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Abstract: This paper proposes the development of an automatic fruit harvesting system by 

combining a low cost stereovision camera and a robotic arm placed in the gripper tool.  

The stereovision camera is used to estimate the size, distance and position of the fruits 

whereas the robotic arm is used to mechanically pickup the fruits. The low cost 

stereovision system has been tested in laboratory conditions with a reference small object, 

an apple and a pear at 10 different intermediate distances from the camera. The average 

distance error was from 4% to 5%, and the average diameter error was up to 30% in the 

case of a small object and in a range from 2% to 6% in the case of a pear and an apple.  

The stereovision system has been attached to the gripper tool in order to obtain relative 

distance, orientation and size of the fruit. The harvesting stage requires the initial fruit 

location, the computation of the inverse kinematics of the robotic arm in order to place the 

gripper tool in front of the fruit, and a final pickup approach by iteratively adjusting the 

vertical and horizontal position of the gripper tool in a closed visual loop. The complete 

system has been tested in controlled laboratory conditions with uniform illumination 

applied to the fruits. As a future work, this system will be tested and improved in 

conventional outdoor farming conditions. 
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1. Introduction 

The agriculture industry is demanding technological solutions focused on automating agriculture 

tasks in order to increase the production and benefits while reducing time and costs. These technological 

solutions are mostly based on the application of sensor-based technologies. A comprehensive 

description can be found in [1] where the most recent research focused on solving agriculture and 

forestry tasks by using sensors is summarized. 

Automation of agriculture tasks has improved all phases of the industrial process, from the  

pre-harvest, to the harvest and post-harvest stages. For example, in the pre-harvest stage, the 

application of agro-chemicals in orchards has been automated with the aim of controlling weeds [2] 

and improving pesticide applications [3]. Canopy characterization [4] greatly contributes to improve 

agro-chemicals applications. In the case of the harvesting stage, the already proposed systems [5] 

requires an estimate of the position and size of the fruits in the trees [6–8] and other parameters such as 

its ripeness stage [8,9]. These estimates can be performed by using a stereo vision system [10]. Finally, 

in the case of the post-harvesting stages, the most important tasks are related with the estimate of fruit 

production [11] and quality [8,12] by detecting skin defects [13] or by validating fruit variety [14]. 

The new contribution of the paper is the combined application of a low cost stereovision system and 

a low cost robotic arm in order to define an automatic fruit harvesting system. The stereovision is 

placed in the gripper of the robotic arm in order to detect and locate the fruits in the trees and guide the 

automatic pickup of the selected fruits. The location of the fruits is performed by matching fruit 

centroids instead of matching the complete stereo-image as a way to reduce matching complexity 

algorithm and foster the future development of real-time industrial systems. This paper is focused on 

the assessment of reference baseline location, guidance and pickup performances in laboratory 

conditions; future works will optimize and assess the farming operation performances of the complete 

harvesting system. 

2. Related Work 

The definition of a high quality fresh fruit harvesting system a complex task that requires: the 

automatic detection of the fruits, the estimate or their size and relative location and orientation, and the 

definition and control of a non-stressing pickup procedure. The accurate detection of fruits in trees can 

be addressed with different approaches such as the use of a monocular camera attached to a gripper 

tool [15] in order to control a mechanical harvesting. In this case, the distance to the fruit was 

estimated analytically by displacing the camera a known distance and by measuring the fruit radius 

before and after this displacement. Then, the alignment of the gripper tool with the fruit was performed 

by matching the center of the fruit with the center of the image. The proposal of [16] also uses a 

monocular camera and a stepper motor as a displacement device in order to generate depth maps of the 

scene. In this case, the vision system was designed to reconstruct 3D natural complex scenes.  
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This paper proposes a similar approach based on the use of a low cost stereovision system in a robotic 

arm in order to estimate the distance to the fruit without having to maneuver the robotic arm to change 

the angle of view and object perspective. 

In the case of using a stereovision system [17], the main problem is to find the correlated 

information in two images with different views of the same area or object. In most cases, instead of 

matching pixel by pixel features, the targets are detected on the images and their centroids are used as 

a landmark in order to estimate the distance of the object. This procedure can be affected by geometric 

camera nonlinearities such as an offset in the position of the center of the image, skew factor or lens 

distortion that can be corrected with a specific camera calibration procedure. In [10], the proposal was 

the implementation of a real-time stereovision system in order to estimate the distance and size of an 

object. In this proposal, the object was firstly detected in both images and segmented before applying a 

connected component analysis and a blob extraction technique in order to extract all the information 

needed: size and distance measurements. This method provides accurate distance and size estimations 

spending 65 ms in the process. In [18], the effects of using a stereo vision system applied to apple-picking 

robots were studied under different target circumstances and in a working distance from 300 to 1100 mm. 

