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Abstract: Due to the characteristics of high precision for a long duration, the rotary
strapdown inertial navigation system (RSINS) has been widely used in submarines and
surface ships. Nowadays, the core technology, the rotating scheme, has been studied by
numerous researchers. It is well known that as one of the key technologies, the rotating
angular rate seriously influences the effectiveness of the error modulating. In order to
design the optimal rotating angular rate of the RSINS, the relationship between the rotating
angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace
transform and the inverse Laplace transform in this paper. The analysis results showed that
the velocity error of the RSINS depends on not only the sensor error, but also the rotating
angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS
should match the sensor error. One optimal design method for the rotating rate of the RSINS
was also proposed in this paper. Simulation and experimental results verified the validity and
superiority of this optimal design method for the rotating rate of the RSINS.

Keywords: rotary strapdown inertial navigation system; rotation modulation; rotating
angular rate; optimal design
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1. Introduction

The operation of an inertial navigation system (INS) depends on Newton’s second law [1]. The inertial
navigation is the process whereby the measurements of inertial sensors (gyroscopes and accelerometers)
calculate the position and velocity of the vehicle. Unlike other types of navigation systems, the INS is
an entirely independent navigation system, since it is not dependent on the transmission of signals from
the vehicle or reception from an external source. However, the fatal flaw of the INS is that the navigation
error caused by the bias of the inertial sensors increases with time. Therefore, the precision of the INS
is subject to the precision of inertial sensors [2,3].

For the original INS, the inertial sensors are mounted on a stable platform, which is mechanically
isolated from the rotational motion of the vehicle [4]. Due to the mechanical complexity of the platform
system, a new type of INS, which is called the strapdown inertial navigation system (SINS), is replacing
the traditional platform inertial navigation system. The SINS has the advantages of lower cost, smaller
size and greater reliability compared with platform systems, since the inertial sensors are attached rigidly
to the body of the vehicle [5].

Since the navigation error caused by the bias of the inertial sensors increases with time, researchers
proposed the rotation modulation method to reduce the impact on the SINS, which is installed on the
vehicle through the turntable. The rotation modulation method modulates the bias of inertial sensors into
a zero-mean and periodical form to inhibit the error propagation, and then, the localization precision of
the SINS will be enhanced effectively. This kind of rotary strapdown inertial navigation system (RSINS)
has been applied by the U.S. Navy since the 1960s [6–8]. However, the disadvantage of the rotation
modulation is that it cannot modulate the installation error and the symmetric scale factor error of the
inertial sensors, but it also produces instantaneous velocity error [8–10]. As a result, the design of the
rotating angular rate has became a hotspot of rotation modulation.

The RSINS accuracy influenced by the non-uniform rotation angular rate is analyzed by Dr. Che [11].
The rotating scheme design method of the non-uniform rotating angular rate is proposed in [12].
However, until now, no one has been able to figure out an effective optimal rotating angular rate design
method of the RSINS in theory. Therefore, in this article, a novel rotating angular rate design discipline,
which will fill the gap, was proposed. We focused on the optimal design of the rotating angular rate
utilizing the Laplace transform and the inverse Laplace transform in this article, and this paper is
organized as follows. In Section 2, the principle of the rotation modulation and the inertial sensor
error model are introduced. The design method of the rotating angular rate is proposed in Section 3.
Simulations and experiments are carried out in Section 4 and 5, respectively, to verify the correctness of
the design method.

2. Principle of the Rotation Modulation and the Error Model

2.1. Rotary Strapdown Inertial Navigation System

As the SINS is installed on the vehicle through the turntable, the structure of the RSINS, which is
shown as Figure 1, is different from the SINS. Since the middle of the last century, rotation modulation
has been widely applied to the SINS [9,10].
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Classified by the number of the rotating axes, the RSINS can be divided into single-axis RSINS and
the dual-axis RSINS [13]. However, the purpose is the same, i.e. to compensate for the effect of inertial
sensor errors without external information [14].

Additionally, we must say that any technique has its limitations, and rotation modulation is no
exception. One fatal shortcoming of rotation modulation is that it will produce instantaneous velocity
error that cannot be ignored during the rotating period, and the error exists in any rotating mode [8,15].

Figure 1. Schematic of the rotary strapdown inertial navigation system (RSINS).
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The essence of rotation modulation is the error self-compensation [16–18]. It modulates the inertial
sensor errors in terms of periodical rotation. It is an effective method to enhance the navigation accuracy
under low-accuracy sensors conditions [19–21]. The inertial sensor errors neither disappear nor change,
but offset during the whole rotation period [21–24].

