
Sensors 2014, 14, 3428-3444; doi:10.3390/s140203428 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Double Fault Detection of Cone-Shaped Redundant IMUs Using 

Wavelet Transformation and EPSA 

Wonhee Lee 
1
 and Chan Gook Park 

2,
*  

1
 Department of Mechanical and Aerospace Engineering, ASRI, Seoul National University,  

Seoul 151-741, Korea; E-Mail: clever212@snu.ac.kr 
2 

Department of Mechanical and Aerospace Engineering, Institute of Advanced Aerospace 

Technology, Seoul National University, Seoul 151-741, Korea 

* Author to whom correspondence should be addressed; E-Mail: chanpark@snu.ac.kr;  

Tel.: +82-2-880-1732; Fax: +82-2-873-1732.  

Received: 21 November 2013; in revised form: 16 February 2014 / Accepted: 17 February 2014 /  

Published: 19 February 2014 

 

Abstract: A model-free hybrid fault diagnosis technique is proposed to improve the 

performance of single and double fault detection and isolation. This is a model-free hybrid 

method which combines the extended parity space approach (EPSA) with a multi-resolution 

signal decomposition by using a discrete wavelet transform (DWT). Conventional EPSA 

can detect and isolate single and double faults. The performance of fault detection and 

isolation is influenced by the relative size of noise and fault. In this paper; the DWT helps 

to cancel the high frequency sensor noise. The proposed technique can improve low fault 

detection and isolation probability by utilizing the EPSA with DWT. To verify the 

effectiveness of the proposed fault detection method Monte Carlo numerical simulations 

are performed for a redundant inertial measurement unit (RIMU). 

Keywords: extended parity space approach; fault detection and isolation; inertial sensor; 

redundant IMU; wavelet transform 

 

1. Introduction 

The inertial measurement unit (IMU) is an essential part of the attitude heading reference system 

(AHRS) and inertial navigation system (INS). Generally, it consists of three gyroscopes and 

accelerometers, respectively, that are arranged orthogonally. Each sensor operates independently, 
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hence it is impossible to detect the sensor fault of other axes. A fault in the navigation sensors can be a 

fatal blow to the total system. Therefore, systems that must have a high reliability like satellites, 

missiles and aircraft use the hardware redundant type fault detection isolation (FDI) method. The 

redundant IMU dealt with this paper is an example of a hardware redundant method. The redundant 

IMU has several redundant sensors and the configuration affects the performance of the FDI [1–5]. In 

this paper, the redundant inertial measurement unit (RIMU) used seven sensors, which are arranged in 

a cone shape. Generally, it this known to be a good option for fault detection.  

The FDI process is used to verify the availability of sensor signals. Several FDI methods were 

introduced in past research [6–12]. For example, the parity space approach (PSA), generalized 

likelihood ratio test (GLT) and optimal parity vector test (OPT) are suggested [13–25]. They are 

generally used for single fault detection. These FDI methods are difficult to extend for double fault 

detection and isolation. The effect of double faults is a mixed form of single faults. Therefore, FDI 

performance degradation occurs when single fault detection methods are applied for double faults. The 

proposed FDI technique is based on an extended PSA concept, which was proposed by Potter and 

Suman [22–26]. EPSA has several PSA layers, because the PSA can be only used one time in  

FDI [24–26]. If we want to know which sensor is faulty when a double fault has occurred, we must use 

multiple layers. Therefore, conventional EPSA has issues under some conditions. The EPSA is not 

suitable when the fault direction angle between the faulty sensors is large. Additionally, the sensor 

noise affects the FDI performance of EPSA. Hence, we introduce a modified EPSA by using together a 

discrete wavelet transform. The discrete wavelet transform can decompose the signal according to 

scale. The multi-resolution signal decomposition is useful to remove a specific frequency  

signal [27–30]. In this paper, decomposed sensor data is used for inline monitoring and high frequency 

noise cancellation. Adoption of a DWT in EPSA introduced a great improvement for FDI success 

probability by reducing the effect of sensor noise in the parity vector. 

This paper is organized as follows: Section 2 deals with the classification of faults. Section 3 

describes how to detect and isolate double faults using EPSA. In Section 4, we will explain the signal 

decomposition technique using DWT. Section 5 describes the fault detection and isolation algorithm 

using the modified EPSA, and a proposed FDI algorithm simulation results are shown in Section 6. 