In this case, the first analysis required manual operation and consisted on attaching a small target on 

the apples whereas the second analysis was performed automatically by computing the centroid of the 

segmented apples. The error in the distance estimate was 0.63% in the first analysis and 3.54% in the 

second analysis. In [19], a structured-light stereo vision system was proposed to detect mature tomato 

by applying a threshold to the Hue and Saturation layers and then a structured light was used to locate 

its position and size. The ripeness was estimated by analyzing the Cb color layer. The results showed 

an error in the estimate of the tomato radius less than 5 mm and an error in the distance less than 7 mm. 

There are some examples in the literature that apply a stereovision system in the control of a 

robotized arm, but very few designed for automatic fruit harvesting. For example, in [20], a stereo 

vision system was integrated in an automatic harvesting system with the aim of locating fruit on a 

simulated indoor tree and to correct the trajectory performed by a robotic arm in a virtual environment 

in order to pickup fruits. The conclusion was that the stereo vision system was feasible for positioning 

fruits and to control robot operation in real-time. Alternatively, in [21] a robot manipulator was 

proposed for the automatic harvesting of citrus. This paper proposed the development of vision-based 

estimation and control system for robotic fruit harvesting by analyzing the stability and performance of 

the closed-loop control system. The control was performed by combining the information provided by 

a fixed camera and a camera in the hand on the robotic manipulator. 

Finally, the specific task of size and distance fruit estimate can be performed with alternative 

sensing devices. For example, in [22] the proposal was the use of two 2D LIDARs in order to detect 

position and size of asparagus. In [23], a laser ranging sensor in combination with a machine vision 

system was used as a real-time fruit detection system achieving results of 100% accuracy when 

detecting single fruits in different lighting conditions. In this case, the fruit detection system was 

combined with an effector designed to detach fruits similarly to a human picker achieving an average 

picking success rate of 90%. In [24], a stereovision system was combined with a projector in order to 

illuminate the scene with different patterns. In this case, the use of these structured patterns simplified 

the detection of matching correspondences between the stereo images and improved the procedure for 

3D scenario reconstruction. 
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3. Materials 

This section describes the image acquisition system used to estimate fruit location, the vision targets 

used in the experiments, and the mechanical device proposed to pick up the fruits. The control 

developed to guide the robotic arm in order to harvest fruits is also presented. 

3.1. Stereovision Image Acquisition System 

The image acquisition device used in this work is a low cost commercial Minoru 3D USB Webcam [25] 

(Figure 1a). This image acquisition device uses two VGA CMOS color sensors with a resolution of 

800 × 600 pixels (Figure 1b). These two cameras are placed in the same plane at a distance of 60 mm 

from each other. The device can be configured in order to provide two individual images of both 

cameras or a combined stereo image. In both cases the images are not synchronized and the maximum 

shutter deviation expected is 16.5 ms. In this paper, the image acquisition device will be used in 

combination with a red cross laser pointer for accurate target positioning. Figure 2 shows the complete 

experimental setup. The red cross will be used as a reference in order to place manually the target 

fruits at exact grid positions and validate their automatically detected positions. 

Figure 1. Minoru 3D USB Webcam. (a) External view; (b) Detail of the two cameras. 

  
(a) (b) 

Figure 2. Experimental setup for grid measurement. 
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3.2. Vision Targets 

The vision targets tested in the experiments were a blue pushpin that will be used as a reference 

small and planar object (Figure 3a), a green apple (Figure 4a), and a brown pear (Figure 5a). Table 1 

summarizes their sizes and diameters. 

Figure 3. Pushpin: (a) original image and (b) segmented image showing the centroid (red 

dot), inclination (magenta line) and diameter in pixels (green line). 

 
(a) (b) 

Figure 4. Apple: (a) original image and (b) segmented image showing the centroid (red 

dot), inclination (magenta line) and diameter in pixels (green line). 

 
(a) (b) 

Figure 5. Pear: (a) original image and (b) segmented image showing the centroid (red dot), 

inclination (magenta line) and diameter in pixels (green line). 

 
(a) (b) 

  

x (pixels)

y 
(p

ix
el

s)

100 120 140 160 180 200 220 240

120

140

160

180

200

220

x (pixels)

y 
(p

ix
el

s)

100 120 140 160 180 200 220 240

120

140

160

180

200

220

x (pixels)

y 
(p

ix
el

s)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

x (pixels)

y 
(p

ix
el

s)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

x (pixels)

y 
(p

ix
el

s)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

x (pixels)

y 
(p

ix
el

s)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450



Sensors 2014, 14 11562 

 

 

Table 1. Vision target sizes. 