As the inertial measurement unit (IMU) connects with the vehicle indirectly through the turntable,
a new frame, the sensor frame (s frame), is introduced in the RSINS. It is supposed that the body
frame (b frame) and the navigation frame (n frame) are coherent. This means Cb

n = I and Cs
b = Cs

n.
The output of the inertial sensors is transformed from the s frame to the n frame by a direction cosine
matrix. Suppose the s frame and n frame overlap at the initial time, and the IMU is controlled to rotate
uniformly at a certain speed, ωr, along the vertical direction. The direction cosine matrix from the s

frame to the n frame can be expressed by:

Cn
s = (Cs

n)
T = (Cs

b )
T =

 cosωrt − sinωrt 0

sinωrt cosωrt 0

0 0 1

 (1)

The modulated constant bias of the gyroscope in the n frame [εE1 εN1 εU1]
T can be described by

the following equation. εE1

εN1

εU1

 = Cn
s

 εx0

εy0

εz0

 =

 εx0 cosωrt− εy0 sinωrt

εx0 sinωrt+ εy0 cosωrt

εz0

 (2)

where εx0, εy0, εz0 denote the constant bias of the three orthogonal gyroscopes. From Equation (2),
it is obviously known that the horizontal constant bias of the gyroscope can be modulated into periodic
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and zero-mean signals by periodically rotating the IMU. Analogously, it has the same result for the
accelerometer. This technique can be utilized to modulate the inertial sensor error, which is vertical to
the rotating axis, in order to enhance the positioning accuracy of the RSINS.

2.2. The Sensor Error Model of the RSINS

The inertial sensor error mainly includes the constant bias, the scale factor error and the installation
error of the optical gyroscope and the constant bias of the accelerometer. In Section 2, we will focus on
the relationship between the inertial sensor error and the performance of the RSINS.

2.2.1. Constant Bias of Optical Gyroscopes and Accelerometers

The modulated constant bias of the gyroscope and the accelerometer in the n frame can be described
by Equations (2) and (3), respectively.[

∇E

∇N

]
=

[
cosωrt − sinωrt

sinωrt cosωrt

][
∇x0

∇y0

]
=

[
∇x0 cosωrt−∇y0 sinωrt

∇y0 sinωrt+∇x0 cosωrt

]
(3)

where ∇x0 and ∇y0 are the constant bias of horizontal accelerometers.

2.2.2. Scale Factor Error of Optical Gyroscopes

The equivalent bias of gyroscopes, ε′, caused by the scale factor asymmetric error of gyroscopes can
be described by: εx

′

εy
′

εz
′

 =

 Kgx 0 0

0 Kgy 0

0 0 Kgz


 ωx

ωy

ωz

 =

 Kgx · ωie · cosL · sinωrt

Kgy · ωie · cosL · cosωrt

Kgz(ωie · sinL+ ωr)

 (4)

where Kgx,Kgy and Kgz denote the scale factor asymmetry errors of gyroscopes along the x, y and z

axes, respectively; ωie denotes the Earth’s rotation rate; L denotes the local latitude; [ωx ωy ωz]T denotes
the output of gyroscopes, and its theoretical value is: ωx

ωy

ωz

 =

 ωie · cosL · sinωrt

ωie · cosL · cosωrt

ωie · sinL+ ωr

 (5)

Therefore, the modulated equivalent bias of gyroscopes, ε′, in the n frame can be described by: εE2

εN2

εU2

 =

 cosωrt − sinωrt 0

sinωrt cosωrt 0

0 0 1


 εx

′

εy
′

εz
′

 =

 εx
′ cosωrt− εy

′ sinωrt

εy
′ cosωrt+ εx

′ sinωrt

εz
′

 (6)

2.2.3. Installation Error of Optical Gyroscopes

The inertial sensors should be installed orthogonally in theory. However, the actually s frame is not
orthogonal and cannot coincide with the b frame, as shown in Figure 2. The small-angle δij is defined
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as the installation error between the i axis of the s frame and the j axis of the b frame. Therefore, the
installation error matrix can be described as:

∆Cs
b =

 0 −δxz δxy

δyz 0 −δyx

−δyz δzx 0

 (7)

Figure 2. The geometrical relationship between xsyszs and XbYbZb.
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The equivalent bias of gyroscopes, ε′′z , caused by the installation error can be described by:

 ε′′x
ε′′y
ε′′z

 =

 0 −δxz δxy

δyz 0 −δyx

−δyz δzx 0


 ωx

ωy

ωz


=

 δxy(ωie sinL+ ωr)− δxzωie cosL cosωrt

−δyx(ωie sinL+ ωr) + δyzωie cosL sinωrt

δzxωie cosL cosωrt− δyzωie cosL sinωrt

 (8)

Therefore, the modulated equivalent bias of gyroscopes, ε′′, in the n frame can be described by: εE3

εN3

εU3

 =

 cosωrt − sinωrt 0

sinωrt cosωrt 0

0 0 1


 εx

′′

εy
′′

εz
′′

 =

 εx
′′ cosωrt− εy

′′ sinωrt

εy
′′ cosωrt+ εx

′′ sinωrt

εz
′′

 (9)
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2.2.4. Error Model of Inertial Sensors in the RSINS

Concerning the study above, the error model of the RSINS can be described as

∇E

∇N

0

εE

εN

εU


=



∇E

∇N

0

εE1+ εE2+ εE3

εN1+ εN2+ εN3

εU1 + εU2 + εU3


= W1(t) +W2(t) +W3(t) (10)

where W1(t), W2(t) and W3(t) represent the constant bias error of inertial sensors, the scale factor error
and the installation error of gyroscopes, respectively.

