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Abstract: With the development of high-performance aircraft, precise air data are 

necessary to complete challenging tasks such as flight maneuvering with large angles of 

attack and high speed. As a result, the flush air data sensing system (FADS) was developed 

to satisfy the stricter control demands. In this paper, comparative stuides on the solving 

model and algorithm for FADS are conducted. First, the basic principles of FADS are 

given to elucidate the nonlinear relations between the inputs and the outputs. Then, several 

different solving models and algorithms of FADS are provided to compute the air data, 

including the angle of attck, sideslip angle, dynamic pressure and static pressure. 

Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to 

satisfy the real design demands. Futhermore, a simulation using these algorithms is 

performed to identify the properites of the distinct models and algorithms such as the 

measuring precision and real-time features. The advantages of these models and algorithms 

corresponding to the different flight conditions are also analyzed, furthermore, some 

suggestions on their engineering applications are proposed to help future research. 

Keywords: flush air data sensing system; solving model; measuring precision; real-time 

feature; neural network 
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Nomenclature 

λ The cone angle δα The angle bias of attack 

ϕ The circumferential angle δβ The angle bias of sideslip 

θ The airflow angle of incidence Q The weighting factor matrix 

ε The shaped pressure coefficient qctrue The true value of the dynamic pressure 

qc The dynamic pressure Pctrue The true value of the static pressure 

P∞ The static pressure eq The error percentage of the dynamic pressure 

γ The specific heat coefficient ep The error percentage of the static pressure 

αe The angle of attack mα The number of the gotten angle of attack 

βe The angle of sideslip M∞ The flight Mach 

1. Introduction 

The design concept of the flush air data sensing system (FADS) was presented by the American 

National Aeronautics and Space Administration in the 1960s in order to meet the control requirements 

of the space shuttle [1,2]. FADS has some significant advantages over traditional sensors [3,4], 

including the higher measurement accuracy and lighter equipment weight. Also, the overall system is 

installed inside the body such that the vehicle configuration can adapt to the complicated flight 

environment with consideration of the large angle of attack and high flight dynamic pressure. As a 

result, FADS can be suitably used in unconventional vehicles such as hypersonic vehicles [5] and Mars 

entry vehicles [6]. Besides that, compared with the probe type structure, such a built-in stucture makes 

the vehicle have the lower radar reflective area, leading to the better stealth performance which is 

critical for the future airplane to escape potential hazards and enhance its survival adaptation [7]. More 

importantly, further studies on FADS need to be integrated with other technologies such as the vehicle 

modeling [8], flight control law design [9] and performance evaluation [10] in order to take the 

advantage of FADS, while improving the overall performance of the unconventional vehicle. 

Nevertheless, the integrated design of FADS faces some challeges because the relations between the 

system inputs and outputs exhibit strong nonlinear feartures, and simultaneously the layout of the 

pressure taps has a significant impact on the measured results. In addition, the useful measurement 

information is easily affected by external disturbances which are difficult to estimate due to the 

uncertain and variable flight conditions. Therefore, designing a suitable solving model and algorithm is 

crucial for FADS to complete the anticipated goals [11]. 

The current studies on FADS focus on the optimized layout of the pressure taps, the solving model 

of the air data, the fault detection and reconstruction of the system, the compensation and calibration of 

air data and so on. In particular, a neural network method was applied in [12] for FADS to achieve 

measurement of the surface pressure. Similarily, a matrix structure of pressure sensors using neural 

networks and look-up tables was presented in [13] to estimate the air data of an unmanned air vehicle. 

In addition, a fault-tolerant neural network algorithm was proposed for FADS in [14], and the  

self-adaptive and reconstructed capacities can be ameliorated using this algorithm. Furthermore, the 

neural-network-based model of FADS was developed and demonstrated on a mini air vehicle in [15]. 

Besides, an improved three-point method was designed in [16] to enhance the solving precision of 
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FADS. Also, the learning of air-data parameters was investigated for FADS in [17]. Furthermore a 

flush air-data system for transatmospheric vehicles was simulated in [18] to test the overall performances 

in a real application. Beyond this, the engineering model with regard to the temperature-induced 

pneumatic sensor was put forward in [19] to satisfy the complicated flight demands under rarefied flow 

conditions. Moreover, subsonic tests of FADS were conducted for a fixed-wing micro air vehicle to 

verify the feasibility in the actual flight process [20]. In general, because of the special configuration 

and complicated intrinsic characteristics for FADS, some new approaches need to be introduced to 

improve the measurement accuracy and accelerate the convergence rate. 