 Width (mm) High (mm) Diameter (mm) 

Pushpin 10.5 10.5 10.5 
Apple 80.5 64.9 80.5 
Pear 67.6 110.9 61.3 

3.3. Robotic Arm for Fruit Harvesting 

The proposed stereovision system will be applied to control a robotic arm designed for automatic 

fruit harvesting (Figure 6). The robotic arm has been created with a Dimension SST 1200es 3D rapid 

prototyping printer in ABS (FullCure720) plastic material which includes six low cost DC gear motors 

controlled by a Cortex-M4F ARM STM32F407VGT6 microcontroller that provides velocity and speed 

control and different connectivity options. The robotic arm is composed by five linked members and a 

manually interchangeable gripper (see Figure 6a). In this paper the initial position of the robotic arm 

has components 3, 4 and 5 (labeled in red color) vertically aligned. In the final application the robotic 

arm will be attached to a harvesting platform in order to automatically pickup the fruits from the trees. 

The base of the robotic arm (Figure 6a, component 2) is able to spin 360° on its x-axis (red line) and 

place the gripper in the adequate radial position for fruit harvesting. Then, components 3 and 4 can 

spin 260° (130° on each side from the original position) on their z-axis (blue line) in order to 

approximate the robotic gripper to the fruit. Finally, member (5) has two degrees of freedom being 

able to spin 260° (130° on each side from the original position) on its z-axis (blue line) and 360° on its 

x-axis (red line) giving the two specified motions to the robotic gripper. Table 2 summarizes the 

dimensions of the main components of the robotic arm. 

Table 2. Robotic arm dimensions. 

Parameter Length (mm) 

L0 160 
L1 140 
L2 200 
L3 80 
L4 90 

The proposed design of the gripper tool is based on the use of two upper moving fingers to grab the 

fruit and two lower fixed fingers to hold the fruit (Figure 6b). The lower holding fixed fingers 

minimize the pressure required to grab the fruit with the moving fingers and contributes to reduce the 

mechanical stress of the fruit pickup procedure. This design was inspired in the mechanical action 

performed by a human hand during the process of holding and picking up fruits. The gripper tool uses 

a single DC motor for opening and closing the moving fingers which are normally open. This system is 

very sensitive; the closing (or fruit grabbing) procedure is stopped when the torque applied by the 

motor of the fingers increases more than 10%. The torque applied by the DC motor is estimated by 

measuring its current. Additionally, the contact surfaces of the gripper tool have a soft foam rubber to 

reduce the local pressure applied to the fruit. Depending on the results obtained in future usage tests 
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the gripper tool can be improved with a robust adaptive impedance control [26] or with more degrees 

of freedom in order to obtain information of the shape of the fruits [27]. 

Figure 6. (a) Robotic arm design; (b) Detail of the gripper tool with the imaging device. 

(a) (b) 

3.4. Guidance of the Robotic Arm 

The guidance of the robotic arm was addressed by computing the inverse kinematics of the robotic 

arm which, in this case, can be performed analytically by simplifying the complete system as a  

two-joint robotic arm. Under this simplification, only two absolute angles are truly needed in order to 

place the tip of the robotic arm in a desired position. The first value defines the angle between the 

components 2 and 3 whereas the second value defines the angle between the components 3 and 4 of 

the robotic arm. This simplified computation requires two assumptions: (1) the rotation of the 

component 2 around its x-axis (red line) can be performed independently from the other joints until the 

robotic arm reaches an optimal radial orientation to the current selected fruit; (2) the optimal 

orientation of the gripper in order to pick up the fruits is always parallel to the ground. 

In this paper, the simulation and validation of the guidance of the robotic arm has been performed 

by defining a simplified Denavit-Hartenberg (D-H) parametric model [28]. This simplified model 

represents the relative motion between articulations by using four basic transformations: two 

translations, “d” and “a” parameters, (which coincide with the dimension of the components of the 

robotic arm) and two revolutions, α and θ parameters, defined along the x (red line in Figure 6a) and  

z (blue line in Figure 6a) axes. The value of these parameters depends on the initial orientation of the 

robotic arm and on the definition of the coordinate axis which, in this case, is located in the base of the 

robot arm (Figure 6a, component 1). Table 3 shows the initial position and motion range of the α and θ 

parameters whereas Table 4 represents the complete simplified D-H parametric model of the robotic arm 

that can be used to compute the final position (x, y, z spatial coordinates) of the gripper of robotic arm. 
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Table 3. Ranges of the parameters α and theta θ of the joints. 

Parameter 
Initial 

Position 
Maximal 
Position  

Minimal 
Position  

 
Parameter

Initial 
Position 

Maximal 
Position 

Minimal 
Position 

α1 0° 0° 0° θ1 0° 0° 0° 
α2 0° −180° 180° θ2 0° 0° 0° 
α3 0° 0° 0° θ3 0° 0° 0° 
α4 0° 0° 0° θ4 0° −130° 130° 
α5 0° 0° 0° θ5 0° −130° 130° 
α6 0° 0° 0° θ6 0° −130° 130° 
α7 90° −180° 180° θ7 0° 0° 0° 

Table 4. Fixed D-H parameters for the robotic arm. 