Finally, Section 7 presents the conclusions. 

2. Fault Classification  

Generally, the sensors that are used in inertial navigation devices rarely suffer faults. Thus, two 

kinds of fault types were considered: single and double faults. A single fault means there is only 1 

faulty sensor. The FDI process to determine the faulty sensor is identical. On the other hand, the FDI 

process of double faults was selected in accordance with its type, because double faults cause a 

difference of the parity vector. In PSA-based FDI methods, the size of the parity vector is the FDI 

criterion. If they are not classified before FDI, it is difficult to detect and isolate double faults 

correctly. Firstly, the types of sensor faults that might occur in RIMU are considered, and then the 

detection and isolation of the fault in accordance with the type are described. 
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The inertial sensor fault can be modeled according to Table 1. We assume that the maximum 

number of faulty sensors that can occur at the same time is 2. The double faults are classified into 2 

types according to the fault direction angle. 

Table 1. Fault classification. 

Type Fault Type Features  

Fault A Single fault: the fault occurred in just one sensor 

Fault B Double faults: the fault occurred in two sensors 

Fault C 
Double faults: the fault occurred in two sensors. However, it is impossible to 

detect because of the RIMU geometry condition 

Figure 1. Types of sensor fault. (a) fault A. (b) fault B. (c) fault C. 

 

(a) (b) (c) 

Figure 1 is the fault type introduced in Table 1. The circle refers to a threshold that is the criterion  

for fault detection. The magnitude and direction of the arrows refer to the fault size and fault  

direction, respectively [26]. By using this fault classification, the FDI technique design and simulation  

were performed. 

3. Extended Parity Space Approach 

3.1. Parity Space Approach  

PSA is one of the most commonly used methods for fault detection and isolation. A parity vector 

that is independent and sensitive to the fault is defined as a state variable. The parity vector derived 

from the matrix V  and matrix V  was calculated by the measurement matrix H . These were defined 

by Potter and Suman [14]. Matrix V  is a trapezoidal matrix that satisfies the following conditions:  

0VH   (1) 
T

l nVV I   (2) 

   1 2 1 2

T

l n c c clV v v v v v v   (3) 

where l  and n  are the dimension of measurement output vector and the number of RIMU sensors, 

respectively, 1 n l  . 
l n

I


 is an identity matrix with ( ) ( )l n l n    dimensions, and the dimension of 

V  is  l n l  . T
iv  is the thi  row vector of V  and ckv  is the thk  column vector of V . 

Definition 3.1: The column space of matrix V  is defined as the “parity space” of the measurement 

matrix H . 
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Definition 3.2: The parity vector is defined by: 

( )

p Vm

V Hx f

V Vf







  

 

 
(4) 

m Hx f    (5) 

 1 2

T

l n
p p p p


  (6) 

where p  is the l n  dimensional vector. The parity vector is the projection of the measurement m  

onto the parity space and is independent of the state variables but dependent on the sensor fault and 

noise. Therefore, the F/N (fault to noise) ratio is important to analyze the FDI performance. m  is the 

1l  measurement output vector of sensor, H is the l n  observation matrix of rank n  to be 

determined by sensor configuration, the state x  is the 1n  true value of the measured variable and   

is the 1l  Gaussian measurement noise vector, f  is the fault signal vector and the type of fault is 

modeled as constant bias. Although this assumption may have some problems, this is a valid and 

common assumption in that the bias type fault has a great effect on the system. In Equation (6), 
i

p  is 

called a parity equation. 

Definition 3.3: The column of V , ckv , is projections of the k -th measurement directions on the  

c -th parity space and is called the c -th sensor fault direction since the fault on the k -th measurement 

km  implies the growth of the parity vector p . A vector 
ck k

v m  on the fault direction of 
ck

v  is called a 

fault direction vector [16]. The fault direction angle is defined the angle between 2 different fault 

direction vectors.  

(1) Fault detection by using PSA 

Tp p  has 2  distribution with l n  DOF (degrees of freedom) and is used as the fault detection 

function, i.e., 2 TFD p p  . If the probability of false alarm is  , T  to satisfy  2P T    is 

determined as the threshold value from the 2  distribution table, where P  is the probability function. 

