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Abstract: The performance of a star tracker is largely based on the availability of its attitude
solution. Several methods exist to assess star tracker availability under both static and
dynamic imaging conditions. However, these methods typically make various idealizations
that can limit the accuracy of these results. This study aims to increase the fidelity of
star tracker availability modeling by accounting for the effects of detection logic and pixel
saturation on star detection. We achieve this by developing an analytical model for the focal
plane intensity distribution of a star in the presence of sensor slew. Using the developed
model, we examine the effects of slew rate on star detection using simulations and lab tests.
The developed approach allows us to determine the maximum slew rate for which a star of a
given stellar magnitude can still be detected. This information can then be used to describe
the availability of a star tracker attitude solution as a function of slew rate, both spatially,
across the entire celestial sphere, or locally, along a specified orientation track.

Keywords: star trackers; slew tolerance; attitude availability; star detection; attitude
determination

1. Introduction

Satellites that require high accuracy attitude estimates (<1 arc-min) generally employ the use of star
trackers. These sensors operate by taking images of the star field and matching observed patterns to an
onboard catalog. For most star trackers, the availability of this attitude measurement is generally greater
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than 99% in ideal conditions [1]. However, in many cases, satellites are required to change their attitude,
either continuously, as with Earth observation (EO) satellites, or periodically, as with space telescopes.
For star trackers onboard such satellites, angular motion during imaging (slew) causes stars to smear
out over a larger number of pixels than they would occupy in static imaging conditions. This reduces
the signal-to-noise ratio (SNR) of imaged stars, which decreases the detection performance of dim stars.
Detecting less stars in each image ultimately impairs the accuracy and the availability of a star tracker
attitude solution. Each star tracker claims to be tolerant of some amount of sensor slew; however, it is
challenging to quantify the exact impact this angular motion has on sensor performance.

This paper investigates the effects of slew rate on the availability performance of a star tracker.
Specifically, we develop an analytical model of the intensity distribution of a star smear. We combine
this model with star detection logic in a simulation-based approach to evaluate the effects of slew rate
on star tracker availability. We verify these results through lab testing and discuss further verification
using field tests. Lastly, we propose two new measures of star tracker availability that both incorporate
the effects of slew rate and represent improved modeling fidelity. Although the numerical results of this
paper are specific to the Sinclair Interplanetary ST-16 star tracker, the models and methods developed
are applicable to any star tracker with only minor modifications.

Before we can begin discussing slew rate tolerance, we need to understand how sensor slew impacts
the performance of a star tracker. The remainder of this section defines star tracker availability, introduces
our test sensor and outlines the methods we use to measure detection performance as a function of
slew rate.

1.1. Star Tracker Availability

The performance of a star tracker is generally described by two parameters: availability and accuracy.
Accuracy is defined as the uncertainty in the attitude estimate. Availability is defined as the fraction of
the celestial sphere, also known as firmament, over which a reliable attitude solution is possible. In this
study, we only examine the effects of sensor slew on availability. For more information on how sensor
slew affects star tracker accuracy, please see [2–6].

The key requirement for a star tracker attitude solution is detecting a sufficient amount of stars in each
image to form an unambiguous star pattern required for matching. The required number of detected stars,
which we denote asNmin, varies depending on the operating mode of the star tracker and the performance
of the matching algorithm. If no previous attitude information is known, at least three stars are required
to solve the lost-in-space (LIS) problem using star tracker measurements. This limit of three stars stems
not from the solution for attitude using vector observations, which only requires two stars [7,8], but from
the identification of stars within an image [9]. If only two stars are detected in an image, typically not
enough information is known to identify one star from another. Therefore, at least one additional star
is required.

This lower bound of Nmin = 3 represents the most optimistic case, which implies the matching
algorithm can correctly identify each star based on the respective three-star pattern. Due to pattern
ambiguity in the star catalog, this lower bound is commonly increased to Nmin = 4, which is a more
conservative representation of matching performance. Once the attitude of the spacecraft is known, the
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star tracker can switch into a tracking mode. In this mode, only two stars are generally required in
each image to determine the incremental change in attitude between sequential images (Nmin = 2). For
this study, we assume that pattern ambiguity is not a limiting factor and define the availability of an
attitude solution byNmin = 3. One problem with this definition is that it conflates stochastic effects (star
detection) with non-stochastic effects (star distribution, slew rates, tracking modes, etc.) and, therefore,
is difficult to quantify over a range of operating conditions.

Throughout the design and development process of a star tracker, several different models are used to
predict the availability performance of the sensor. The lowest fidelity models generally assume idealized
(static) imaging conditions and are useful for examining the top level performance of candidate optical
systems [1,4]. These models are typically based on a fixed stellar detection threshold, mt, which is used
in conjunction with the sensor field of view (FOV) to determine the number of detectable stars for a given
sensor orientation. Repeating this calculation over a large number of orientations, equally spaced across
the celestial sphere, yields an idealized measure of star tracker availability. The fixed mt is typically
defined by a minimum SNR set by the noise of the image detector and the size of the sensor’s point
spread function (PSF). This type of model is summarized by the first row of Figure 1.

