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Abstract: Three different nanosensors with core-shell structures were fabricated by 

molecular self-assembly and evaporation techniques. Such closely packed nanoparticles 

exhibit fine optical properties which are useful for biochemical sensing. The refractive index 

sensitivity (RIS) of nanosensors was detected by varying the refractive index of the 

surrounding medium and the decay length of nanosensors was investigated using a 

layer-by-layer polyelectrolyte multilayer assembly. The results showed that the thickness of 

the Au shell plays an important role in determining the RIS and the decay length. A system 

based on localized surface plasmon resonances (LSPR) sensing was constructed in our 

study. The core-shell nanosensors can detect 10 ng/mL atrazine solutions and are suitable for 

pesticide residue detection. 
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1. Introduction 

Noble nanoparticles such as gold and silver have attracted much attention both in the biosensor and 

disease diagnosis fields during recent years due to their unique optical properties [1–3]. One of the most 

interesting properties is known as localized surface plasmon resonances (LSPR), which results from the 

collective oscillation of the free electrons excited by an incident electromagnetic wave [4,5]. It is now 

well established that the properties of nanoparticles are strongly dependent on the nanostructure shape, 

size and composition [6]. The plasmon resonances associated with noble metal nanostructures create 

sharp spectral absorption and scattering peaks, as well as strong electromagnetic near-field enhancement 

near the nanoparticles’ surface, and the position of that is very sensitive to tiny variations in the local 

environment of the nanoparticles [7]. Therefore, sensors based on LSPR sensing are suitable for 

molecular detection at low concentration, especially in chemical and biological sensing, which is 

becoming a research hotspot. 

The commercialized SPR sensors have many advantages as optical biosensors in sensitivity and real 

time detection of biomolecular interactions, which allow them to be widely applied in practice. 

However, LSPR sensors that take advantage of the SPR sensing principle and the characteristics of 

binding interactions have emerged as a novel sensing tool which has been used to monitor a variety of 

processes, including antigen-antibody interactions, and DNA hybridization [8,9]. They have a great 

advantage in the simplicity of the detection system, that is, input as light and output as 

transmitted/reflected light intensity, allowing for small sensing devices [10,11]. The most important 

advantage is that compared with SPR sensors or other sensors, to a certain degree LSPR sensing can 

offer high sensitivity for low-abundance analysis without labels because of the highly localized 

electromagnetic field near the nanoparticle surfaces that is directly associated with the limit of detection 

and the sensitivity of nanosensors.  

The LSPR sensing principle mainly depends on the spectral shifts caused by the surrounding 

dielectric environmental changes when adsorbents bind to the surface of the nanoparticle. The optical 

responses of LSPR sensing are determined not only by the refractive index of the medium, but also by 

the distance from the metal surface. The electromagnetic field surrounding the nanoparticles is not 

uniformly distributed, but is a function of the distance from the metal surface, and the evanescent 

plasmon field away from the nanoparticles’ surface decays exponentially [12]. The decay, which 

depends on the type of metal and physical parameters of the nanoparticles, can be best described via the 

following equation [13]: 

[1 exp( / )]R m n d l= Δ − −  (1)

where R is the wavelength shift or intensity change; m is the refractive index sensitivity, that is, resonant 

peak shift or intensity change per refractive index unit (RIU) change; Δn is the change in refractive index 

(RI) of the surrounding medium, which is usually caused by adsorbents; d is the thickness of the binding 

layer, and l is the effective plasmon decay length. From the above equation it is found that the plasmon 

response of metal nanoparticles decreases exponentially far away from the nanoparticle surface. 