Joint d a α° θ° 

1 0 0 0 0 
2 0 L0 α 2 0 
3 L4 0 0 0 
4 0 L1 0 θ 4
5 0 L2 0 θ 5
6 0 L3 0 θ 6
7 0 0 α 7 0 

4. Stereovision Fruit Detection Accuracy 

The control of the robotic arm requires an estimate of the fruit distances, positions and sizes in the 

trees in order to propose an automatic fruit harvesting procedure. In this paper, this estimate will be 

performed with a stereovision system. 

4.1. Experimental Setup 

Figure 7 shows the experimental setup used in this paper in order to estimate the detection accuracy 

of a low cost stereovision system in the case of detecting three different targets: a blue pushpin, a green 

apple, and a brown pear. This experimental setup will be used to obtain 49 images (in the intersection 

of a 7 × 7 relative grid) per target and distance, covering a total of 1470 stereo images in a distance 

range from 200 mm up to 2000 mm in steps of 200 mm. 

The size (width and height) of the grid is always the visible area of the left camera (see Figure 8) 

and this area depends on the distance between the camera and the targets. Figure 9 shows the 

relationship between the size and the distance which can be used to estimate the horizontal (39.68°) 

and vertical (30.06°) focal angles of the cameras of the stereovision system. 
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Figure 7. Relative grid definition and targets used in the experimental setup.  

 

Figure 8. Representation of the right (red point) and left camera (blue point) and their visible area. 

 

Figure 9. Grid size in function of the distance between the camera and the target. 
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4.2. Image Processing: Target Centroid, Inclination and Diameter Estimate 

The image processing stage involves background segmentation and the estimate, for the different 

targets proposed, of the inclination in grades and the centroid and diameter in pixels. The white 

background used in the experimental setup simplifies the procedure of detecting the background in 

both RGB color images obtained with the stereovision system. In this laboratory case, a pixel is 

classified as a member of the background if their individual RGB color intensities are all greater than 0.8. 

The segmented images used to have isolated noisy background pixels that can be removed from the 

images by applying morphological operators or a hole filling algorithm. Then, the region covered by 

the target object is the remaining non-background area of the image. This unique and well defined 

region in the images allows the computation of the position of the centroid (xc, yc) (center of mass of 

the region), inclination ω (angle between the x-axis and the major axis of the ellipse that has the same 

second-moments as the region), and diameter Фp (length of the minor axis of the ellipse that has the 

same normalized second central moments as the region). The computation of the centroid is required 

for both images obtained with the stereovision system whereas the estimate of the inclination and 

diameter can be limited to one image. Figures 3a, 4a and 5a show the detail of the targets analyzed in 

one example image while Figures 3b, 4b and 5b show the detection results: centroid location (red dot), 

inclination (magenta line) and diameter (green line). 

4.3. Distance, Position and Diameter Estimate 

The acquisition of two stereovision images showing the same object from different and known 

point of views allows the analytic estimate of the target relative distance, relative position and absolute 

diameter. Figure 10 shows a schematic representation of the parameters involved in the estimate  

of the distance where s is the distance between cameras, and β is the horizontal angle of view of  

the cameras. 

Figure 10. Schematic representation of the parameters involved in a distance estimate with 

a stereovision system. 

 

These parameters allows the estimate of the distance to a pixel located in the column x1 of the left 

image and x2 of the right image by analytically computing the angles φ1, φ2 and φ3. Then, the distance 

d from the planes of the two stereo cameras to the plane of the pixel can be obtained with: 

 

φ1 

s 

φ2 

d 

0º-β/2º β/2º

β 

φ3 



Sensors 2014, 14 11567 

 

 

3

21

sin

sinsin


 


s

d  (1)

The procedure for distance estimate can be improved by correcting the geometric camera 

nonlinearities with a specific camera calibration procedure [16,29]. Table 5 shows the intrinsic and 

extrinsic camera calibration parameters found for the low cost stereovision system used in this paper. 

Table 5. Camera calibration parameters.  