W1(t) =



∇x0 cosωrt−∇y0 sinωrt

∇x0 sinωrt+∇y0 cosωrt

0

εx0 cosωrt− εy0 sinωrt

εy0 cosωrt+ εx0 sinωrt

εz0


,W2(t) =



0

0

0

ε′x cosωrt− ε′y sinωrt

ε′y cosωrt+ ε′x sinωrt

ε′z


,

W3(t) =



0

0

0

ε′′x cosωrt− ε′′y sinωrt

ε′′y cosωrt+ ε′′x sinωrt

ε′′z


It can be seen from Equation (10) that the error model of the RSINS is a function that depends on not

only the error of inertial sensors, but also the rotating angular rate. Therefore, the performance of the
RSINS will be influenced by the rotating angular rate.

3. Optimal Design Method for the Rotating Angular Rate in the RSINS

The previous analysis shows that the error model of the RSINS bears on both the inertial sensor error
and the rotating angular rate. Therefore, this section will investigate the relationship between the rotating
angular rate and the RSINS performance.

3.1. The Velocity Error Equation of the RSINS

Based on the spherical Earth model, ignoring the movement of the vehicle, suppose the IMU rotates
along the vertical axis at ωr; the error model of the RSINS can be described as:

Ẋ(t) = AX(t) +W1(t) +W2(t) +W3(t) (11)
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where X(t)=[δVE δVN δL φE φN φU ]T and:

A =

[
A11 A12

A21 A22

]
;A11 =

 0 2ωie 0

−2ωie 0 0

0 1/R 0

 ;A12 =

 0 −g 0

g 0 0

0 0 0

 ;

A21 =

 0 −1/R 0

1/R 0 −ωie sinL

tanL/R 0 ωie cosL

 ;A22 =

 0 ωie sinL −ωie cosL

ωie sinL 0 0

ωie cosL 0 0


where δVE and δVN represent the velocity errors in the east and north, respectively; δL represents the
error of the local latitude; φE , φN and φU represent the misalignment angle of the east, north and up; R
represents the radius of the Earth; g represents the gravitational acceleration. After the Laplace transform
and ignoring the initial value, Equation (11) is transformed to the following format:

X(s) = (sI − A)−1 [W1(s) +W2(s) +W3(s)] (12)

Suppose M = (sI − A)−1 and M = [MT
1 MT

2 MT
3 MT

4 MT
5 MT

6 ]
T , where Mj =

[mj1 mj2 · · · mj6] (j = 1, 2, · · · , 6), then:

M1 = [
s

s2 + ω2
s

0 ∗ gωie sinL · s
(s2 + ω2

s)(s
2 + ω2

ie)
− g(s2 + ω2

ie cos
2 L)

(s2 + ω2
s)(s

2 + ω2
ie)

gω2
ie sinL cosL

(s2 + ω2
s)(s

2 + ω2
ie)

]

M2 = [0
s

s2 + ω2
s

∗ gs2

(s2 + ω2
s)(s

2 + ω2
ie)

− sgωie sinL

(s2 + ω2
s)(s

2 + ω2
ie)

− sgωie cosL

(s2 + ω2
s)(s

2 + ω2
ie)

]

M3 = [0 − 1

R(s2 + ω2
s)

∗ − ω2
s · s

(s2 + ω2
s)(s

2 + ω2
ie)

ω2
sωie sinL

(s2 + ω2
s)(s

2 + ω2
ie)

ω2
sωie cosL

(s2 + ω2
s)(s

2 + ω2
ie)

]

M4 = [
1

R(s2 + ω2
s)

− 1

R(s2 + ω2
s)

∗ − s3

(s2 + ω2
s)(s

2 + ω2
ie)

− s2ωie sinL

(s2 + ω2
s)(s

2 + ω2
ie)

− s2ωie cosL

(s2 + ω2
s)(s

2 + ω2
ie)

]

M5 = [
1

R(s2 + ω2
s)

0 ∗ − s2ωie sinL

(s2 + ω2
s)(s

2 + ω2
ie)

s(s2 + ω2
ie cos

2 L)

(s2 + ω2
s)(s

2 + ω2
ie)