Researchers have found that the enhanced electromagnetic fields in LSPR are strongly localized, with 

decay lengths of several nanometers in any direction normal to the nanoparticle surface. Further, the 

decay length of LSPR can be tuned by varying the nanoparticle size, shape, and composition [14–16]. 
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We have tried to fabricate ordered arrays of non-close-packed spherical polystyrene particles which 

can be prepared to exhibit precisely controlled diameters and interparticle distances. The size of PS 

spheres can be efficiently reduced with plasma etching, and the surface topography can be manipulated 

by controlling the initial PS sphere size and the time of plasma exposure. These non-close-packed LSPR 

sensors have great advantages of tunable size and interparticle distances of the PS spheres, which can 

lead to different LSPR resonant peaks and can be suitable for special sensing applications such as 

surface wettability or hydrophobicity. Some experiments show that the uniformity in size, interparticle 

distance and surface topography is exceedingly inhomogeneous. The plasma etching parameters were 

difficult to determine for us to satisfy our experimental requirements. Reproducibility is extremely 

important for a sensitive biosensor, so we chose a core-shell structure for sensing. Co-Ag nanoparticle 

core-shell structures have been synthetised [17]. Researchers found a strong enhancement of the 

magneto-optical Faraday rotation in all-metal core-shell Co-Ag nanoparticles attributed to localized 

surface plasmon resonance, which may enable the design of nanostructures for modulated sensing, imaging 

of magnetic fields and miniaturized magneto-optical devices, but compared to Au-shell structures, Ag-shell 

ones are easily oxidised and unstable. In addition, Au can react with sulfhydryl compounds forming 

stable and solid Au-S bonds, which offers a way to combine with more molecules for surface 

modifications suitable for sensing. 

In our quest for effective and stable sensors that would perform well in experiments, in this study we 

fabricated three different sensors by varying techniques and parameters. Next, we further investigated 

the optical properties of the nanosensors, as well as their sensing performance, such as the RIS and the 

decay length, and the thickness of Au shell and Au film substrate is considered to be a reasonable 

method to tune the properties of the RIS and the decay length which play an important role in analytical 

and biological applications. Finally, we provide an overall and reasonable idea to evaluate the sensing 

capability in a LSPR sensing procedure. 

2. Experiment Section 

2.1. Materials 

The substrates used were JGS1 quartz glass slides (10 mm × 10 mm, supplied by Jinghe Optical 

Instrument Factory, Jiangsu, China; polystyrene spheres (PS: mean diameter: 590 nm, Bangs 

Laboratories Inc., Fishers, IN, USA); Gold (99.99%, Shuosong electronic technology limited company, 

Shanghai, China); polyallylamine hydrochloride (PAH, 58 kDa, Sigma-Aldrich, St. Louis, MO, USA); 

polystyrene sulfonate, sodium salt (PSS, 70 kDa, Sigma-Aldrich); sodium chloride (99.5%, J&K, 

Beijing, China); H2SO4 (98%), H2O2 (30%), alcohol (99%) and ammonia solution (25%) were received 

from Heowns (Tianjin, China); 4,4-dithiodibutyric acid (DDA) 1-ethyl-3-[3-dimethylaminopropyl] 

carbodiimide hydrochloride (EDC), monoclonal mouse anti-IgG atrazine antibody (ABIN234335, 

purified liquid) was purchased from Antibodies-Online GmbH (Aachen, Germany) and 

N-hydroxysuccinimide (NHS) was acquired from Sigma-Aldrich (Schnelldorf, Germany). Atrazine, 

phosphate-buffered saline and high-purity nitrogen obtained locally. All solutions were prepared using 

triply distilled water. 
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2.2. Apparatus 

UV-VIS-NIR light sources (DH-2000-BAL, Balanced Deuterium Tungsten Source, 210–1700 nm, 

Ocean Optics. Inc., Dunedin, FL, USA), optical probes (Premium 600 um Refl. Probe, VIS/NIR), 

Spectrometers (Maya2000 Pro, Ocean Optics. Inc.), thin films (WS-1, diffuse reflectance standard, 

PTFE, Ocean Optics. Inc.), pulp refiner (KW-4A model, Chinese Academy of Sciences, Beijing, China), 

SEM (SSX-550, Shimadzu, Kyoto, Japan), ion sputtering instrument (SBC-12, Kyky Technology Co. 

LTD., Beijing, China), Peristatic pump (Masterflex L/S, Cole-Parmer, Vernon Hills, IL, USA), Flow 

cell and trestle table. 