Figure 1. Commonly used types of availability testing.
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A step up from the lowest fidelity are various models that explicitly include the effects of slew rate.
These models utilize a dynamic stellar detection threshold that is based on the slew rate, mt = f (ω),
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and a minimum star SNR [10,11]. These models account for the size of the smear, but do not explicitly
consider the intensity distribution within the smear itself. The typical assumption with these models
is that all of the starlight incident on the image detector is detected. In reality, the measured intensity
is less than the modeled star intensity, due to the effects of pixel saturation and star detection logic.
Pixel saturation has the effect of masking image intensity, due to the bit depth of the analog-to-digital
converters (ADCs) of the image detector. Star detection logic is used to detect candidate stars and
separate the star image from the background image noise. Similar to the model described in the first row
of Figure 1, the detection of a specific star is still defined by a minimum SNR. However, in this case, the
SNR is based not only on the noise of the image detector and the size of the PSF, but on the length of the
star smear. These models are summarized by the second row of Figure 1.

On the opposite end of the fidelity spectrum, we have various high fidelity models. These models
produce more accurate results, but they rely on specific information about mission orbits and maneuvers.
Availability is measured along the specific orientation track the sensor will follow on the celestial sphere.
This track is defined by the dynamics of the spacecraft. Star detection is assessed by the exact detection
routines employed on the star tracker. These models can include the effects of optical aberrations on
the PSF, as well as the effects of bright bodies (Sun, Moon, other planets). Furthermore, these models
would typically revise the definition of availability from having at least Nmin detectable stars in the
FOV to having a detectable non-ambiguous star pattern in the FOV, which contains enough stars for star
identification. These models are summarized by the last row of Figure 1 and would typically be used to
predict the availability performance of a spacecraft following launch.

There is currently a gap in available performance models between those which yield high fidelity
results and those which are not specific to a particular mission. This work attempts to bridge this gap and
provide some intermediate models of availability. The aim is to increase the fidelity of the availability
model while not limiting its applicability to any specific mission. We explicitly consider the effects
of sensor slew on the focal plane intensity distribution of a star. This allows us to incorporate the
effects of pixel saturation and star detection logic on the measured intensity of a star, increasing the
accuracy of predicted star SNR. We also examine the commonly modeled effects of star distribution on
star tracker availability. Figure 1 summarizes the metrics, required knowledge and potential application
of the common types of availability testing.

For the purpose of this paper, we define three types of availability that we use to describe the transition
from the general and heavily idealized, to the mission-specific models of availability shown in Figure 1:

1. Spatial Static availability. There is no motion of the sensor during an image exposure. The
availability is calculated using a large set of discrete sensor orientations that are equally spaced
along the celestial sphere. At each orientation, we determine if at leastNmin = 3 stars are detected
based on the sensor FOV and a fixed stellar detection threshold, mt. This definition represents the
idealized static model described by the first row of Figure 1.



Sensors 2014, 14 3943

2. Spatial Dynamic availability. The sensor is moving at a constant rate during image exposure.
Availability is still evaluated at discrete sensor orientations; equally spaced along the celestial
sphere, but now, with a detection threshold dependent on the slew rate, mt (ω). Unlike the second
row of Figure 1, detection is not based on the ideal SNR, but the actual SNR, as measured by the
image detector and the detection logic employed by the star tracker. This represents the model
described by the third row of Figure 1.

3. Along-track Dynamic availability. The sensor is moving at a constant rate during image exposure.
Availability is calculated only along the specific path (orientation track) and at specific slew
rates the sensor orientation will follow as a result of mission dynamics. Similar to spatial
dynamics availability, detection is determined by detection logic employed by the star tracker.
This represents an approximate version of the bottom row of Figure 1.

1.2. The ST-16 Star Tracker

For this study, we have used the Sinclair Interplanetary ST-16 star tracker as our baseline sensor. The
ST-16 is a relatively new nanosatellite-class star tracker that became available in 2011. An image of
the unit is shown in Figure 2 and some key specifications are listed in Table 1. All of our test results
reflect some preliminary performance characteristics of this device, but our approach to verifying slew
rate tolerance is generalizable to other star trackers. For more information on the ST-16, please see
Enright et al. [12] or Dzamba et al. [13].

Figure 2. The ST-16 star tracker with a Canadian quarter (25¢).

The image detector used onboard the ST-16 star tracker is the Aptina MT9P031 complementary
metal-oxide-semiconductor (CMOS) detector. The quantum efficiency of the MT9P031 is shown in
Figure 3 [14]. The ST-16 star catalog contains all stars of a visual magnitude of 5.75 or brighter (3, 746

stars in total), drawn from the Yale Bright Star catalog (YBS) [15]. Using mt = 5.75 as the stellar
detection threshold in static conditions, in combination with the ST-16 half-axis FOV of 7.5◦, we can
calculate the spatial static availability of the ST-16 attitude solution to be > 99.9%. This is calculated by
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testing a large number of sensor orientations (10,000) for at least Nmin = 3 detectable stars in the FOV.
The tested orientations are distributed evenly across the celestial sphere using the method described by
Marantis [16].

Table 1. Key ST-16 Specifications.

Accuracy 0.01◦ with 85% confidence
Size 59 × 56 × 31.5 mm
Mass ≈ 90 g

Field of View 7.5◦ half-axis
Exposure Time 100 ms

Detection Threshold <5.75
Catalog 3,746 stars

Availability (Static) >99.99%
Lens Diameter D = 12 mm

Lens F# 1.2

Figure 3. Aptina MT9P031 quantum efficiency.
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Figures 4 and 5 show a distribution map of the number of stars within the ST-16 FOV as a function
of sensor orientation. From this figure, we can see how uneven the star distribution is across the celestial
sphere. When pointing near the galactic equator, more than 10 stars in the FOV are typical. Conversely,
in the neighborhood of the galactic poles, many views see only three stars (see Figure 5). These
regions of sparse star distribution are directly dependent on the sensor FOV and the range of detectable
stellar magnitudes.
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Figure 4. ST-16 spatial static star distribution map (0 deg/s).