− sω2
ie sinL cosL

(s2 + ω2
s)(s

2 + ω2
ie)

]

M6 = [
tanL

R(s2 + ω2
s)

0 ∗ ωie cosLs
2 + ωieω

2
s secL

(s2 + ω2
s)(s

2 + ω2
ie)

s(ω2
s tanL− ω2

ie sinL cosL)

(s2 + ω2
s)(s

2 + ω2
ie)

s(s2 + ω2
ie sin

2 L+ ω2
s)

(s2 + ω2
s)(s

2 + ω2
ie)

]
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As the values of mj3(j = 1, 2, · · · , 6) do not affect X(s), the elements of the third column are
represented with ‘*’. Wi(s), the expression of Wi(t) in the frequency domain, can be expressed as:

W1(s) =



s∇x0−ωr∇y0

s2+ω2
r

ωr∇x0+s∇y0

s2+ω2
r

0
sεx0−ωrεy0

s2+ω2
r

sεy0+ωrεx0
s2+ω2

r
εz0
s


,W2(s) =



0

0

0
sε′x(s)−ωrε′y(s)

s2+ω2
r

sε′y(s)+ωrε′x(s)

s2+ω2
r

ε′z
s


,W3(s) =



0

0

0
sε′′x(s)−ωrε′′y (s)

s2+ω2
r

sε′′y (s)+ωrε′′x(s)

s2+ω2
r

ε′′z
s


where:

ε′x(s) =
Kgxωie · cosL · ωr

s2 + ω2
r

; ε′y(s) =
Kgyωie · cosL · s

s2 + ω2
r

; ε′z(s) =
Kgz(ωie sinL+ ωr)

s
;

ε′′x(s) =
δxy(ωie sinL+ ωr)

s
− δxzωie · cosL · s

s2 + ω2
r

;

ε′′y(s) =
δyzωie · cosL · ωr

s2 + ω2
r

− δyx(ωie · sinL+ ωr)

s
;

ε′′z(s) =
δzxωie · cosL · s

s2 + ω2
r

− δzyωie · cosL · ωr

s2 + ω2
r

Therefore, the velocity error of the east and north in the frequency domain can be expressed as:{
δVE(s) = M1 ·W1(s) +M1 ·W2(s) +M1 ·W3(s) +M1 ·W4(s)

δVN(s) = M2 ·W1(s) +M2 ·W2(s) +M2 ·W3(s) +M2 ·W4(s)
(13)

where Mi · W1(s)(i = 1, 2), Mi · W2(s)(i = 1, 2), Mi · W3(s)(i = 1, 2) and Mi · W4(s)(i = 1, 2)

represent the velocity error caused by the constant bias of gyroscopes, the velocity error caused by the
constant bias of accelerometers, the velocity error caused by the gyroscope scale factor error and the
velocity error caused by the gyroscope installation error, respectively.

3.1.1. Velocity Error Caused by the Constant Bias of Gyroscopes

The east velocity error caused by the gyroscope constant bias can be expressed in the frequency
domain as:

δV 1
E(s) = M1 ·W1(s)

=
gω2

ie sinL · cosLεz0
s(s2 + ω2

s)(s
2 + ω2

ie)
+

sgωie sinL(sεx0 − ωrεy0)

(s2 + ω2
s)(s

2 + ω2
ie)(s

2 + ω2
r)

− gωie sinLs(sεy0 + ωrεx0)

(s2 + ω2
r)(s

2 + ω2
ie)(s

2 + ω2
s)

(14)

After the inverse Laplace transform and the simplification, we can get the east velocity error caused
by the gyroscope constant bias in the time domain shown as:

δV 1
E(t) =k11 cosωst+ k12 sinωst+ k13 cosωrt+ k14 sinωrt+ k15 cosωiet+ k16 (15)
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The amplitude of the east velocity error is expressed as:

AE1(ωr) =
√
k2
11 + k2

12 + k2
13 + k2

14 + k2
15 + k2

16 (16)

where:

k11 =
gω2

ie cosL sinL

ω4
s

εz0; k12 = − g

ωrωs

εz0; k13 = − g

ω2
r

εx0; k14 = − g

ω2
r

εy0;

k15 = −g sinL cosL

ω2
s

εz0; k16 =
gsinL cosL

ω2
s

εz0.