The fault is detected by checking the value of Tp p . If, it means the fault does not occur. If Tp p T , 

the sensor module has the fault. Tp p T  

(2) Fault isolation by using PSA 

The fault isolation function is defined as T

k ck ck
FI v p v . This function shows the value to be 

obtained as projecting the parity vector along the fault direction of each sensor. The number of FI  

functions is l . The sensor that related a maximum FI  value is considered as the faulty sensor. For 

example, if 
k

FI  is the maximum, the thk  sensor is isolated as the faulty sensor. Detailed information 

about PSA can be easily obtained [16]. 

3.2. EPSA Configuration Based on PSA  

The fault detection concept of EPSA is basically the same as that of the PSA. However, with PSA it 

is only possible to find single faults. EPSA is designed to solve the single and double faults detection 

problem. To detect the double faults, seven sensor groups that are composed of six sensors each are 

used. Each sensor group is used to determine whether the fault occurred or not. The fault detection 
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number of the sensor group is used to decide which type of fault happened. Figure 2 shows the EPSA 

process for fault detection. To ascertain whether each sensor group has the fault, we check the size of 

the parity vector using Equation (4). The Fault Detection Number (FDN) is calculated by adding the 

number of faulty groups. As a result, this FDN value refers to the type of fault that occurred. If the 

FDN is 6, it means a single fault occurred. If FDN is 2 and 7, it means type C and B double faults 

occurred, respectively. After the fault detection, a fault isolation process is performed according to the 

fault type as indicated in Figure 3.  

Figure 2. Fault detection using EPSA. 

 

Figure 3. Fault isolation according to the type. 

 
 

(1) FDI of fault type A 

This is the single fault case. Because one sensor among the seven sensors in the RIMU has the 

fault, the fault is detected in six sensor groups. FDN is 6, and the faulty sensor is judged using the 

sensor number that is not comprised in the non-faulty sensor group. 

(2) FDI of fault type B 

This is one of the double fault cases. If a fault type B occurred, it means that the sum of each 

parity vector is bigger than the threshold. One of double faults also has a parity vector that as big as 

the  threshold. Hence, the magnitude of the parity vector is bigger than the threshold, no matter if the 

double faults are in the same or different sensor group. FDN will be 7 when a type B fault occurred. 
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(3) FDI of fault type C 

This is another type of double fault in RIMU. Type C faults happen rarely. This fault causes 

RIMU performance degradation problems because it is difficult to detect this fault when the 

conventional FDIR methods are utilized. EPSA can detect this fault by using the FDN for FDI. When 

the double fault occurs, the fault directions and magnitudes of the faulty sensors are important. If the 

fault direction angle between the faulty sensors is over 120 deg, it could be a candidate of fault type 

C. Because the sum of the fault direction of sensor groups that have two faulty sensors is smaller than 

the fault detection threshold, fault type C is detected by checking the magnitude of the parity vector at 

a sensor group containing a single faulty sensor. When the faulty sensors are in the same sensor 

group, the parity vector is smaller than the threshold. Otherwise, when the faulty sensors are in 

different sensor groups, the parity vector is bigger than the threshold because of the single-faulty 

sensor effect. Therefore, when FDN is 2, it means that a type C fault occurred. 

4. Signal Decomposition 

The magnitude of the parity vector is affected by sensor noise and faults as indicated in Equation (4). 

Therefore, an effective noise canceling technique helps to increase the FDI performance. In this paper, 

noise canceling was performed by using DWT that was already proved in many cases [29]. 

Generally, the Fourier transform has been used for signal processing in the frequency domain. 