Figure 5. Sky regions with poor ST-16 star availability (0 deg/s). Note: the color axis is
flipped with respect to Figure 4 to increase the visibility of star-sparse regions.
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One of the main contributions of this work is that it enables the incorporation of detection logic
into the availability analysis of a slewing star tracker. To examine the importance of this addition, this
paper utilizes the detection scheme used onboard the ST-16 star tracker. This detection scheme can be
summarized by describing three threshold values:

• Lit pixel. This value defines the minimum intensity of an image pixel that is considered to be
lit by starlight, as opposed to just sensor noise. Pixels that are above this threshold are labeled
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lit pixels. The lit pixel threshold used for this study was 120 detector counts out of a possible
4,095 (constrained by the ST-16 image detector’s 12-bit ADCs).

• Number of contiguous pixels. This defines the minimum number of contiguous lit pixels that each
candidate star must possess before it can be considered as a valid detection. For this study, we
require at least six contiguous pixels.

• Integrated intensity. This value describes the minimum integrated intensity (summed intensity)
of all contiguous lit pixels that compose a candidate star. Candidate stars above this threshold
are considered valid detections. For this study, we define the integrated intensity threshold as
1,000 detector counts.

1.3. Testing the Performance of Star Detection

The sensor slew during an image exposure spreads the light from each star over a larger region of the
detector than compared to static imaging conditions. Given that the areal density of the detector noise
is approximately constant, as the incoming light spreads over more pixels, the integrated SNR over a
star image drops. Typical star tracker image processing routines subtract out most of the detector dark
response, so the SNR reduction appears as a decrease in the apparent brightness of imaged stars. At
some point, the integrated intensity (summed detector response) of a star will drop below the threshold
of reliable detection. Therefore, as the slew rate increases, the range of stellar magnitudes that the
star tracker can detect decreases. This effectively reduces the number of stars in the working catalog,
ultimately leading to a drop in availability. Figure 6 shows the change in availability of the ST-16’s
attitude solution for various limiting stellar detection thresholds.

Figure 6. The ST-16 spatial static availability for varying stellar detection thresholds.
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As part of this paper, we examine the efficiency of three methods that we use to determine the
performance of star detection as a function of slew rate. The results from these methods can be used
to define the stellar magnitude threshold in terms of slew rate, mt = f (ω), which can then be related to
the availability of the attitude solution. The methods we examine are:

• Simulations. We utilize analytical models to calculate the shape and intensity of an imaged star
in the presence of sensor slew. This is combined with the detection scheme implemented onboard
the ST-16 to determine the rate at which a star of a given magnitude would cease to be detected.

• Lab Tests. The ST-16 star tracker is placed onto a three-axis motorized gimbal capable of slewing
at a prescribed rate. While slewing, images are taken of a star source. This strategy represents
an improved level of realism, as the actual star tracker and onboard routines are used for image
formation and processing.

• Field Tests. This strategy involves moving the star tracker at fixed rates while collecting nighttime
sky images. Atmospheric factors introduce variability and attenuation into images taken with
this strategy. These effects can be minimized with the selection of an observation site with
good viewing conditions, a high-accuracy telescope drive system and the use of atmospheric
extinction models.

Each of these methods represents a different level of realism for a different cost (material and labor).
We compare the performance of these methods and examine which method is the most beneficial at
different points of the sensor development process.

2. Modeling the Effects of Sensor Slew on Star Tracker Imaging

Since stars are effectively point sources of light, the shape of an imaged star is commonly
approximated by the point spread function (PSF) of the sensor’s optical system. During static imaging
conditions, this is typically modeled by a symmetric two-dimensional Gaussian distribution. In the
presence of sensor slew, the symmetric 2D Gaussian is elongated along the direction of motion, forming
a blurred image, which we denote as the star streak.

This section begins by discussing the effects of slewing in different directions on star detection.
Following this, we review two analytical models from the literature that describe the intensity of a star.
We develop a new analytical model for the shape of a star image, taken at a given rate. We then combine
these models with shot noise and detector read noise to simulate a realistic star image. Lastly, we apply
detection logic to determine the tolerable slew rate for a given stellar magnitude.

2.1. Types of Sensor Slew

It is useful to separate the slew rate of a star tracker into two components: a roll component (ωz)
and a cross-axis component (ωxy). Each component results in a different effect, with a different relative
magnitude. If we neglect the effects of optical aberrations and consider a pinhole imaging model, a
pure cross-axis rotation (ωz = 0) results in linear star streaks on the focal plane of the star tracker. The
length of each streak, ∆b, is dependent only on the magnitude of the slew rate, ||ωxy|| =

√
ω2
x + ω2

y ,
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the exposure time, te, and the focal length of the sensor optics, f . The length of a star streak for a pure
cross-axis slew is given by:

∆bca = f tan ( ||ωxy|| te) (1)

For a pure boresight roll, stars will appear as streaks in the shape of circular arcs, centered about the
axis of rotation. Similar to the cross-axis case, the length of each arc is dependent on the magnitude of
the roll rate, ||ωz||, and the exposure time. However, instead of scaling directly with focal length, the arc
length scales with distance from the axis of rotation (in this specific case, the boresight). Practically, the
largest distance from the boresight that a star can be detected at rate is at the edge of the minor-axis FOV.
If we let h denote the minor dimension of the image detector, the maximum arc length of a star streak is
calculated using:

∆br = (h/2) tan ( ||ωz|| te) (2)

Since the focal length of the optics is always significantly larger than the dimension of the detector,
we can see that cross-axis slew rates will cause larger streak lengths. Comparing Equations (1) and (2),
we can see that even at the largest off-axis distance, h/2, the cross-axis streak length is still larger than
the roll streak length by a factor of 2f/h. For the ST-16, this factor works out to be ≈ 7.5.