This paper studies comparatively the solving models and algorithms for FADS. Accordingly, there 

are three aspects which need to be considered. The first question involves the inherent theories of 

FADS to manifest the relations between the pressure values and air parameters. The second problem 

relates to the several different solving models and algorithms of FADS which provide useful tools to 

estimate the necessary air parameters. The third aspect deals with the comparative inverstigation 

regarding these models and algorithms of FADS in combination of the evaluation criteria, and further 

by doing the contrastive simulation the results reveal the application characteristics for these distinct 

models and algorithms. 

2. Basic Relations between Measuring Pressures and Flight Parameters for FADS 

The work theories of FADS embody that the flight parameters are solved in terms of the pressures 

measured by the build-in sensors on the vehicle surfaces, whereas these sensors are installed in the 

given way in relation to the special task [21]. Thus, the distribution of the sensors has a significant 

impact on the computing accuracy and system redundancy. In this work, we consider the conical shape 

shown in Figure 1, and this construction is regular such that the pressure taps can be symmetrically 

placed on the surface. 

Figure 1. Conical shape applied for FADS. 

 

In Figure 1, ë indicates the cone angle, and ϕ denotes the circumferential angle. Furthermore, the 

pressure coefficient using the Newton formula can be written by [13]: 
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where θ is the airflow angle of incidence; ε indicates the shaped pressure coefficient determined by the 

flight Mach and airflow angle of incidence; qc, P∞ denote respectively the dynamic pressure and static 

pressure. Theoretically, the relations of the dynamic pressure qc and the static pressure P∞ can be 

decided by the isentropic flow principle, and it is expressed by: 
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where γ is the specific heat coefficient. Based on the momentum and energy conservation principles, 

we have: 

BA
P
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C c
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)0(  (3) 

Furthermore, the pressure coefficient is defined by: 

q
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where p(θ) represents the surface pressure. Substituting Equation (4) into Equation (1), we get [14]: 

 Pqp c )sin(cos)( 22   (5) 

For any point of the vehicle surface, the airflow angle of incidence
 
θi is a function of the angle of 

attack
 
αe and the angle of sideslip

 
βe, and it is expressed by: 

iieeiieieei  sincoscossinsinsinsincoscoscoscos   (6) 

Accordingly, the shaped pressure coefficient   is written as: 

( , )e ef M    ,  (7) 

where M∞ denotes the flight Mach, and Equation (7) shows that ε is determined by
 
αe, 

βe and M∞,  

but the special relationship among them is difficult to acquire. On the other hand, this coefficient is 

critical for FADS to compute the air parameters in terms of the measured pressure values. In fact, 

Equations (2) and (5)–(7) constitute the solving model of FADS, consisting of four flight state 

variables in relation to the air datum, namely αe, 
βe, qc and P∞. In principle, as soon as there are four 

pressures acquired on the vehicle surface, these variables can be solved accordingly. 

3. Solving Models and Algorithms of FADS 

According to the above relations between the measuring pressures and the flight parameters,  

we find that it is difficult to obtain the analytical solutions for the corresponding model function due to 

the nonlinear features. As a result, some solving means are proposed for Equations (2) and (5)–(7), 
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including the least squares method, the three-point method, the neural network method and the look-up 

table method. These according contents are provided as follows: 

3.1. Solving Algorithm Based on Least Squares Method 

Based on the solving model of FADS in Equations (2) and (5)–(7), the pressure of any point can be 

expressed by: 

( ( , ), , , ( , , ( , ))) ( , , , )i i i e e c e e c i e e cp F q P M q P F q P             (8) 

The linearization model of the above equation can be obtained using the Taylor’s expansion mean, 

and it is expressed by: 
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In turn, Equation (9) can be written as: 
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where
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j
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j
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j
 denote the jth iterative operation points. With further consideration of Equation (5), 

the according partial derivatives are acquired by: 
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For Equation (10), if the number of the pressure taps is more than 4, δX can be solved as: 
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where qi denotes the weighting factor for ith pressure tap. In practice, the pressure taps may experience 

some failures, and in this case qi corresponding to this bad pressure tap will be set to zero due to the 

presence of the redundancy. Furthermore, the updated air parameters are described by: 

jjj
XXX 1  (13) 

Repeating the above steps, we can get the resulting solutions with respect to Equation (8). In other 

words, the necessary air parameters αe, 
βe, qc and P∞ can be estimated accordingly. 