In
tr

in
si

c 

Right camera 

Focal length fc_r [846.02 841.61] 

Principal point cc_r [327.45 218.01] 

Skew alpha_r 0.00 

Distortion kc_r [−0.13106 0.09150 −0.00076 0.00250 0.00000] 

Left camera 

Focal length fc_l [865.54 860.67] 

Principal point cc_l [309.90 238.60] 

Skew alpha_l 0.00 

Distortion kc_l [−0.11702 −0.00767 0.00116 0.00018 0.00000] 

E
xt

ri
n

si
c Position of the right 

camera in relation to 
the left camera 

Rotation om [−0.00426 −0.00369 −0.00061] 

Translation T [0.06060 −0.00025 −0.00028] 

The relative position of a pixel (x, y) can be computed from the distance d, the size of the image 

(rows, cols), and the relative location of the pixel in one image (x1, y1) of the stereovision although this 

computation requires the determination of the scale (xScale, yScale) of the pixels in the image: 

cols

d
xScale 2

tan2



 , 

rows

d
yScale 2

tan2



  

(2)

xScale
cols

xx 





 

21 , yScale
rows

yy 





 

21 , 1  
2o

row
y y yRel    

 
 (3)

Finally, the real target diameter Ф expressed in millimeters can be computed analytically from the 

apparent diameter in pixels Ф1 obtained from the left image of the stereovision system: 

   21
2

1 sincos yScalexScale    (4)

4.4. Experimental Results 

Table 6 summarizes the average (AV) and standard deviation (SD) error values obtained during the 

estimate of the distance, position and diameter of the targets with the stereovision system. Table 6 

shows one column with the results obtained when processing the information from the raw images 

(camera not calibrated) and another column with the results obtained when the information from the 

images was geometrically corrected (calibrated camera). Complementarily, Table 7 shows the distance 

error, the position error, and the diameter error in the case of using a calibrated camera when placing 
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an apple in the 49 different grid locations previously defined. The information of Table 7 is 

summarized in an average form in Table 6. For example, in the case of estimating the error at 977 mm 

when using the camera calibrated method, the average distance error obtained in the 49 images 

analyzed (the apple was placed at 49 grid locations) was 21.16 mm and the standard deviation  

4.29 mm; the average position error was 6.98 mm and the standard deviation 3.91; and the average 

diameter error was 1.55 mm and the standard deviation 0.98 mm. 

Table 6. Error detection in terms of average (AV) and standard deviation (SD). 

Target 
Distance 

(mm)  

Camera not Calibrated {AV/SD} (mm) Camera Calibrated {AV/SD} (mm) 