Therefore, a pure cross-axis slew produces the maximum streak length for a given slew rate. Since
streak length is the primary factor that impacts star detection, for the remainder of this paper, we limit
our investigation of slew rate on star detection to pure cross-axis slews only.

2.2. Intensity Model

Various sensitivity models exist in the literature for predicting the number of photoelectrons observed
by an image detector for a star of a given magnitude. All of these models predict identical trends in
detected star intensity as a function of stellar magnitude. However, they typically differ by a scaling
factor due to various assumptions (spectral class, passband, etc.) made when determining the photon
flux from a zero-magnitude reference star. Since the slew tolerance for a star of a given magnitude is
directly dependent on the observed photon flux from that star, the intensity model chosen will affect
the calculated tolerable slew rate. However, the aim of this paper is to improve the fidelity of slew
tolerance modeling by better accounting for changes in observed star intensity as a function of slew rate,
as opposed to predicting exact performance values in static conditions. Therefore, we adopt two different
sensitivity models (one conservative and one liberal) from the literature and use them to establish bounds
on slew tolerance performance.

The first sensitivity model we use is the model presented by Liebe [1]. We provide a brief review of
the model below. Please see [1] for more information. The spectral radiance from a black body, at a
given wavelength and temperature, is given by:

I (λ, T ) =
(2π h c2)

λ5 (eh c/λ kb T − 1)
(3)

where h is Planck’s constant = 6.626 × 10−34 J · s, c is the speed of light = 2.997 × 108m/s, kB is
Boltzmann’s constant = 1.38 × 10−23 J/K, λ is the wavelength and T is the temperature (in Kelvin).
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Equation (3) is then used to predict the spectral irradiance of a zero-magnitude reference star, Io (λ),
with a surface temperature of 5, 800K. This is achieved by scaling the spectral radiance, I (λ), given by
Equation (3), such that the total radiance (spectral radiance across all wavelengths) is 2.96×10−14 W/m2.
This scale factor stems from the solar constant, 1.3 kW/m2, divided by 4.2 × 1010, to account for the
discrepancy in brightness between the Sun and a star ofm = 0. This spectral irradiance is then expressed
as a photon flux by dividing Io (λ) by the photon energy E = h c/λ. This is given by:

Po (λ) =
Io (λ)

h c/λ
(4)

The fraction of incident photons that are converted into photoelectrons by the image detector is given
by the absolute quantum efficiency, nQ (λ), of the image detector. The absolute quantum efficiency for
the Aptina MT9P031 image detector is shown in Figure 3. Using nQ (λ) and the passband of the image
detector (typically 400–800 nm), the number of detected photoelectrons, per unit area, per unit time, for
a zero-magnitude reference star, can be calculated by:

So =

∫ λ2

λ1

nQ (λ) Po (λ) dλ (5)

where λ2 and λ1 represent the upper and lower extents of the image detector passband, respectively.
Using the result of Equation (5), which has the units of photoelectrons/ (s ·m2), we can now calculate

the number of detected photoelectrons for a star of a desired magnitude using the star tracker aperture
and the exposure time.

SLiebe
e =

1

4
teπD

2 So
2.5m

(6)

where D is the diameter of the star tracker aperture, te is the exposure time and m is the apparent
magnitude of the star.

The second sensitivity model we use is the model presented by Enright et al. in [17]. This model is
based on a constant calculated by Reed [18] that states the photon flux from a type A, zero-magnitude
reference star is φ0 = 1.8 × 1010 photons · m−2 · s−1. Using this, we can determine the number of
photo-electrons that would be detected by the ST-16 star tracker for any star of known magnitude using:

Se = ηQteAφ0 · 10
−2
5
(m1−m0) (7)

where ηQ is the mean quantum efficiency of the detector across the selected passband (400–800 nm), te
is the observation time, A the aperture area, φ0 the stellar flux from a reference star and m1 and m0 are
the apparent stellar magnitudes of both the star in question and the reference star. Expressing A in terms
of the aperture diameter, D, gives:

SReed
e =

1

4
ηQteπD

2φ0 · 10−
2
5
m (8)

where m1 is now simply m and represents the stellar magnitude of a given star. The detector response,
in terms of digital counts, can be determined from the number of detected photoelectrons by multiplying
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Se by a factor of 6.5. This factor is based on the operating gain set to 16, and the ADCs of the MT9P031
detector [19].

Figure 7 compares the ideal intensity from each model and the corresponding integrated intensities
(intensity as detected by ST-16). Comparing the ideal intensity to the integrated intensity, we see
similar trends for either model. There is a specific stellar magnitude where the ideal intensity, and the
ST-16 integrated intensity is almost identical. Then, on either side of this specific stellar magnitude, we
see the integrated intensity decrease compared to the ideal intensity. Although the trends are similar,
the mechanisms for this discrepancy are different for bright stars and dims stars. For bright stars, the
discrepancy is caused by the effects of pixel saturation. For dim stars, the discrepancy is caused by the
ST-16 detection logic, excluding more of the star image, as individual pixel intensities fall closer to the
noise floor.