However, it is difficult to know the time-frequency relationship. The Fourier transform is less useful 

for analyzing non-stationary signals whose frequency contents change with time because it is difficult 

to recognize the signal in a specific frequency. To overcome this difficulty, the windowed Fourier 

transform was introduced. Even with the windowed Fourier transform, there is a weakness with the 

multi-scaled signal analysis because the resolution of the window function is constant over the entire 

frequency bandwidth. The wavelet transform, which has been developed for image processing and 

signal analysis [27], can provide time-frequency localization. The performance of wavelet transforms 

is better than the windowed Fourier transforms in the sense that it can zoom in on the high frequency 

signal for a short duration or zoom out on slow oscillations. Thanks to these characteristics, the 

wavelet transform can be used for analyzing non-stationary abnormal signals at the time of the sensor‟s 

fault. The DWT is defined as follows [29]: 

,( , ) ( ) ( )b aW f b a f t t dt 



   (7) 

where the mother wavelet is: 

,

1
( )b a

t b
t

aa
 


  (8) 

By selecting a  and b  properly, the dilated mother wavelets constitute an orthonormal basis. In this 

paper, the Daubecheise2 wavelet is used that is generally used in the mechanical system for fault 

detection [28].  

Orthonormal properties of DWT enable multi-resolution signal decomposition, which projects a 

signal step by step into the dyadic frequency band in a manner similar to a filter bank algorithm. 

Starting from an original sensor signal, the first step of multi-resolution signal decomposition is to 
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produce an approximate coefficient and detail coefficient. These vectors are obtained by convolving 

the sensor signal with a low-pass filter for „the approximations‟, and with high-pass filter for „the 

details‟. The computation load becomes smaller at the higher scale because the number of sample in 

each sub-band cuts down to half of that in the previous sub-band. The detailed version of the signal 

contains noise as well as fault information such as sharp edges, transitions, and jumps at the bias, drift, 

spike faults, and so on. 

Let 0 ( )c n  be a discrete-time sensor signal at the discrete time step n . The sensor signal can be 

decomposed into a smoothed version ( )ic n  and detailed version ( )id n  at scale as shown in Figure 4: 

   1( ) 2j j

k

c n k k n c k






   (9) 

   1( ) 2j j

k

d n g k n c k






   (10) 

where ( )h n  and ( )g n  are the low-pass and high-pass filter coefficients, respectively, which can be 

determined by the following two-scale relation to the scaling function ( )t  and the wavelet function 

( )t  [29]. 

Figure 4. Signal decomposition using wavelet transform. 

 

( ) 2 ( ) (2 )
n

t h n t n 




   (11) 

( ) 2 ( ) (2 )
n

t g n t n 




   (12) 

where    
1

( ) 1 1
n

g n h n


   . If the scaling function ( )t  is defined as the signal basis, the low-pass 

filter coefficients ( )g n  and the wavelet function ( )t  can be successively designed as in [25]. 

5. Modified Extended Parity Space Approach 

The FDI performance of EPSA is good for single faults and double faults. However when the fault 

direction is bigger than 120 deg such as in fault type 3, the FDI performance of EPSA is decreased. 

The fault isolation probability of EPSA is low when the fault direction angle is large. Table 2 shows 

the fault direction angle of double faults between sensor 1 and the other sensor. Fault C can be present 

when double faults occur in sensor 1 and 2 or sensor 1 and 7. The FDI performance could be low if 

double faults occur in sensor 1 and 2. Figure 5 shows the result of double fault detection and isolation, 
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which have a large fault direction angle: sensor 1 and 2 are faulty sensors. While the fault detection 

probability is high, the fault isolation probability is low. This is caused by incorrect fault isolation 

because of a large fault direction angle. To prevent the FDI performance degradation, a modified-EPSA 

that consists of DWT and EPSA was proposed. The modified-EPSA enhances the fault detection and 

isolation probability, which is shown. As we use the DWT with EPSA, there is a possibility of 

improving the performance of the sensor fault FDI because we can separate the high frequency noise 

from the signal. It is possible to check the faulty sensor candidate one more time, and by using sensor 

data, change the quantity information to improve the FDI efficiency. As a result, FDI probability is 

increased by using the proposed FDI method. Especially, the fault isolation probability increased in 

faults type B and C. 

Table 2. Fault direction angle between double faults. 

Numbers of Faulty Sensor 1-2 1-3 1-4 1-5 1-6 1-7 

Fault direction angle (deg) 124.2 97.97 78.43 78.43 97.97 124.2 

Figure 5. FDI probability of double faults: sensor 1 and sensor 2. 