3.2. Solving Algorithm Based on Three-Point Method 

The air data can be obtained using the three-point method because some special pressure taps can be 

selected to simplify the FADS model in Equations (2) and (5)–(7). To be specific, three vertical taps 

along with the leading edge of the central axis are installed to estimate the angle of attack, whereas 

three pressure taps along with the horizontal axis are used to compute the sideslip angle. Accordingly, 

the computation equations with regard to these angles are provided by [16]: 
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where the subscripts i, j, k denote the according label of three pressure taps. Alternatively, the sideslip 

angle can be acquired. However, these computed angles have multiple values, so the angle of attack 

can be estimated as the average result of these values, and this is expressed by: 
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where mα represents the number of the gotten angle of attack. Once these angles are determined, the 

dynamic pressure and the static pressure are obtained based on Equations (5) and (6), and it is given by 
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We see that Equation (17) is difficult to solve due to the existence of  , and thus the iterative 

computation using the least squares idea is required to deduce qc and P∞. Especially, based on 

Equation (5), the pressure of each tap is reshaped as [16]: 
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The solution of the least squares with regard to Equation (18) is obtained by: 
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Accordingly, the shaped pressure coefficient   is indicated by: 
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where C1 is decided by Equation (2), and further Equation (20) shows that the shaped pressure 

coefficient ε is gotten for the given
 
αe, βe, M∞. Nevertheless, the acquisition of the according solutions 

is difficult because the relationship among them is strong nonlinear. As a result, the polynomial fitting 

method is applied to seek this nonlinear relation, and it is provided by: 
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where A0(M),…, Am(M∞), B1(M∞),…, Bn(M∞) are the polynomial coefficients related with the flight 

Mach. Also, Equation (21) tell us that as long as the shaped pressure coefficients are identified in some 

flight states, the nonlinear expression can be established in accordance with the fitting mean. 

3.3. Solving Algorithm Based on Neural Network Method 

As mentioned above, we know that the expressions between the measuring pressures Pi and the 

flight parameters αe, 
βe, qc, P∞ are difficult to build, but on the other hand their relations can be 

identified depending on the experimental datum acquired by the tools of computational fluid dynamics. 

Moreover, the neural network is very suitable to establish such nonlinear connections, and the 

corresponding structure diagram of the solving algorithm using the neural networks is proposed  

as shown in the following figure. 

In Figure 2, the three-point method is applied to solve αe, 
βe, and then these resulting values are 

calibrated using the neural network. At the same time, qc, P∞ can be computed using the module of the 

neural network, as a result that this can effectively avoid the complex iteration computation for them. 

However, these designed neural networks will depend on the large amounts of data, if they are 

combined with other methods such as the three-point method, the acquired training data may be 

reduced accordingly, and simultaneously the solving process will be faster due to decreasing the 

iterative steps [22]. In this paper, the neural network is adopted to compensate the angle of attack and 

sideslip angle. This is because that the computing course using the three-point method is quick due to 

without the iteration, but the resulting values in the vicinity of pressure taps tend to have many errors 

induced by the vehicle itself, for example the unfavorable effects due to the upwash and sidewash 
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actions. Considering these influences, the according corrections for them are necessary to improve the 

measuring accuracy. Thus, the calibrated relations in Figure 2 are expressed by: 
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where
 
αe, 

βe are respectively the solving angle of attack and sideslip angle by FADS, whereas α,
 
β 

represent the angle of attack and sideslip angle corresponding to the free flow. δα, δβ denote the 

physical quantities representing the differences between the free stream flow incidence angles and the 

flow angles as they manifest themselves at the body. Considering the effects of the body induced flow 

field, δα and δβ are dependent on the relevant configuration. Thus, the angle errors δα, δβ can be 

corrected for FADS using the neural network, we select some training samples acquire by using the 

CFD tools. In this case, (αe, M∞)1, …, (αe, M∞)κ are thought as the inputs of the neural network where κ 

are the numbers of the training samples, whereas
 

α1,…,αi are regarded as the outputs. In  

the training process, these inputs and outputs will be conducted according to the normalization 

principle, thus as long as there are enough training samples for FADS, the measuring precision can be 

guaranteed accordingly. 

Figure 2. Structure diagram using neural networks for FADS.  