Figure 7. Comparing star tracker sensitivity models.
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The Liebe sensitivity model predicts integrated intensities approximately twice that of the Reed
sensitivity model. Although this is a significant discrepancy, we can use these models to predict bounds
on star tracker performance. If you have on-orbit data from your star tracker, or perhaps even high quality
field data (from an astronomical observatory), then you can utilize the actual observed intensity from a
reference star to tune these models.

2.3. Shape Model

The PSF of a star from a non-rotating spacecraft can be approximated as a symmetric Gaussian
distribution. The intensity distribution on the focal plane can be modeled by the function, S(x, y),
given as:
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S(x, y) =
Se

2πσs2
e
−
[
(x−µx)2+(y−µy)2

2σs2

]

=
Se

2πσ2
s

e
− r2

2σs2 (9)

where Se is the modeled intensity of the imaged star given by Equations (6) or (8), σs describes the size
of the PSF (it can be measured during calibration), (µx, µy) is the location of the star’s centroid and r
is the radial distance of a point (x, y) from the centroid. Equation (9) is commonly used to model the
intensity distribution of a star for static imaging conditions. When the star tracker is moving, the centroid
of an imaged star moves during the course of an exposure, forming an elongated streak. If we define
the star vectors at the beginning and end of an exposure as b and b′, we can model this motion as an
infinitesimal rotation through an angle, teω, as described by:

b′ =
(
I3x3 − teω×

)
b (10)

where ω× denotes the skew-symmetric matrix of the angular velocity vector, ω, and te is the star tracker
exposure time. The vector difference can be written as:

δb = b′ − b = −te
[
ω×
]
b (11)

In the operating regime of small slew rates (<10 ◦/s), we assume that the loci of the centroids in the
detector plane appear as linear segments with displacement, ∆b, specified in pixels. This is given as:

∆b =
fte
γbz

[
ωzby − ωybz
ωxbz − ωzbx

]
(12)

where γ denotes the pixel size. Using Equation (12), we can define the integrated response at a point
(x, y) of the PSF as a function of the initial centroid position, µo, and the focal plane displacement, ∆b.
We can rewrite Equation (9) to include the elongation of the PSF as:

S (x, y, t) =
Se

2πσ2
s

e
− r(t)

2

2σ2s (13)

where t is the time from the beginning of the PSF exposure, and r2 from Equation (9) is now:

r (t)2 =

(
xo +

∆bxt

te
− x
)2

+

(
yo +

∆byt

te
− y
)2

(14)

The quantities µo = (xo, yo) are the focal plane coordinates of the star centroid at the beginning of
the exposure and (x, y) are the coordinates of an arbitrary point of interest. Substituting Equation (14)
into Equation (13), expanding and collecting like terms, we get:

S (x, y, t) =
Se

2πσ2
s

ez (15)

where:

z = a2t
2 + a1t+ ao (16)
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and:

a2 = −
(∆b2x + ∆b2y)

2σ2
st

2
e

(17)

a1 =
∆bx (x− xo) + ∆by (y − yo)

σ2
ste

(18)

a0 =
− (xo

2 + x2 + yo
2 + y2) + 2 (xox+ yoy)

2σ2
s

(19)

We now integrate Equation (15) with respect to time and get the focal plane intensity distribution of
an imaged star in the presence of the slew rate:

Sb (x, y) =

∫ te

0

S (t) dt = AoBo e
1

4a2
4a0a2−a21 (20)

where:

Ao =
Se

2πσ2
s

(21)

Bo =

√
π

2
√
−a2

[
erf
(

1

2

a1√
−a2

)
− erf

(
1

2

2a2∆te + a1√
−a2

)]
(22)

Given an angular rate and a static star intensity, this derivation gives the shape and focal plane intensity
distribution of a star imaged during sensor slew.

3. Star Detection at Rate

Using the analytical models developed in the previous section, we use simulations to examine how
the measurable intensity of a star is affected by the slew rate of the sensor. We compare the results of
these simulations with the results from a series of lab tests that utilize a motorized gimbal, an ST-16
engineering model and a star source. Lastly, we examine the potential accuracy and benefit of acquiring
field results at a rate.

3.1. Simulation Tests

Using the developed analytical models for the shape and intensity distribution of a star, we conduct
simulation tests to accomplish two primary objectives. The first objective is to examine the decrease in
the measurable intensity of a star (integrated intensity), as a function of slew rate. The second objective
is to determine the maximum slew rate at which a star of a given stellar magnitude can be detected. We
denote this maximum slew rate as the tolerable slew rate for a given stellar magnitude. Each simulation
consists of iteratively simulating a star image for a range of slew rates, adding some typical imaging
noise sources and then applying the detection scheme equivalent to the one used onboard the ST-16.
This process is summarized by the following steps:
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1. Using Equations (6), (8) and (20), we calculate the shape and focal plane intensity distribution of
a star, given its stellar magnitude. This gives the ideal intensity value of each pixel within the star
image, as would be detected by the image detector.

2. The ideal signal from Step 1 is then combined with two typical imaging noise sources: shot
noise and detector read noise. Shot noise describes a random variation in the observed amount
of photoelectrons, due to the discrete, quantum nature of light. It is typically modeled as a Poisson
distribution with λ (x, y) = Sb (x, y). Read noise is essentially a summation of typical image
detector noise sources and is generally modeled as a zero-mean, normally distributed random
variable with σ = 3.5e−, where e− denotes electrons.