2.3. Detection System 

The solution provided by peristaltic pump flowed into the flow cell from the left beaker, and the water 

solution was collected in the right beaker shown in Figure 1a. The input light produced by the light 

source shined vertically the surface of the nanosensors by optical probe and the reflected signal was 

obtained by the spectrograph, and a computer processed the reflected signal to produce an output 

reflectivity or extinction spectrum. Figure 1b is a schematic diagram of core-shell nanosensors in 

reflective mode. The core-shell nanosensors were fixed in the flow-through cell. The reflectivity is equal 

to the reflective light intensity divided by incident light intensity. It is dimensionless number and is the 

applied normalization method in this paper. 

Figure 1. (a) A photograph of the detection system; (b) A schematic diagram of core-shell 

nanosensors in reflective mode.  

(a) (b) 

2.4. Preparation of Core-Shell Nanosensors 

The LSPR-based nanosensor is a core-shell structured nanoparticle layer substrate constructed of 

monolayers of closely-packed nanoparticles [18,19]. PS nanospheres were used as the “core” of the 

nanochip, and a gold layer was applied with the “shell”, which was thermally deposited onto the core 

surface shown. To form closely-packed monolayerws, all glass slides were cleaned for 1 h in freshly 

prepared “piranha” solution (H2O2:H2SO4, 3:7 by volume. Caution: “piranha” solution is extremely 

corrosive and boils upon mixing). This was followed by a rinse in ultrapure water and sonication in a 

mixed NH3:H2O2:H2O = 1:1:5 (by volume) solution for 1 h to obtain a hydrophilic surface. Finally, all 
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glass slides were washed in ultrapure water in which they were stored until use. Next, a drop of mixture 

solution from a commercially purchased suspension of polystyrene spheres with a diameter of 590 nm at 

a concentration of about 10% and ethanol by volume 1:1 was spin-coated on the slide at a typical rotation 

rate of 2500 rpm for 10 s. The slide was slowly immersed into the container with ultrapure water. After 

the monolayer of PS in water was stable, the monolayer of PS was absorbed on the other slide. Au shell 

and film were formed by using an ion sputtering instrument (conditions: vacuum: 10 Pa; current: 10 mA; 

rate: 1 nm/s). 

2.5. Preparation of the Polyelectrolyte Multilayers by Layer-by-Layer Assembly 

Prior to the layer-by-layer (LbL) assembly, the nanosensors were washed 20 min in ethanol and dried 

under a nitrogen stream. We used layer-by-layer deposition to sequentially deposit polyelectrolyte layers 

of opposite charge on immobilized gold film [20]. The LbL procedures were carried out as follows: first, 

the nanosensor was immersed 15 min in a solution of the positive polyelectrolyte poly (allylamine 

hydrochloride) (PAH) with a concentration of 1.0 mM, then washed in ultrapure water. Next, the 

nanosensor was washed successively in water and 0.1 M sodium chloride solutions to get rid of 

superfluous PAH, then it was immersed 15 minutes in a negatively charged polyelectrolyte solution of 

poly(styrenesulfonate) sodium salt (PSS) with a concentration of 1.0 mM. A number of polyelectrolyte 

bilayers were sequentially deposited on the slide in the similar manner. After the deposition of each 

polyelectrolyte layer, the slide was washed three times and dried under a nitrogen stream, and the 

extinction spectrum was measured by the detection system. 