 

3.4. Solving Algorithm Based on Look-up Method 

The core idea of the look-up method is to seek the current air parameters according to predefined 

databases. Once the pressures of the measuring taps are acquired, the required air parameters can be 

found directly using these databases. The advantage of this method lies in the rapid solution speed due 

to the direct look-up course, but on the other hand large amounts of data are required to ensure the 

system accuracy. For this reason, this method is used with combination of other means, for example, 

the Mach number is obtained by the inertial navigation system first, and then the angle of attack and 

the sideslip angle are obtained using the look-up method. Furthermore, the angle of attack can be 

approximately considered as the proportional relation to the pressure difference, shown as [23]: 
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   0 i j pijp p C M    
(23) 

where i, j represent respectively the ith and jth pressure tap. As soon as the sequence of the pressure 

difference pM = ([p1 − p3]1,…,[p1 − p3]ê) and the sequence of the angle of attack αM = (αM,…, αê) are 

known, we have: 

T
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Furthermore, with consideration of the ith tap or the jth tap, Equation (23) is rewritten as: 
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After averaging these angles of attack, the real angle is estimated by: 
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In turn, the sideslip angle can also be acquired while identifying the relations between the 

measuring pressures and the sideslip angles. On the whole, the crucial task of the look-up method is to 

seek feasible rules corresponding to the inputs and outputs. 

4. Evaluation Criteria of Solving Model and Algorithm 

The above FADS solving models have their respective advantages, thus the selection of the feasible 

model is important in the practical application. Normally, the evaluation criteria of the solving 

algorithm include convergence, accuracy, real-time and so on. In particular, the overall layout of the 

pressure taps has significant impact on the applicability of these solving models, while the number of 

the pressure taps is connected with the measuring accuracy from the perspective of the system 

redundant [24]. Based on Equations (7) and (18), we have [16]: 
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where G is determined by Equation (2). Let |f έ| = h(α, β, M∞), then this yields: 
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According to Equations (2), (18) and (20), we can get: 
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Substituting Equations (29) and (30) into Equation (28), we have: 
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(31) 

From Equations (28) and (31), we find that as long as h(α, β, M∞) ≤ 1, Equation (27) is convergent 

such that the shaped pressure coefficient ε can reach the respected value using this iteration method. 

Beside the convergence, the measuring accuracy is the other criteria required to consider. Thus, based 

on Equations (2), (5) and (18), the dynamic pressure and static pressure can be approximately estimated by: 
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Furthermore, the error percentages corresponding to the dynamic pressure and the static pressure 

are expressed by: 
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where qctrue, Pctrue represent respectively the resulting values acquired using the CFD tools. From 

Equation (18), we know that the dynamic pressure and static pressure can be adjusted by altering the 

shaped pressure coefficient ε, but on the other hand their sum is fixed. In other word, once Xα(1) is 

solved, the total error of the dynamic pressure and static pressure is identified, so no matter how to 

adjust ε, the according error exists. In principle, this error can be eliminated as qctrue, Pctrue are 

integrated to the solving algorithm, as a result that the further calibration is required for FADS to 

ameliorate the measuring accuracy [25]. 

Beyond these, the real-time characteristics with regard to these algorithms need to be taken into 

account. In common, the iterative process will bring the unfavorable time delay, and thus the operation 

speed of the solving model based on the neural network or the look-up methods is faster than that 

based on the three-point method. However, there is the fundamental contradiction between the  

real-time feature and solving precision, so a compromise is necessary for the performance evaluation 

of the solving model. In addition, the selection of the initial values will have significant effects on  

the real-time characteristics because the iteration process will stop rapidly as the initial values are 

given well. 
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5. Simulation Study and Comparative Analysis 

The shaped pressure coefficient   is critical to solve the air parameters, but according to Equation (7),  

it is related with the angle of attack, sideslip angle and flight Mach. Therefore,   needs to be identified 

first. Based on the three-point method, as long as the pressures are obtained, the local angle of attack 

and local sideslip angle can be computed accordingly. After that, ε is obtained in accordance with 

Equations (18)–(20), while considering the current flight Mach. In the simulation, for the body surface 

in Figure 1, the pressure data of the measuring taps corresponding to M∞ = 2.2, 2.5, 2.75, 3, can be 

acquired by using the CFD tool, so the change curves of the shaped pressure coefficient ε are provided 

as follows. 

Figure 3 shows that the relations between the shaped pressure coefficient and the according flight 

parameters, and such results reflect the nonlinear features associated with Equation (7). Furthermore, 

using these different solving algorithms, the angle errors of attack between the solving results and the 

CFD data are displayed as follows. 

Figure 3. Change curves of shaped pressure coefficient. 

 

Figures 4 and 5 demonstrate the absolute value of the angle errors of attack are less than 0.1 degree 

using the calibrating compensation. This reflects that the application of the least squares method or the 

three-point method will cause the considerable errors due to the inaccurate modeling process. Thus, the 

angle correction may be effective to improve the measuring accuracy. Furthermore, the neural network 

and the look-up method are applied, and the according results are provided in the following figures. 
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Figure 4. Change curves of angle errors of attack using least squares method. 