3. The resulting image is quantized in two steps. First, a scaling parameter of 6.5 detector counts/e−

is applied. This corresponds to the gain of the ST-16’s image detector. Second, the signal is
converted into a 12-bit integer to reflect the 12-bit ADCs of the ST-16’s image detector.

4. The last part of the process applies the ST-16 detection routine, described in Section 1.2, to
determine if the star would be detected, and if so, measure its integrated intensity.

Figure 8 shows examples of simulated star images for a m ≈ 3.5 star at slew rates of 0 ◦/s, 1.5 ◦/s

and 3.0 ◦/s. These are compared with lab-based star images taken using an ST-16 engineering model,
a star source and a motorized gimbal (see Section 3.2 for details). Utilizing the process summarized
above, images were simulated for stars of varying stellar magnitudes at slew rates of 0 ◦/s to 10 ◦/s.
At each slew rate, the integrated intensity was recorded as measured by the ST-16 detection routine.
Figure 9 shows the measured integrated intensity as a function of increasing slew rate for a set of stellar
magnitudes, where m defines the intensity of each star as per Equation (8). The line at the bottom of the
graph represents the integrated intensity threshold of the ST-16. Using the Liebe sensitivity model, given
by Equation (6), instead of the Reed model, only changes the corresponding stellar magnitude labels.
The trend in integrated intensity as a function of slew rate remains identical.

The trend of decreasing integrated intensity with increasing slew rate is similar for each stellar
magnitude. The rate of this decrease in integrated intensity, denoted as the loss rate, is shallow at
the beginning and gradually increases with increasing slew rate. At a particular slew rate, which varies
depending on the brightness of the star, the loss rate reaches a maximum value, after which (for larger
slew rates) it begins to decrease. This overall trend in changing loss rates of integrated intensity is due
to the shape of the star, which is modeled as a symmetric Gaussian elongated along the direction of the
slew rate. Since most of a star’s intensity is concentrated at the centroid, the loss of integrated intensity
for increasing slew rates is gradual for small slew rates. However, once the peak of the star smear begins
to reach the lit pixel threshold, a large amount of lit pixels can be suddenly lost. The only remaining
lit pixels are those closest to the centroid track, which typically contain substantially more intensity
than their immediate neighbors. The intensity within these center pixels, can initially be hidden, due
to the effects of pixel saturation. As the light from a saturated pixel is spread across a region of several
pixels, an instantaneous increase can sometimes be seen in the integrated intensity of a star, as previously
undetected light is now detected by the neighboring pixels; see Figure 9.
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Figure 8. Simulated and lab-based images of a m ≈ 3.5 star at varying slew rates.
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Figure 9. Simulated star intensity at varying slew rates (Reed sensitivity model).
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The results of these simulations are used to determine the maximum tolerable slew rate for a given
stellar magnitude. This is achieved by examining when the ST-16 detection algorithm loses a star of
a given magnitude. Figure 10 shows the tolerable slew rate for various stellar magnitudes (using both
sensitivity models), up to a maximum slew of 10 ◦/s. Using the tolerable slew rate, we also calculate the
spatial dynamic availability for both the Nmin = 3 (LIS) and Nmin = 2 (tracking) attitude solutions as
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shown in Figure 11. This calculation is just a repetition of the same method described in Section 1.2 for
spatial static availability, except now with a stellar detection threshold based on Figure 10.

Figure 10. Tolerable slew rates for ST-16 star detection.
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Figure 11. ST-16 spatial dynamic availability.
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Despite the gradual trend in the tolerable slew rates for a given stellar magnitude, given by Figure 10,
the corresponding drops in spatial availability are much more severe. We see that at a slew rate of 1 ◦/s,
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the spatial dynamic availability of the ST-16, as determined using the Reed-based sensitivity model, is
≈ 80% for a three-star (LIS) solution and ≈ 90% for a two-star (tracking) solution. Following this, we
see the spatial dynamic availability fall to ≈ 30% for a three-star and ≈ 55% for a two-star solution,
with an increase in the slew rate to 2 ◦/s. The corresponding trends for the Liebe-based results are
better, with ≈ 100% availability at 1 ◦/s and > 90% availability at 2 ◦/s for both LIS and tracking
solutions. However, the Liebe-based results also show a significant (but less abrupt) drop in dynamic
spatial availability as the slew rate increases from 2 ◦/s–5 ◦/s.

3.2. Lab Tests

To evaluate the accuracy of the simulation tests, we have also conducted a series of lab trials using
n ST-16 engineering model, a three-axis motorized gimbal and a star source. The motorized gimbal is
constructed from Newport high-performance precision rotation stages (RSV240PP and RSV120PP) and
a Newport C8 Motion controller. The repeatability of the rotation stages is 0.001 ◦. The star source
is a fiber-coupled tungsten halogen lamp, manufactured by Ocean Optics, and has a color temperature
of a black body radiator at 2,800 K. To simulate stars of different stellar magnitudes, we adjusted the
intensity of the star source with the use of neutral density filters and a variable attenuator. The lamp
illuminates a 25 µ m pinhole, which is collimated by a telescope. When imaged by the ST-16, this star
source has an apparent diameter of 12 pixels on the image detector (2.64× 10−5 m).

