. Appl. Math. Model. 2007, 31, 1271–1281. 

31. Benoudjit, N.; Verleysen, M. On the kernel widths in radial-basis function networks. Neural Proc. 

Lett. 2003, 18, 139–154.  

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