 

5.1. DWT Combined EPSA 

The EPSA is mainly used for RIMU double fault detection and isolation. The DWT is applied in 

order to improve the EPSA results and minimize the effects of high frequency sensor noise. As we 

mentioned above, DWT has a peculiar property that separates the high frequency and low frequency 

signals. Therefore, it is useful to reduce the sensor noise effect for FDI performance. The parity vector 

used in EPSA is comprised of fault and noise terms as shown in Definition 3.2. The magnitude of this 

parity vector becomes the criterion to determine the location of the sensor fault. Hence, noise 

cancellation is very important for high performance. The conventional EPSA does not have a sensor 

noise cancellation method, therefore, the FDI performance can be decreased because of measurement 

noise. DWT can be a solution for FDI performance degradation caused by noise. Figure 6 is the signal 

analysis result using wavelet transform. Faults cause a specific effect, and DWT can detect the fault 

effect on the signal. With this technique it is possible to remove the noise by isolating the high pass 

noise components successfully. Consequently, more robust double fault detection and isolation method 
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can be designed by using an additional noise cancelling step. Furthermore, the DWT can detect the 

sensor fault by itself. As indicated in Figure 5, big differences in the time-frequency analysis of sensor 

signals were found because a sudden change of sensor data caused the frequency changes. Moreover, 

more fault-dependent parity vector is acquired by using the noise cancelled sensor signal like in  

Figure 7. De-noised sensor signals allow for better double fault FDI performance. 

Figure 6. Sensor signal analysis result using the wavelet transform. (a) fault-free case.  

(b) fault case. 

  

(a) (b) 

Figure 7. Reconstructed sensor signal. (a) time domain. (b) frequency domain. 

 

(a) (b) 

5.2. FDI Using the Modified EPSA 

The sensor fault is like a bias on the output signal because it causes a sudden change in the time 

domain. The sudden change appears at a relatively high frequency. Using the DWT, the sensor signal 

is decomposed in three steps. The signal that has the high frequency component is used for fault 

detection. The sensor fault is defined when the sensor signal has a value greater than the threshold. 

There are multiple methods for selecting a threshold. In this paper, the sensor signal variance is used. 

Additionally, the EPSA FDI algorithm is used as a main FDI method. It is not the same as EPSA, 

because the modified-EPSA uses a signal where the high frequency noise has been removed. This is 

the main difference between EPSA and modified-EPSA. High frequency noise is naturally removed by 

decomposing of sensor signal using DWT. Thanks to the reconstructed sensor signal, the FDI 
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performance of RIMU becomes better than when the original sensor signal is used. The fault detection 

process is identical to the EPSA.  

Figure 8. FDI scheme using modified EPSA. 

 

Figure 9. Fault isolation flow chart. 

 

The fault isolation process is utilized in the EPSA isolation process and the different sensor data 

over time. FDN, which is calculated by the EPSA, has a different value according to fault type. 

Therefore, if an accurate FDN value can be calculated, the probability of the fault isolation process is 

increased. However, it is difficult to get that accurate number. For example, fault type C must have 

FDN 5. In many cases, it has a 6, which refers to the double fault, since a big fault direction angle over 

120 deg is classified as a single fault. To overcome this problem, the difference between the sensor 

data over time is checked to recognize fault types one more time. The sensor data is effective at 
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verifying fault detection results. Figures 8 and 9 are conceptual diagrams of the proposed FDI scheme, 

where each figure shows the details of the entire FDI process of the modified-EPSA and the fault 

isolation strategy for double faults. First of all, DWT is performed for every sensor signal, and the 

reconstructed sensor signals after DWT are used as a measurement to calculate the parity vector. FDF 

is computed using PSA for the every sensor group. The fault type was classified using the sum of FDF: 

FDN. The fault isolation process is focused on the classification of fault type by using the parity 

equation, i.e., the differences in sensor signals over time.  

6. Simulation 

The RIMU has several redundant sensors, and its sensor configuration affects the FDI performance. 

In this paper, seven sensors were arranged in a cone shape, which is known to be good for fault 

detection. Figure 10 shows the specifications of the RIMU configuration. Each sensor tilts 54.74deg 

against the z-axis and is configured having an equal angle on the x-y plane. 