Each trial consisted of testing the detection performance of a given stellar magnitude at a range of
slew rates. The intensity model given by Equation (8) was used to match the static response of the ST-16
to the desired stellar magnitude. For each intensity, 30 images were taken at each slew rate spanning
from 0 ◦/s to 3 ◦/s in 0.25 ◦/s steps, see Figure 8 for some example lab-based star images at rate. The
mean value of these 30 measures of integrated intensity was then used for each angular rate to mitigate
the random effects of shot noise and read noise.

The results of these tests are displayed in Figure 12. Markers indicate the integrated intensity
measured during lab trials, denoted in the figure as Lab. Error bars corresponding to each trial show
the 1-sigma variation from the mean. Full lines represent results attained through simulation for
corresponding beginning star brightnesses. These simulation-based results are denoted in the figure
as Sim. There is strong correspondence between the intensity levels measured through simulation and
lab trials.

3.3. Field Tests

The last method we examine for assessing detection performance is the use of field images. For static
tests, field trials generally involve taking a star tracker out on a clear night and imaging the stars under the
night sky. For assessing the tolerable slew rate, additional equipment (such as a motorized tripod mount)
is required to move the star tracker at a precise angular rate while imaging. Several problems exist
with both types of testing that can cause significant discrepancies in the measured integrated intensity
of imaged stars. In this section, we examine these inaccuracies and how they impair our ability to get
useful measurements of detection performance.
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Figure 12. Lab measured star intensity at varying slew rates (Reed sensitivity model).
Sim, simulation.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

x 104

Slew Rate (deg/s)

In
te

gr
at

ed
 In

te
ns

ity
 (d

et
.c

ou
nt

s)

 

 

m = 4.96 (Lab)
m = 4.29 (Lab)
m = 3.85 (Lab)
m = 3.55 (Lab)
m = 4.96 (Sim)
m = 4.29 (Sim)
m = 3.85 (Sim)
m = 3.55 (Sim)
ST-16 Integrated
Intensity Threshold

Several environmental factors associated with static field trials can impair our measurements of the
integrated intensity of a given star. These include, but are not limited to: scintillation, high altitude
cloud cover, aerosols and light pollution. Careful selection of a testing site far from any bright lights
(cities) can effectively minimize the effect of the last of these error sources. However, scintillation, high
altitude cloud cover and aerosols cause effects that continuously vary with time and, therefore, are harder
to remove. Scintillation causes rapid variations in the apparent brightness of a celestial body, due to
turbulence in the Earth’s atmosphere. This can cause a star to appear brighter or dimmer than it nominally
would. Due to the fact that this effect is a result of Earth’s atmosphere, it cannot be avoided with field
trials. However, the mean value of multiple intensity measurements of the same star over a short period of
time can be used to increase the accuracy of the intensity measurement. Cloud cover and aerosols have a
continuously varying attenuation effect on the measured integrated intensity of a given star. Atmospheric
extinction modeling can help mitigate the effects of atmospheric attenuation on the measured intensity
of detected bright stars [20–22]. However, atmospheric attenuation will degrade detection performance,
preventing dim stars from being detected at all. Since the tolerable slew rate is based on finding the
dimmest detectable star at a given rate, any degradation of detection performance directly impacts the
determined tolerable slew rate. Additionally, atmospheric extinction models are highly variable and
depend on several meteorological factors that can be difficult to measure. In many cases, a combination
of careful planning, monitoring of forecast weather conditions and atmospheric modeling can help
mitigate the effects of atmospheric attenuation, but they cannot be removed completely.

In addition to environmental factors, several internal factors can contribute to the inconsistency in
measured integrated intensity. Most notable are the effects of optical aberrations. These effects lead to
changes in the size and shape of the imaged star as a function of off-axis distance. As discussed earlier
in the paper, changes in the size and shape of the PSF directly impact the measured integrated intensity
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of the star. Given that any useful field image contains many stars that are generally located at several
different off-axis angles, this effect introduces variations, even within a single image. As an example
of the types of described variations, Figure 13 shows the results of three different field trials compared
to the intensity model given by Equation (8). Field Trials 1 and 2 were taken a single day apart in two
different locations, both of which were located a great distance away (>50 km) from any surrounding
bright lights and were taken on days for which the cloud cover was reported to be clear. Field Trial 3
was taken several months later at a location approximately 20 km from a major city center and was also
taken on a day for which the cloud cover was reported to be clear. In each case, the star tracker was
pointed within 10 ◦ of zenith.

Figure 13 shows the variability present in measurements of integrated intensity from field trials,
even in static conditions. Under dynamic conditions, the errors introduced by these variations quickly
overcome the effects of the slew rate. This severely impairs the accuracy of measuring the tolerable slew
rate for any given stellar magnitude. This method can still be used as a course validation of detection
performance, but the result will be a conservative estimate of the actual integrated intensity of a star.

Figure 13. A comparison of star intensity measurements from different field observations.
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4. Along-Track Dynamic Availability

Up until now, we have been discussing star tracker availability based on a spatial assessment of
detectable stars over the entire celestial sphere. Although this measure of availability is useful for
generalizing performance, in an actual mission, a star tracker will only be viewing a small portion of
the celestial sphere, which is determined by the mission parameters of the host spacecraft. Since the
distribution of stars along the celestial sphere is not uniform, the availability of the star tracker within
this subset of the celestial sphere can differ substantially from the calculated spatial availability. This
discrepancy is increased if we then include the effects of slew rate. To illustrate this, Figure 14 shows
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the number of detectable stars within the ST-16 FOV as a function of orientation while slewing at 1 ◦/s.
If we compare Figure 14 with Figure 5, we can see that at a slew rate of 1 ◦/s there are significantly
more views where the ST-16 will detect less than three stars. Figure 11 shows the calculated spatial
dynamic availability of the ST-16 slewing at 1 ◦/s as approximately 80%. However, it is not difficult
to imagine various types of missions where the orientation track of the star tracker across the celestial
sphere would either: (a) include many star-sparse regions and, therefore, be less than 80%; or (b) exclude
these star-sparse regions and have an availability greater than 80%. In this section, we examine the
variation of star tracker availability along several simple orientation tracks and compare these results
with the calculated spatial dynamic availability.