 

Figure 5. Change curves of angle errors of attack using three-point method. 
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Figure 6. Change curves of angle errors of attack using neural network. 

 

Figure 7. Change curves of angle errors of attack using look-up method. 

 

From Figure 6, we know the solving errors reach less than 0.05 when the neural network method  

is adopted, and this is because that such a process depends on the CFD data instead of the special 
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model, so accordingly the modeling errors are very small. Additionally, Figure 7 shows that the angle 

errors of attack using the look-up method is larger than that using the neural network due to the lack of 

the training course, but the operation speed is very rapid with consideration of the direct solution 

procedure. Correspondingly, for the body surface in Figure 1, the comparative results of the different 

solving methods are listed in Table 1. 

Table 1. Comparative results of different solving methods. 

 
Angle Bias 

of Attack (°) 

Sideslip Angle 

Bias (°) 

Dynamics 

Pressure Bias (%) 

Static Pressure 

Bias (%) 

Mach  

Bias (10
−3

) 

Least 

Squares 

Method 

Without 

calibration 
1.7004 0.8497 1.7894 1.7894 0.9089 

With 

calibration 
0.1004 0.0838 0.4297 0.4305 0.2434 

Three-

point 

Method 

Without 

calibration 
1.6244 0.8901 1.7894 1.7893 0.8474 

With 

calibration 
0.0877 0.1049 0.4250 0.4291 0.2356 

Neural Network 0.0395 0.0971 0.0113 6.717 × 10
−11

 0.3090 

Look-up Method 0.1626 0.1649 0.6432 0.6834 0.2845 

Table 1 demonstrates that the solving precision will improve after using the according correction, 

and the three-point method can get better results in contrast to the least squares method. Among them, 

the solving errors are smallest using the neural network. As a result, if the measuring accuracy is 

thought as the most important item, the solving model based on the neural network is ideal to realize 

the anticipated goals. 

To be specific, the solving algorithm based on the neural network can ensure the robustness of  

the resulting calculation as the training model is identified. This is because that such a built model is 

obtained using the large amount of sampling data, so several inaccurate samples may have less impact 

on the solving accuracy. In principle, system robustness can be improved if more sampling data can be 

provided. Nevertheless, training more sampling data requires more time, leading to the real-time 

reduction. As a result, getting the proper amount of exact samples will be crucial for the neural 

network algorithm to guarantee system robustness, as well as the computation efficiency. On the other 

hand, the following solving process is subjected to this trained model, so the inputs lying in the range 

of the samples will result in the more accurate results, whereas the deviation from the sample range 

will deteriorate the solving precise. Therefore, the solving algorithm based on the neural network 

should be adopted in the vicinity of the samples input range. Furthermore, the real-time characteristics 

are considered in the simulation, and the durations of the solving process using these algorithms are 

shown in Table 2. 

Table 2. Durations of solving process with regard to different algorithms. 

Least Squares Method (s) Three-Point Method (s) Neural Network (s) Look-Up Method (s) 

271.5641 145.5505 5.1184 0.1132 
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Table 2 tells us that the duration of the neural network is smaller than that of the least squares 

method or the three-point method, whereas the time-consuming value using the look-up method is 

minimal among them due to without the iteration and training process. However, the look-up method 

has the less robust performance because the solving process is based on simple interpolation. Thus, 

once the pressure inputs significantly differ from the given database, the unfavorable results such as 

the discontinuous flutter may emerge, as a result that the solving algorithm fails to operate. Normally, 

the output results of the look-up method are satisfactory if the pressure inputs are matched with the 

provided samples. On the contrary, as soon as the inputs are far from these sampling points, the 

solving accuracy will decrease accordingly. Consequently, the trade-off consideration among the 

different criteria is a prerequisite in real applications, and the efficient and applicable demands are 

important for FADS to implement the complicated tasks. 

6. Conclusions 

This paper deals with comparative studies of the different solving models for FADS. First, the basic 

connection between the measuring pressures and flight parameters is given to demonstrate the strong 

nonlinear features among them. Then, the solving models and algorithms of FADS are provided using 

the least squares method, three-point method, neural network method and look-up method. Afterwards, 

the evaluation criteria of these models and algorithms are introduced for FADS. Furthermore, 

simulation work is conducted to comparatively analyze the feasibility of these FADS solving models. 

We believe the work in this paper will provide the helpful information for FADS studies to meet the 

complicated task demands in the future. 
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