The north velocity error caused by the gyroscope constant bias can be expressed in the frequency
domain as:

δV 1
N(s) =

gs2(sεx0 − ωrεy0)

(s2 + ω2
r)(s

2 + ω2
s)(s

2 + ω2
ie)

− gωie cosLsεz0
s(s2 + ω2

s)(s
2 + ω2

ie)
− gωie sinLs(sεy0 + ωrεx0)

(s2 + ω2
r)(s

2 + ω2
ie)(s

2 + ω2
s)

(17)

After the inverse Laplace transform and simplification, one can get the north velocity error caused by
the gyroscope constant bias in the time domain as:

δV 1
N(t) =k21 cosωst+ k22 sinωst+ k23 cosωrt+ k24 sinωrt+ k25 cosωiet+ k26 sinωiet (18)

The amplitude of the north velocity error is expressed as:

AN1(ωr) =
√

k2
21 + k2

22 + k2
23 + k2

24 + k2
25 + k2

26 (19)

where:

k21 =
gωie sinL

ω2
sωr

εx0; k22 =
gωie cosL

ω3
s

εz0; k23 = − 1

ω2
r

εx0; k24 =
1

ω2
r

εy0;

k25 = −ωieg sinL

ωrω2
s

εx0; k26 = −g cosL

ω2
s

εz0

It is known that the amplitude of the velocity error caused by the gyroscope constant bias decreases
with the increase of the rotating angular rate from Equations (16) and (19). Figure 3 shows the
simulation results.

3.1.2. Velocity Error Caused by the Constant Bias of Accelerometers

The east velocity error caused by the accelerometer constant bias can be expressed in the frequency
domain as:

δV 2
E(s) = M1 ·W2(s) =

s(s∇x0 − ωr∇y0)

(s2 + ω2
s)(s

2 + ω2
r)

(20)

After the inverse Laplace transform and simplification, we get the east velocity error caused by the
accelerometer constant bias in the time domain and shown as:

δV 2
E(t) =k31 cosωst+ k32 sinωst+ k33 cosωrt+ k34 sinωrt (21)
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Figure 3. The relationship curve of the amplitude of the velocity error, the constant bias of
the gyroscope and the rotating angular rate.
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The amplitude of the east velocity error is expressed as:

AE2(ωr) =
√
k2
31 + k2

32 + k2
33 + k2

34 (22)

where:

k31 = − 1

ωr

∇y0; k32 = −ωs

ω2
r

∇x0; k33 =
1

ωr

∇x0; k34 =
1

ωr

∇y0

The north velocity error caused by the accelerometer constant bias can be expressed in the frequency
domain as:

δV 2
N(s) =

s(ωr∇x0 + s∇y0)

(s2 + ω2
s)(s

2 + ω2
r)

(23)

After the inverse Laplace transform and simplifying Equation (23), we get the east velocity error
caused by the accelerometer constant bias in the time domain as:

δV 2
N(t) =k41 sinωrt+ k42 cosωst− k43 cosωrt− k44 sinωst (24)

The amplitude of the east velocity error is expressed as:

AN2(ωr) =
√
k2
41 + k2

42 + k2
43 + k2

44 (25)

where:

k41 =
∇y0

ωr

; k42 =
∇x0

ωr

; k43 = −∇x0

ωr

; k44 = −ωs∇y0

ω2
r
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The conclusion is obtained from Equations (22) and (25) that the amplitude of the velocity error
caused by the accelerometer constant bias decreases with the increase of the rotating angular rate.
Figure 4 shows the simulation results.

Figure 4. The relationship curve of the amplitude of the velocity error, the constant bias of
the accelerometer and the rotating angular rate.
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3.1.3. Velocity Error Caused by the Scale Factor Error

The east velocity error caused by the scale factor error can be expressed in the frequency domain as:

δV 3
E(s) = M1 ·W3(s)

=
gωrωie cosL(s

2ωie sinL− s2ωr − ωrω
2
ie cos

2 L)

(s2 + ω2
s)(s

2 + ω2
ie)(s

2 + ω2
r)

2
Kgx

− s2gωie cosL(s
2 + ωrωie sinL+ ω2

ie cos
2 L)

(s2 + ω2
s)(s

2 + ω2
ie)(s

2 + ω2
r)

2
Kgy +

gω2
ie sinL cosL(ωie sinL+ ωr)

s2(s2 + ω2
s)(s

2 + ω2
ie)

Kgz

(26)

After the inverse Laplace transform and simplifying Equation (26), we get the east velocity error
caused by the scale factor error in the time domain as:

δV 3
E(t) =k51 sinωrt+ k52 sinωst+ k53 sinωiet+ k54t (27)

The amplitude of the east velocity error is expressed as:

AE3(ωr) =
√
k2
51 + k2

52 + k2
53 + k2

54 (28)

where:

k51 =
gω2

ie sinL cosL

ωrω5
s

Kgz; k52 =
gωie cosL

ω3
r

Kgx; k53 = −gωr sinL cosL

ω2
r

Kgz;

k54 =
gωr sinL cosL

ω2
r

Kgz
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The north velocity error caused by the scale factor error can be expressed in the frequency domain as:

δV 3
N(s) = M2 ·W3(s)

=
gωie cosLωrs(s

2 + ωrωie sinL)

(s2 + ω2
s)(s

2 + ω2
ie)(s

2 + ω2
r)