The inertial sensor error model is represented by the misalignment error, bias and scale factor, 

which are the main sources of error for general IMU: 

m MHx b f     (13) 

where m  is the measurement of gyros and accelerometers in the redundant IMU ( 1lm R  ). M  is the 

misalignment error matrix ( l lM R  ), H  is the measurement matrix that has consisted the direction 

vectors of each sensor ( 3lH R  ), the state x  is the input angular velocity or acceleration in the body 

coordinate ( 3x R ), b  is the sensor bias ( lb R ),  is the measurement noise ( lR  ), and f  is the 

additive fault of the inertial sensor that has an effect only on the sensor bias ( lf R ). Although the 

assumptions about sensor faults may have some problems, this is a valid and common assumption 

since the bias type fault has a meaningful effect on the system. 

Measurement matrix H  is defined by the geometrical configuration, H can be like Equation (14) 

considering the seven cone-shaped sensors: 

0.5091 0.6384     0.5774

0.1817 0.7960 0.5774

0.7356 0.3543 0.5774

0.7356 0.3543 0.5774

0.1817 0.7960 0.5774

0.5091 0.6384 0.5774

0.8165 0.0000 0.5774

H

 
 

 
 
 

   
  
 

 
 
 

 

 

 

 

(14) 

To verify the performance of the proposed FDI algorithm, the RIMU accelerometer outputs are 

used as shown in Figure 10. As to the use of the Monte Carlo method, the probabilistic approach for 

FDI is possible to find how the proposed FDI algorithm is better than the conventional algorithm. The 

simulations are repeated 1,000 times for each F/N ratio, and the fault is inserted in the sensor 

measurement according to the 1 to 10 F/N ratio. The FDI performance is presented based on the fault 

direction angle of double faults case: over 120deg or not. Table 3 is the FDI simulation result of double 

faults using conventional EPSA. If all of faults were detected, the fault detection number is 10,000 and 
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the isolation number of double fault sensors is also 10,000, because the simulation is performed 1,000 

times from F/N ratio 1 to 10. The FDI performance of EPSA seems consistent with the expectation that 

the fault direction angle will correlate significantly with FDI performance. The worst FDI cases were 

present when the double faults occurred at sensors 1, 2 and 1, 7, respectively, because the fault 

direction angle is larger than in the other cases. Fault C is also detected approximately 100 times. 

Otherwise, for the double faults cases which occurred at sensors 1, 4, we have a good performance too. 

Based on this performance analysis, modified EPSA simulation was performed. 

Figure 10. Redundant IMU configuration with seven sensors. 

 

Table 3. Conventional EPSA FDI performance. 

Faulty Sensor Number 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 

Fault direction angle (deg) 124.18 97.97 78.43 78.43 97.97 124.18 

Fault detection 

number 

Fault A 1,494 1,577 1,227 1,210 1,753 1,862 

Fault B 4,778 5,454 6,528 6,501 5,209 4,191 

Fault C 100 56 75 67 76 107 

Fault isolation 

number 

# 1 4,058 4,824 6,459 6,652 4,341 3,688 

# 2 3,946 1,962 538 195 686 1,200 

# 3 1,538 4,769 500 46 92 184 

# 4 194 428 6,477 196 137 263 

# 5 366 123 206 6,543 373 181 

# 6 245 75 47 346 4,208 1,299 

# 7 903 396 206 368 2,486 3,643 

In Case 1, double faults occur at sensors 1 and 4, which have the best FDI performance. The angle of 

fault direction between the two faults is 78.43deg, and the effect of noise on the signal is not at the critical 

point. Figure 11 shows the successful FDI probability of sensor 1 in Case 1. The modified-EPSA can detect 

two faulty sensors 100% of the time and 98.4% of double faults are isolated successfully when the F/N 

ratio is bigger than 5. The fault isolation performance was good, and there is 20% improvement in fault 
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isolation probability if we use EPSA with discrete wavelet transform. When the F/N ratio is smaller 

than 3, the conventional EPSA is better than the proposed FDI algorithm. However, it is meaningless 

because it can be caused by sensor noise. In other words, it is impossible to recognize whether it is a 

real fault or not. Figure 12 is the FDI result of sensor 1 and 4. Despite the double faults occur, the fault 

detection and isolation probability is high. Table 4 shows the fault isolation result according to F/N 

ratio in case 1. As the F/N ratio becomes large, incorrect fault sensor isolation probabilities were 

rapidly reduced. 