Distance 

Error 

Position 

Error 

Diameter 

Error 

Distance 

Error 

Position 

Error 

Diameter 

Error 

Pushpin 

203 7.43/1.87 3.18/1.37 0.32/0.22 2.88/1.00 1.30/0.73 0.28/0.19 

431 36.13/15.64 5.17/2.67 1.22/1.10 19.02/1.91 2.31/1.33 1.24/1.23 

605 74.22/21.19 10.95/6.29 0.69/0.56 48.46/8.75 5.64/2.81 0.75/0.66 

804 57.51/30.62 16.87/8.77 1.13/0.83 22.82/25.28 9.79/5.29 1.02/0.73 

977 78.06/44.18 18.42/13.83 1.73/1.25 30.32/6.67 3.09/1.75 1.55/1.03 

1197 113.17/67.80 31.74/24.66 3.40/2.51 41.10/10.75 9.23/13.29 3.21/2.64 

1402 148.70/95.42 37.37/28.53 3.46/2.16 65.40/17.76 3.42/2.51 3.22/2.15 

1607 206.40/133.99 48.56/37.67 2.19/1.60 89.30/23.63 5.40/3.67 1.78/1.33 

1793 242.12/154.97 58.35/46.43 1.92/1.33 91.96/25.43 5.40/4.28 1.51/0.98 

2025 305.05/210.39 79.22/64.39 2.85/1.67 116.03/31.82 8.83/7.61 2.34/1.52 

Apple 

203 - - - - - - 

431 6.92/6.13 8.40/2.26 5.70/1.38 30.11/1.73 6.55/1.86 0.92/0.57 

605 28.87/16.35 11.57/6.09 8.44/3.68 5.82/3.48 7.94/2.65 3.60/1.81 

804 40.38/22.85 16.84/9.70 6.05/4.96 29.26/8.90 10.90/8.49 2.71/2.48 

977 54.55/30.61 15.93/8.89 5.61/3.28 21.16/4.29 6.98/3.91 1.55/0.98 

1197 90.32/51.95 25.14/18.99 6.77/5.21 9.52/ 7.37 8.17/9.38 1.45/2.62 

1402 133.77/80.46 35.19/23.31 12.30/8.77 20.10/15.14 10.02/5.30 5.98/4.15 

1607 197.87/113.40 51.60/38.54 10.70/6.99 42.74/16.56 9.50/5.88 2.23/2.14 

1793 231.27/134.93 59.21/45.40 10.94/6.86 39.26/15.78 7.65/4.75 1.48/1.51 

2025 288.93/174.68 75.99/60.56 13.00/8.85 65.14/24.93 9.94/5.17 2.80/2.50 

Pear 

203 - - - - - - 

431 7.97/4.59 11.95/1.97 5.73/1.41 19.15/1.18 10.62/1.93 2.76/1.01 

605 33.60/19.08 14.45/5.73 7.91/2.68 5.76/5.03 9.66/2.32 4.99/1.13 

804 38.71/21.54 23.74/5.56 4.62/3.02 22.02/5.24 19.76/3.91 1.56/1.14 

977 55.51/28.70 18.92/7.75 4.78/2.87 12.46/2.90 10.48/4.13 1.36/0.74 

1197 94.37/54.18 27.57/15.66 6.54/4.26 7.03/7.04 10.98/4.17 2.73/1.35 

1402 148.79/82.45 43.37/29.50 9.57/6.53 19.44/16.06 13.41/4.31 4.07/3.50 

1607 196.39/116.06 54.22/37.79 8.27/5.43 48.55/16.43 14.12/5.53 2.73/1.72 

1793 230.41/134.35 62.43/45.09 8.71/5.35 47.21/13.27 10.57/3.18 2.86/1.48 

2025 298.65/183.36 81.01/62.16 10.83/7.29 76.26/20.67 13.38/6.30 3.80/2.32 
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Table 7. Distribution of the errors in the measurement grid in case of detecting an apple 

with a calibrated camera. 

Distance (mm) Distance Error (mm) Position Error (mm) Diameter Error (mm) 

977 
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Table 6 shows that the absolute average and standard deviation obtained improves largely in the 

case of correcting the geometric distortion of the cameras. In the case of using a pushpin as a vision 

target with the camera calibrated, the average distance error was approximately 5% in a range from 

203 to 2015 mm but the average error in the estimate of the diameter was in a range 12% to 30% 

because of its small size (the centroid of the pushpin is computed with very few pixels). In the case of 

the apple target, the average distance error was approximately 4% and the average diameter error was 

in a range from 2% to 4%. Finally, in the case of the pear, the average distance error was 

approximately 4% and the average diameter error was in a range from 4% to 6%. These results 

validate the use of the proposed low cost stereovision image acquisition system for different targets 

and increases the fruit distance range analyzed previously in [20] from 850 mm to 2025 mm. 

5. Automatic Harvesting 

The complete proposal of an automatic fruit harvesting system requires the control of the robotic 

arm based on the positioning information provided by the stereovision system. The stereovision system 

is directly attached to the gripper of the robotic arm (Figure 6b) in order to obtain relative positioning 

information between the gripper tool and the fruit. The complete development of this experimental 

assessment requires four stages: (1) initial fruit detection; (2) rough approach to a selected fruit; (3) 

fine approach to a selected fruit; and (4) fruit pickup. In this paper, the automatic fruit harvesting 

system has been applied to pick up some pears in controlled laboratory conditions. In the future, this 

harvesting system will be validated in real outdoor farming conditions. 

5.1. Initial Fruit Detection 

The initial fruit detection procedure, limited to the case of harvesting pears and performed in 

laboratory conditions, has been primarily addressed by applying a simple RGB color threshold [20] to 

the stereovision images but real outdoor conditions affected by changing illumination conditions may 

require a more elaborated segmentation procedure.  

Figure 11. Example of fruit segmentation and location in a stereovision image. 
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The assumptions made in this initial fruit detection were: (1) the stereovision system, placed in the 

gripper tool of the robotic arm, will be always in a known initial reference position; and (2) the 

distance range of the fruits will be from 203 to 2025 mm from the stereovision system. Then, the 

stereovision system can provide an estimate of the distance, location and diameter of the fruit, affected 

by the detection uncertainty stated in Table 6. This procedure ends with the selection of a fruit in the 

image based on their diameter estimate. Figure 11 shows the fruit segmentation results obtained in the 

case of detecting a pear in laboratory conditions. 

5.2. Rough Approach to a Fruit 

The initial displacements of the robotic arm in order to move the gripper tool in the direction of a 

selected fruit must be considered as a rough approach that will be affected by the uncertainty of the 

detection procedure. The estimate of the distance and position of a selected fruit relative to the 

stereovision system located in the gripper tool is first computed in order to rotate the robotic arm in the 

direction of the fruit. The results of Table 7 showed that the distance, position and diameter errors used 

to be lower when the fruit was placed in the center of the image. So the estimate of the distance to the 

fruit is obtained again and used to compute the inverse kinematics of the robotic arm in order to move 

the gripper tool very close to the selected fruit (at an approximate distance of 250 mm). Figure 12 

shows an image of the result of this rough approach stage. 

Figure 12. Example of a rough approach to a fruit. 