2
Kgx −

s3gωie cosL(ωr + ωie sinL)

(s2 + ω2
s)(s

2 + ω2
ie)(s

2 + ω2
r)

2
Kgy

− gωie cosL(ωie sinL+ ωr)

s(s2 + ω2
s)(s

2 + ω2
ie)

Kgz

(29)

After the inverse Laplace transform and the simplification, we get the east velocity error caused by
the scale factor error in the time domain as:

δV 3
N(t) =k61 cosωst+ k62 cosωrt+ k63 (30)

The amplitude of the east velocity error is expressed as:

AN3(ωr) =
√

k2
61 + k2

62 + k2
63 (31)

where:

k61 = −gω2
ieωr cosL

ω4
s

Kgz; k62 =
gωr cosL

ω2
s

Kgz; k63 = −gωr cosL

ω2
s

Kgz

From Equations (28) and (31), we can draw a conclusion that the amplitude of the velocity error
caused by the accelerometer constant bias increases with the increase of the rotating angular rate.
Additionally, we plot the relationship between the amplitude of the velocity error, the scale factor error
and the rotating angular rate as Figure 5.

Figure 5. The relationship curve of the amplitude of the velocity error, the scale factor error
and the rotating angular rate.
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3.1.4. Velocity Error Caused by the Installation Error

The east velocity error caused by the installation error can be expressed in the frequency domain as:

δV 4
E(s) = M1 ·W4(s)

=
[gωie sinLs

2 − g(s2 + ω2
ie cos

2 L)ωr](ωie sinL+ ωr)

s(s2 + ω2
s)(s

2 + ω2
ie)(s
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r)

δxy

− ωie cosLs[gωie sinLs
2 − g(s2 + ω2

ie cos
2 L)ωr]

(s2 + ω2
s)(s

2 + ω2
ie)(s

2 + ω2
r)

2
δxz

− ωie cosLωr[gωie sinLsωr + g(s2 + ω2
ie cos

2 L)s]

(s2 + ω2
s)(s

2 + ω2
ie)(s

2 + ω2
r)

2
δyz

+
(ωie sinL+ ωr)[gωie sinLsωr + g(s2 + ω2

ie cos
2 L)s]

s(s2 + ω2
s)(s

2 + ω2
ie)(s

2 + ω2
r)

δyx

+
gω3

ie sinL cos2 L

(s2 + ω2
s)(s
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ie)(s

2 + ω2
r)
δzx −

gω3
ie sinL cos2 Lωr

s(s2 + ω2
s)(s

2 + ω2
ie)(s

2 + ω2
r)
δzy

(32)

After the inverse Laplace transform and simplification, we get the east velocity error caused by the
installation error in the time domain as:

δV 4
E(t) =k71 sinωrt+ k72 cosωrt+ k73 cosωst+ k74 sinωiet+ k75 cosωiet+ k76 (33)

The amplitude of the east velocity error is expressed as:

AE4(ωr) =
√
k2
71 + k2

72 + k2
73 + k2

74 + k2
75 + k2

76 (34)

where:

k71 = −gδyx
ω2
r

; k72 = −gδxy
ω2
r

; k73 = −gωie sinL cos2 Lδzy
ω4
sωr

;

k74 =
g sinLδyx

ω2
s

; k75 = −g sinLδxy
ω2
s

; k76 =
g sinLδyx
ω3
sω

5
r

The north velocity error caused by the installation error can be expressed in the frequency domain as:

δV 4
N(s) = M2 ·W4(s)

=
g(s2 − ωrωie sinL)(ωie sinL+ ωr)

(s2 + ω2
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ie)(s
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(35)

After the inverse Laplace transform and simplification, we get the north velocity error caused by the
installation error in the time domain as:

δV 4
N(t) =k81 cosωrt+ k82 cosωst+ k83 cosωiet+ k84 sinωrt · t (36)
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The amplitude of the north velocity error is expressed as:

AN4(ωr) =
√
k2
81 + k2

82 + k2
83 + k2

84 (37)

where:

k81 =
2gδyx
ω4
r

; k82 = − gδyx
ω2
rω

2
s

; k83 =
gδyx
ω2
rω

2
s

; k84 =
gδyx
2ω2

r

From Equations (34) and (37), we can draw a conclusion that the amplitude of the velocity error
caused by the installation error increase with the increase of rotating angular rate. Additionally, we plot
the relationship between the amplitude of the velocity error, the installation error and the rotating angular
rate as Figure 6.

Figure 6. The relationship curve of the amplitude of the velocity error, the installation error
and the rotating angular rate.
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3.2. Optimal Design Method for the Angular Rate

Section 3.1 is focused on the relationship between the velocity error, three different kinds of inertial
sensors errors and the rotating angular rate. In this part, we will propose the optimal design method of
the rotating angular rate.