2.6. Biofunctionlization of Core-Shell Nanosensors 

The core-shell nanosensors were washed with ethanol/acetone mixture (volume ratio of 1:1) in an 

ultrasonic bath at room temperature for 30 minutes and dried under a nitrogen stream, followed by 

immersion in 1 mM DDA solution for 12 h at room temperature. Then, the core-shell nanosensors were 

washed with ethanol to remove the excess thiol and dried with nitrogen. Further, the terminal carboxyl 

groups of the thiolated surface were activated with mixed EDC/NHS (0.4 mM/0.1 mM) aqueous 

solution at room temperature for 50 min. Next, anti-IgG atrazine monoclonal antibodies diluted in PBS 

buffer (100 μL of 100 μg/mL) were incubated with the activated gold shell at 4 °C for 12 h. After PBS 

rinsing, a BSA solution (0.1 mg/mL) was used to block the non-specific binding sites of the 

antibody-modified NPs. Finally, various atrazine dilutions with concentrations ranging from  

10 ng/mL to 1 μg/mL diluted in PBS were incubated with antibody-modified nanosensors at 4 °C for 3 h to 

complete the antibody-antigen immunoreactions. The LSPR responses were recorded after each (bio) 

functionalization step by the detection systems.  

3. Results and Discussion 

3.1. The Core-Shell Nanosensors 

In our study three different LSPR core-shell nanosensors (shown in Figure 2 and called for 

convenience α, β, γ in following sections) were fabricated by using spin-coating and Au deposition 

technology. There are two key points in the process of producing the sensors: (1) the concentration of the 
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PS must be appropriate in the spin-coating step, otherwise the PS will clump or distribute loosely and not 

be able to form a uniform large-area monolayer; (2) the slide dipping into the water must be extremely slow, 

because the connection strength between PS particles is very weak. Figure 2 shows the three different LSPR 

nanosensors. The α type sensor was a 30 nm Au shell on a 590 nm monolayer of closely-packed PS 

supported on a glass slide. The β type sensor was a 60 nm Au shell on the 590 nm closely-packed PS 

monolayer supported on the glass slide. The γ type sensor was a 30 nm Au shell on a 590 nm monolayer 

of closely-packed PS supported on a 5 nm Au film over the glass slide. 

Figure 2. The structure of the three types of nanosensors. 

 

Figure 3 is the SEM image of the PS monolayer on the glass slide measured by scanning electron 

microscope (acceleration voltage: 10 kV, magnification: 18,000× and working distance: 10 mm). It is 

apparent that the nanoparticles are closely-packed with each other, which provides an effective support 

for the stability and repeatability of the nanosensors. 

Figure 3. SEM image of closely-packed 590 nm PS supported on a glass slide. 

 

The LSPR peak shifts from 750 nm to 905 nm as shown in Figure 4 when the surrounding medium 

changes from air to water. This shows that the nanosensor is exceedingly sensitive to the RI of the 

surrounding medium, so this sensor can be used for high sensitivity sensing. 



Sensors 2014, 14 13279 
 

Figure 4. The reflectivity value (Ref) of α type nanosensor in air and water. 

 

3.2. Bulk Refractive Index Sensitivity and Figure of Merit of the Nanosensors 

The simplest sensing application of nanosensors is to detect changes in the bulk refractive index of 

their environment through shifts in the LSPR peak wavelength. Because LSPR sensing is based on 

spectral peak shifts, the precision that can be achieved with respect to changes in the refractive index 

depends on the sensitivity and the peak line width. Larger nanoparticles tend to have high sensitivities, 

but their peaks are broadened by multipolar excitations and radiative damping. The structure and size of 

nanosensors have an influence on the resonance peak and the peak width, therefore the figure of merit 

(FOM) is very important for evaluating the sensing ability of nanosensors. LSPR peaks are expressed by 

the reflectivity, which is defined as the minor reflectivity with respect to the position of LSPR peaks. 

The reflectivity can be measured by the detection system described above. A FOM obtained by dividing 

the sensitivity by the resonance line width is widely used to characterize nanosensors’ sensing 

capabilities The LSPR spectrum responses to three different sensors were detected in this study. The RIS 

of various structures was determined independently by measuring the extinction spectra in a series of 

solvents by varying RI values, which is the common method of determining the RIS. The RI of the different 

solvents was measured using an Abbe refractometer at room temperature. The solvents used were (RI in 

parentheses) water (1.333), ethanol (1.361) and n-heptanes (1.386). 