 

5.3. Fine Approach to a Fruit 

A specific procedure is proposed in order to control the fine displacement of the gripper tool in 

order to pick up a selected fruit. Like in [15], this fine approach is based on moving forward the 

gripper tool of the robotic arm according to the position of the centroid of the selected fruit in the 

image acquired by the stereovision system. Then this fine approach algorithm suggests small vertical 

and horizontal relative displacements the gripper tool in order to center and finally pickup the fruit. 

Figure 13 shows an image of the result of this fine approach. 
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Figure 13. Example of a fine approach to a fruit. 

 

The use of the proposed stereovision system in this fine approach is somewhat problematic because 

the limited angle of view of the stereovision system does not provide a complete image of the tracked 

fruit at very short distances. In order to illustrate this problem, Figure 14a shows an image of a fruit in 

front of the gripper before starting the fine approach and Figure 14b shows the image obtained when 

the gripper tool was ready to pick up the fruit (position shown in Figure 13). The problem is then to 

stop this fine displacement in order to pick up properly the fruit with the gripper tool. In this paper, this 

iterative procedure was stopped by applying a threshold to the area of the fruit in the proximity images 

(Figure 14a). However, this estimate may require the use of an additional contact or non-contact sensor 

in the gripper tool in order to stop this iterative fine approach when picking different types of fruits. 

Figure 14. Example of stereovision images obtained while performing a fine approach to a 

fruit: (a) at the beginning of the approach; and (b) at the end of the approach. 

 
(a) 

 
(b) 
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5.4. Fruit Pickup 

Finally, the mechanical actions proposed to pick up a pear are: (1) close the gripper and (2) rotate 

the gripper in order to simulate the motion of the hand performed by a human operator during a pickup 

fruit operation. Figure 15 shows an image of the resulting mechanical action. With such approach, the 

effective pressure applied to the fruit is very week as the role of the moving fingers is just to avoid 

lateral fruit displacement instead of holding the fruit in the air, task performed with the lower fixed 

fingers. Future works will be focused on analyzing the effective pressure applied by the gripper tool 

and by verifying the effect of the proposed rotation of the gripper in pears and in other fruits. 

Figure 15. Example of fruit pickup in laboratory conditions. 

 

5.5. Fruit Pickup Performances 

The proposed automatic harvesting system has been tested in laboratory conditions. Tables 8 and 9 

show some detection results obtained in the initial fruit detection procedure which is the most critical 

stage of the complete harvesting procedure. For the sake of comparison, the images analyzed have 

been segmented by applying a color intensity threshold (Table 8) and by applying a detection based on 

the definition of Linear Color Models (LCM) [7] (Table 9). 

Table 8 shows different cases of images obtained with the stereovision system and the segmentation 

results obtained by applying the Otsu threshold segmentation [30] combined with object size filtering 

(objects with less than 200 connected pixels are discarded) for noise reduction, and a final object 

filling just for better representation. In general, the differentiation between the reddish pears and the 

greenish foliage is not problematic but the inclusion of an occluding brownish synthetic branch in front 

of the pear is not correctly detected by this basic segmentation procedure. In this case, the inclusion of 

additional morphological conditions such as the verification of the angle of orientation (discarded if 

lower than 45°), diameter and axial symmetry enables a preventive discarding of the current pear as 

candidate for automatic harvesting although the selection still fails in some cases. 
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Table 8. Fruit detection: Threshold segmentation case. 

One Side Image Segmented Image 
Pear Estimate Candidate for 

Harvesting Diameter Orientation 

 

276 pix 89.9° Yes 

 

244 pix 75.4° Yes 

 

226 pix 53.9° Yes 

 

239 pix 33.7° 
No 

(orientation) 

 

239 pix 14.9° 
No 

(orientation) 

 

306 pix 70.3° 

No 

(non pear 

symmetry) 

 

228 pix 73.4° 

No 

(non pear 

symmetry) 

 

236 pix 86.0° 
Yes 

(failed) 

Alternatively, Table 9 shows the segmentation results obtained by LCM segmentation method 

which is robust to illumination changes and texture color similitude. This segmentation method is 

applied to the same images shown previously in Table 8 in order to compare the results. In this case, 

the pixels of the synthetic and overlapping brownish branch are not classified as members of the pear 

class and the pear analyzed appear divided in different parts, losing the size and axial symmetry of a 

typical pear. In general, the occlusion of the fruit by branches is a problematic harvesting case that 

must be detected and avoided. The occlusion of the fruit by leaves may require the injection of some 

air over the surface of the fruit in order to re-detect the fruit and re-evaluate the remaining fruit 

overlapping remains and the harvesting procedure avoided. 
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Table 9. Fruit detection: LCM segmentation [7] case. 