When the RSINS rotates at a constant speed, the amplitude of the velocity error can be expressed as:

A(ωr) =
√

A2
1(ωr) + A2

2(ωr) + A2
3(ωr) + A2

4(ωr) (38)

where Aj(ωr) =
√

A2
Ej(ωr) + A2

Nj(ωr) (j = 1, · · · , 4).
From the Equation (38), it is known that the amplitude of the velocity error can be expressed as

a function of the inertial sensor error and the rotating angular rate. Therefore, for the purpose of
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ensuring the minimum of the velocity error amplitude, the rotating angular rate should match the error
of the inertial sensors. In order to verify and determine this matching relationship, we will design three
groups of inertial sensor performances and calculate the optimal rotating angular rate of each group
with MATLAB. Taking ”MARINS”, a high-precision INS manufactured by IXBlue, as an example, its
positioning accuracy is 1 nm/24 h. It can be inferred that the constant bias and the scale factor error of its
gyroscopes are lower than 0.01 ◦/h and 1 × 10−6 (◦/h)−1, respectively. On the other hand, considering
the real INS, the constant bias accelerometer is lower than 9.8× 10−4 m/s2, and the installation error of
gyroscopes is lower than 1 × 10−9 ◦/h. Therefore, on the basis of the above, the simulation parameters
are set as Tables 1–3, respectively.

Table 1. Inertial sensor performance (Group 1).

Sensor Error Parameter Value

Constant bias of gyroscope 0.01 (◦/h)

Constant bias of accelerometer 9.8× 10−4 (m/s2)

Scale factor error of gyroscope 1× 10−6 (◦/h)−1

Installation error of gyroscope 1× 10−9 (◦/h)

Table 2. Inertial sensor performance (Group 2).

Sensor Error Parameter Value

Constant bias of gyroscope 0.05 (◦/h)

Constant bias of accelerometer 4.9× 10−3 (m/s2)

Scale factor error of gyroscope 0.2× 10−6 (◦/h)−1

Installation error of gyroscope 5× 10−9 (◦/h)

Table 3. Inertial sensor performance (Group 3).

Sensor Error Parameter Value

Constant bias of gyroscope 0.002 (◦/h)

Constant bias of accelerometer 1.96× 10−4 (m/s2)

Scale factor error of gyroscope 5× 10−6 (◦/h)−1

Installation error of gyroscope 2× 10−10 (◦/h)

Figure 7 depicts the relationship between the amplitude of the velocity error and the rotating angular
rate by MATLAB. The value of the horizontal axis corresponding to the minimum of the curve is the
optimal rotating angular rate. The optimal rotating angular rates of these three groups are summarized
in Table 4.



Sensors 2014, 14 7171

Figure 7. The relationship curves between the velocity errors and the rotating rates.
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Table 4. Optimal rotating rates with different simulation conditions.

Group Optimal rotating angular rate

1 21.6 ◦/s

2 64.8 ◦/s

3 7.2 ◦/s

Figure 8. IMU rotating scheme.
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4. Numerical Simulations

The optimal design method of the rotating angular rate is proposed in Section 3. The theoretical
optimal rotating angular rates corresponding to three different groups of inertial sensor errors are
obtained in terms of this method. In order to verify the correctness of the former conclusions, simulations
are carried out in this section. The rotating scheme is proposed as shown in Figure 8. The turntable
rotates the IMU back and forth along the azimuth axis through four orthogonal positions. The dwell
time in each position is 45 s [25].

The performances of inertial sensors are described in Tables 1–3. The rotating angular rates are
designed as 7.2 ◦/s, 21.6 ◦/s, 45 ◦/s and 64.8 ◦/s; as 21.6 ◦/s, 64.8 ◦/s and 7.2 ◦/s are the optimal
rotating rate of Groups 1–3, respectively, and 45 ◦/s is chosen for comparison.

Figures 9–11 show the simulation results of the position error of different groups. The simulation
duration is 72 h.

Figure 9. Simulation results of Group 1.
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Figure 10. Simulation results of Group 2.
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Figure 11. Simulation results of Group 3.
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Tables 5–7 summarize the simulation results.

Table 5. Position error (Group 1).

Rotating angular rate (◦/s) 7.2 21.6 45 64.8

Position error (nmile/72h) 1.2 0.6 1.5 1.3
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Table 6. Position error (Group 2).

Rotating angular rate (◦/s) 7.2 21.6 45 64.8

Position error (nmile/72h) 5.0 0.9 1.0 0.6

Table 7. Position error (Group 3).