Figure 14. Spatial dynamic availability map of the ST-16 star tracker (1 ◦/s). Note: the color
axis is flipped with respect to Figure 4 to increase the visibility of star-sparse regions.

Each orientation track is defined by an inclination, i, with respect to the celestial equator and
represents a great circle on the celestial sphere; see Figure 15. We sample the orientation track at
Ntrack = 1, 000 equally spaced orientations. At each orientation, we utilize the tolerable slew rates
defined by the Reed-based sensitivity model (Nmin = 3) in Figure 10 to determine the number of stars
that would be detected within the star tracker image, Nobs, and if this satisfies the required number of
stars for the star tracker attitude solution, Nmin.

Repeating this calculation for all sample orientations gives the fraction of the orientation track over
which an attitude solution is possible. We denote this fraction as the along-track dynamic availability
of the given orientation track. We repeat this analysis for different orientation tracks defined by
(−90 ◦ ≤ i ≤ 90 ◦), at constant slew rates |ω| = 1.0 ◦/s, 1.5 ◦/s, 2.0 ◦/s and 3.0 ◦/s.
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Figure 15. Schematic of orientation tracks for along-track dynamic availability.
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Figures 16 and 17 and Table 2 show the variation in along-track dynamic availability as a function
of slew rate and track inclination for both tracking (Nmin = 2) and LIS (Nmin = 3) attitude solutions.
For comparison, we overlay a series of horizontal lines that indicate the determined spatial dynamic
availability (from Figure 11) at each respective slew rate. We can see from Figures 16 and 17 that
along-track dynamic availability varies quite significantly as a function of the specific path chosen. Just
from the example missions shown, we see that the along-track dynamic availability can differ from the
calculated spatial dynamic availability by more than 15%.

Figure 16. Examples of ST-16 along-track dynamic availability, Nmin = 2.
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Figure 17. Examples of ST-16 along-track dynamic availability, Nmin = 3.
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Table 2. ST-16 Along-track Dynamic Availability Statistics (Nmin = 2 /Nmin = 3).

Slew Rate ( ◦/s)
Spatial Dynamic
Availability (%)

Along-Track Dynamic Availability (%)
Mean Max Min

1.00 93.3 / 80.9 95.5 / 86.9 100.00 / 100.0 86.2 / 72.0
1.50 79.1 / 58.6 84.5 / 66.6 98.0 / 93.9 65.4 / 45.6
2.00 50.8 / 27.6 67.7 / 45.3 91.1 / 78.0 45.9 / 23.5
3.00 38.9 / 14.2 49.8 / 26.6 80.1 / 57.9 28.2 / 8.0

Determining the along-track dynamic availability of a star tracker can be a challenging task. One
needs to model the mission dynamics quite accurately to be able to predict the path the sensor will
follow along the celestial sphere. In addition, one needs to establish the relationship between the stellar
magnitude of a given star and the tolerable slew rate (see Figure 10). Given that the latter task is
independent of the selected mission and has been shown to be measurable using lab/ground tests, it
could be provided by the sensor manufacturer. If these tasks can be achieved, even with a simplified set
of dynamics, some rough bounds on star tracker availability can be determined. These can then be used
as a coarse tool for star tracker feasibility studies and/or trade studies for star tracker placement.



Sensors 2014, 14 3962

5. Conclusions

The main goal of this paper was to increase the fidelity of star tracker availability modeling by
including the effects of slew rate and star tracker detection logic. We have achieved this by a three-part
solution. First, we formulated an analytical model to describe the effects of slew rate on the focal plane
intensity distribution of a star. Second, we used this model to relate slew rate to star tracker detection
performance, through simulations, which were verified by lab tests. Third, we used this determined
relationship between detection performance and slew rate to calculate star tracker availability under
dynamic conditions.

Good correspondence was seen between the results from the simulations and those from lab tests;
see Figure 12. Even the conservative sensitivity model indicated that the ST-16 satisfies the design
requirement of maintaining high availability (>80%) while tracking a ground target from low Earth
orbit (LEO) (slew rate ≈ 1 ◦/s). In comparison, the Liebe-based sensitivity model indicated that we can
maintain >90% availability at slew rates of up to 2 ◦/s. Field trials were shown to be a poor choice for
measuring the tolerable slew rate. This is due to variations in the measurable integrated star intensity
caused by several parameters internal and external to the sensor.

We finished the paper with a brief examination of along-track dynamic availability for a set of simple
mission dynamics. Although along-track results do vary from the calculated spatial dynamic availability,
the latter can serve as a conservative first-cut approximation of star tracker availability performance at a
rate. The calculation of along-track dynamic availability requires knowledge of mission details and the
relationship between the tolerable slew rate and stellar magnitude. Using methods described in this paper,
we can achieve the latter part of this solution. If one can then attain even a simplified understanding
of the expected mission dynamics, we can begin to form bounds on the availability performance of a
star tracker.
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