Figure 11. (CASE1) Double faults detection and isolation performance of sensor 1.  

(a) Detection probability. (b) Isolation probability. 

  

(a) (b) 

Figure 12. (CASE1) Double faults detection and isolation performance of sensor 1 and 4. 

 

Table 4. Modidfied-EPSA FDI performance in CASE1. 

F/N Ratio 1 2 3 4 5 6 7 8 9 10 

Fault detection 

number 
0 63 300 967 1,000 1,000 1,000 1,000 1,000 1,000 

Fault  

 

isolation 

 

number 

#1 0 34 165 805 984 999 1,000 1,000 1,000 1,000 

#2 0 8 13 56 15 1 0 0 0 0 

#3 0 14 22 59 14 1 0 0 0 0 

#4 0 29 145 815 985 999 1,000 1,000 1,000 1,000 

#5 0 11 7 7 0 0 0 0 0 0 

#6 0 12 8 10 0 0 0 0 0 0 

#7 0 14 6 9 0 0 0 0 0 0 
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Figure 13. (CASE2) Double faults detection and isolation performance of sensor 1. 

(a) Detection probability. (b) Isolation probability. 

  

(a) (b) 

Figure 14. (CASE2) Double faults detection and isolation performance of sensor 1 and 2. 

 

Table 5. Modidfied-EPSA FDI performance in CASE2. 

F/N Ratio  2 3 4 5 6 7 8 9 10 

Fault detection 

number 
0 0 45 251 746 992 1,000 1,000 1,000 1,000 

Fault  

 

isolation 

 

number 

#1 0 0 27 200 675 963 981 992 1,000 1,000 

#2 0 0 38 196 672 960 1 992 1,000 1,000 

#3 0 0 7 6 23 24 19 7 0 0 

#4 0 0 5 5 7 1 1 0 0 0 

#5 0 0 3 4 5 2 0 1 0 0 

#6 0 0 5 9 7 2 0 1 0 0 

#7 0 0 2 11 28 25 18 7 0 0 

In Case 2, double faults occurred at sensors 1 and 2, which are neighbors. When double faults occur 

at two neighbor sensors, the magnitudes of faults are small. It is rarely possible to detect the fault using 

conventional EPSA. If the noise cancellation method is adopted, the modified-EPSA is able to 

overcome this problem. Figures 13, 14, and Table 5 show the FDI performance of sensor 1 in case 2. 

Fault detection and isolation probability is lower than the FDI probability of case 1 because of the 

small size of the parity vector. Hence, this is caused by the fault direction angle. When the F/N ratio is 
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5, the probability of fault detection and isolation are 74.6% and 67.5% with the modified-EPSA, 

respectively. The efficiency is not good, but it brings about an improvement, which is relatively 

remarkable when compared to the original EPSA. In particular, when the F/N ratio is 6, it is possible to 

detect and isolate 99.2% and 96.3%, respectively. Meanwhile the conventional FDI method can only 

detect 87.8% of faults and 37.8% of fault isolation. This difference is 11.4% and 58.5%. Cases 1 and 2 

verified the effectiveness of the proposed FDI technique using a probabilistic approach. 

7. Conclusions 

This paper proposed the DWT combined with EPSA FDI method for RIMU. RIMU is configured 

into a cone shape using seven inertial sensors considering FDI performance. Double faults can occur in 

the RIMU, which are normally modeled as three different types: single and two different types of 

double faults. Double faults were classified using the angle of each fault direction. The sensor noise 

and fault direction angle of two faulty sensors affect the FDI performance when the EPSA is used. 

Therefore, the DWT was adopted for the EPSA method to mitigate the noise. When we use a discrete 

wavelet transform for noise cancelling, the modified-EPSA shows higher performance than the 

conventional method. When the double faults occur at sensors 1 and 4, the proposed method is better 

for the fault detection and isolation, which are 31% and 75.7%, respectively, when the F/N ratio is 5. 

Also, the modified-EPSA shows a maximum 10.4% and 59% FDI performance improvement when the 

F/N ratio is 6, when the double faults occurred at sensors 1 and 2.  
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