Rotating angular rate (◦/s) 7.2 21.6 45 64.8

Position error (nmile/72h) 2.5 3.0 5.0 4.2

It can be seen from Figure 9 and Table 5 that the position error of Group 1 with a rotating angular
rate of 21.6 ◦/s is lower than the other rotating angular rates. From Figure 10 and Table 6, it can be
seen that the position error of Group 2 with a rotating angular rate of 64.8 ◦/s is lower than the other
rotating angular rates. From Figure 10 and Table 6, we can see that the position error of Group 3 with
a rotating angular rate of 7.2 ◦/s is lower than the other rotating angular rates. The simulation results are
in accordance with the conclusions of Section 3.

5. Experimental Study

In order to verify the effectiveness of the method, experiments were done in Songhuajiang River
in Harbin, as shown in Figure 12. Experimental equipment, as shown in Figure 13, included SINS,
single-axis turn-table, GPS, computers and a UPS. The SINS is manufactured by Harbin Engineering
University, and the main parameters are shown in Tables 8 and 9. The single-axis turn-table is
manufactured by Beijing Precision Engineering Institute for Aircraft Industry, and the main parameters
are shown in Table 10.

Figure 12. Experimental ship.
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Figure 13. Single-axis RSINS.

 

Table 8. The main parameters of the fiber optics gyroscope.

Performance Parameters

Dynamic range ±100 ◦/s

Bias stability ≤ 0.003 ◦/h

Random walk ≤ 0.001 ◦/
√
h

Scale factor error ≤ 5 ppm

Table 9. The main parameters of the accelerometer.

Performance Parameters

Dynamic range ±4 g

Bias stability ≤ 1× 10−5

Table 10. Performances of the 920E single axis velocity and position turntable.

Performance Parameters

Diameter 450 m

Carrying capacity weight 50 kg

Rotating accuracy ±2′′

Rotating range continues and infinite

Location accuracy ±3′′

Location definition 0.0001◦

Speed range 0.005− 200 ◦/s

Speed accuracy 5× 10−5 (360◦average)

Speed accuracy 5× 10−4 (10◦average)

Speed accuracy 1× 10−2 (1◦average)
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5.1. Experimental Scheme

With the optimal design method proposed in this paper, the optimal angular rate for the experimental
system is calculated to be 7 ◦/s. Therefore, three angular rates, 2 ◦/s, 7 ◦/s and 20 ◦/s, are used in the
experiments for comparison. The experimental duration is 72 h, and the rotating scheme is the same as
that in Section 4.1.

The rotating angular rate is not constant in a real system, since the IMU needs to reverse the rotating
direction. The positioning accuracy of RSINS is influenced by the IMU turned angle in the variable
angular rate process [26]. Additionally, the analysis results show that the error will be minimum in the
process of the varied angle rate when the IMU’s turned angle achieves 0.2π. In order to eliminate the
effects of the variable angular rate, the angular accelerations are set as 0.1 ◦/s2, 0.7 ◦/s2 and 5.6 ◦/s2,
respectively, in the experiment.

5.2. Experimental Results and Analysis

Figures 14–16 show the position error of three experiments.

Figure 14. Experimental results (I).
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From the theoretical analysis of Section 3, it is known that the rotation modulation method can only
reduce the amplitude of the oscillation error and the slope of the ramp error, but not eliminate them.
Therefore, it can be seen from Figures 14–16 that the resulting position error comprises a ramp error
with superimposed Schuler oscillation and Earth rotation oscillation, and the oscillation periods are
84.4 min and 24 h. From Table 11, it can be seen obviously that the position error of Experiment II is
much less than the other two. The experimental results are consistent with the theoretical analysis of
Section 3.
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Figure 15. Experimental results (II).

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

P
os

iti
on

 e
rr

or
/n

m
ile

Time/hour

Figure 16. Experimental results (III).
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Table 11. Experimental results.

Rotating angular rate (◦/s) 2 7 20

Position error (nmile/72h) 14.7 6.4 19.6
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6. Conclusions and Future Work

This paper presented a rotating angular rate optimal design method of the RSINS. Firstly, the RSINS
and the principle of the rotation modulation were introduced, and the inertial sensor errors were modeled.
Secondly, the relation between the velocity error and the angular rate was worked out using the Laplace
transform and the inverse Laplace transform. The optimal rotating angular rate method was also proposed
based on the relationship above. Thirdly, simulations were conducted, and the results confirmed that the
optimal rotating angular rate could be computed correctly with this method. Navigation experiments
were done, and the results of the positioning error confirmed the effectiveness and correctness of
the theoretical analyze. However, the experimental time was just 72 h, because of the limitations of
experimental conditions. As a result, we plan to do more further experiments, which will last a longer
time, if the experimental conditions permit, in the future. On the other hand, the results of the simulations
were superior to that of the experiments. The reason may be that an error of the initial alignment, which
is ignored, in the simulations may occur. The initial alignment error is not the main factor of the rotating
angular rate optimal design method from the analysis of simulations and experimental results. Even so,
we will model the initial alignment error and focus on its impact on the RSINS in the future.
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