One Side Image Segmented Image 
Pear Estimate Candidate for 

Harvesting Diameter Orientation 

  

255 pix 89.5° Yes 

  

227 pix 74.6° Yes 

  

218 pix 53,1° Yes 

  

222 pix 32.9° 
No 

(orientation) 

  

221 pix 13.4° 
No 

(orientation) 

  

211 pix 

87 pix 

76.5° 

29.2° 

No 

(occluded) 

  

105 pix 

130 pix 

67.9° 

13.4° 

No 

(overlapping and 

symmetry) 

  

117 pix 

183 pix 

86.4° 

83.4° 

No 

(overlapping and 

symmetry) 

Finally, Table 10 summarized the fruit pickup-time performances obtained with an Intel i7 

computer for the different algorithms and steps involved in the complete harvesting procedure. The 

main time-limitation was imposed by the image acquisition system which provides images at a 

continuous and unsupervised frame rate of 25 frames per seconds but with only an effective lapse of 30 ms 

between images. This means that, after stereovision image acquisition, the image processing algorithms 

have less than 30 ms in order to operate at full camera frame rate and avoid image skipping. 
  



Sensors 2014, 14 11576 

 

 

Table 10. Fruit pickup time-performances. 

Fruit Pickup Stage 
Algorithm Computation Robotic Arm Motion 

min average max min average max 

Fruit detection  <30 ms     
Inverse kinetatics   5 ms    
Rough approach    3.1 s 4.2 s 9.6 s 

Fine approach to a fruit 
(1 iteration) 

 <30 ms 35 ms 0.9 s 1.1 s 1.4 s 

Fine approach to a fruit 
(operation complete) 

    7.9 s 11 s 

Fruit pickup     2.0 s  

Table 10 shows that the fruit detection stage in the stereo image acquired, composed by intensity 

color segmentation, image labeling and centroid fruit estimate required less than 30 ms. The computation 

of the inverse kinematics was also very fast because it was based on a deterministic computation 

without any iterative procedure. The rough approach stage is very dependent on the mechanical design, 

motors and configuration of the robotic arm; in the current prototype this initial approach required 4.2 s in 

average although this value can be reduced easily just by reducing the gear of the DC motors used in 

the robotic arm. The fine approach to a fruit is currently performed in an iterative way by using the 

information of the image acquisition system in a visual control loop. This iterative implementation  

is not optimal as it spends 7.9 s in average in a short approach but is proposed as it is able to 

automatically compensate any lateral displacement of the robotic arm when carried in a harvesting 

platform. The mechanical action required to pick up the fruit is currently configured as a fixed 

displacement and requires approximately 2 s. In average, the proposed automatic system for fruit 

harvesting is able to pick up one pear from the tree in an average time of 16 s in the case of laboratory 

conditions. Future work will be focused on evaluating fruit pickup system performances in a real 

farming operation and in optimizing the proposed automatic fruit harvesting prototype. 

6. Conclusions and Future Work 

This paper proposes the development of a low cost fruit harvesting system by combining a low cost 

stereovision system and a robotic arm. The stereovision system, placed in the gripper tool, will provide 

direct information and control of the actions performed by the robotic arm. The paper first proposes the 

estimation of fruit target distance, position and size accuracy when using a low cost stereovision 

system and in the cases of correcting and not correcting geometric camera distortions. A total of  

1470 images have been processed corresponding to three targets: a reference small pushpin, an apple 

and a pear; these targets were located in 49 positions of a relative grid, and in 10 intermediate distances 

from 205 to 2050 mm. In all cases, the distance, position and size error was lower in the case of 

correcting the geometric distortions originated by the cameras; obtaining average distance errors in a 

range from 4% to 5% in the case of a pushpin as a target and in a range from 2% to 6% in the case of a 

pear and an apple as targets. These results validate the use of the proposed low cost stereovision 

system for fruit distance and parameter estimate. 
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Then, the paper proposes the complete development of a fruit harvesting system based on the use of 

a stereovision system attached into the gripper tool of the robotic arm. The gripper tool has been 

designed to facilitate fruit holding and manipulation whereas the stereovision system provides fruit 

size and positioning information relative to the gripper tool. The complete automatic fruit harvesting 

procedure was performed by developing four intermediate stages: (1) initial fruit detection; (2) rough 

approach to a selected fruit; (3) fine approach to a selected fruit; and (4) fruit pickup. 

The initial fruit detection stage was specifically tested with two segmentation algorithms in the case 

of using reddish pears as fruit targets. The time-performances of the complete harvesting prototype 

was also tested, requiring an average time of 16 s to detect and pick up a pear whereas the 95% of this 

time was originated in mechanical limitations imposed to the robotic arm. As a future work, this 

harvesting system will be validated and optimized in real outdoor farming conditions. The final goal 

will be the combination of several robotic arms operating in parallel in order to define a versatile 

robotized harvesting platform. 
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