According to the test results for the sensor chip β exposed to different solution presented in Figure 5a, the 

LSPR peak wavelength shifts remarkably from 726 nm to 845 nm when the refractive index varies from 

1.000 to 1.386. When the refractive index of the medium varies slightly from 1.361 to 1.386, the LSPR 

peak also shifted by about 8 nm. This proved that the sensor chip β is exceedingly sensitive to refractive 

index changes and can be developed for highly sensitive biosensors. It is apparent that the peak of the 

sensor chip β was broadened in going from from air to solutions. This happens because peak width is 

related with the dielectric properties of the surrounding medium. 

In order to investigate the overall relationship between resonant wavelength and the refractive index, 

LSPR peaks as a function of the refractive index for the sensor chip α, β, γ are depicted in Figure 5b. It 

can be easily found that the LSPR peak wavelength response is approximately linear to changes in 

refractive index of the surrounding medium. 
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Figure 5. (a) The reflectivity values of nanosensor β in different surrounding media with 

respect to air, water, ethanol and n-heptane, respectively. All values of the reflection are 

applied normalization method; (b) LSPR peaks of α (crossed form), β (round form), γ (star 

form) in four mediums with respect to air, water, ethanol and n-heptane, respectively. Three 

lines are plotted according to the least square method (blue solid line, red solid line and green 

solid line). 

 

Therefore, the refractive index sensitivity m of a particular nanoparticle type is usually reported in 

nanometers of peak shift per refractive index unit (nm/RIU), that is: 

/m d dnλ=   (2) 

As shown in Figure 5b, although the plasmon resonance wavelength is not strictly linear to the index of 

refraction, it is linear to a good approximation over small ranges of n (R2 > 0.95). From the linear 

regressions of Figure 5b, we are able to calculate the bulk RIS (wavelength) mα = 472.17 nm/RIU  

FOMα = 2.95, mβ = 300.16 nm/RIU FOMβ = 2.5 and mγ =100.21 nm/RIU FOMγ = 1.87. Obviously, the α 

type sensor is the most sensitive among the three types of sensors. As to the α, β type sensor, the 

resonance peak is blue-shifted in air when the thickness of Au shell decreases. The surface charges in the 

gold film provide the restoring force. The increase in the thickness of Au film leads to enhanced surface 

charge strength and increased restoring force. The higher plasmon energy caused by increased restoring 

force leads to the blue-shift of the dipole resonance. The thickness of the Au shell which was considered 

as an essential parameter to determine specific LSPR properties can be modulated to meet the needs of 

different sensing applications in practice. For the γ type sensor, the introduction of Au film leads to a 

blue-shift of the resonance peak. This can be interpreted the coupling of delocalized plasmon and leads 

to the higher plasmon energy. The PS spheres are covered with Au shells and Au film, which improve 

the stability of the nanosensors. Note that, although the α type sensor is very sensitive to the localized 

field from above data, it is not clear that how far the sensitive region occurs or where the highly sensitive 

region is. Therefore, it is necessary to study the decay length of the nanosensors for obtaining the highly 

sensitive region. 
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3.3. The Decay Length of the Nanosensors 

If the nanosensors are to be successfully used as biosensors, we must determine the decay length to 

achieve high sensitivity when binding events occur in the decay length. Since the field decay length of 

the nanosensors is very short, the sensitivity will decrease when the size of the biomolecule is out of that 

field, so the decay length is quite important to estimate the sensitivity of the nanosensors. Because 

polyelectrolyte multilayers are simple, reproducible and have a highly controlled thickness 

polyelectrolyte multilayers were used to determine the decay length. Polyelectrolyte multilayers were 

deposited on the surface of Au film as described above and the corresponding extinction spectra were 

measured after the binding of each bilayer. The decay length of three nanosensors with different 

structures and parameters were measured according to Equation (1) in this study. The LbL assembly was 

carried out until the plasmon peak wavelength and intensity remained stable. The thickness of the layer was 

assumed to be 2.1 nm according to the measurement of the same multilayer system by Kedem [20]. 

Figure 6a is the reflectivity value of the α type nanosensor in air when the PAH/PSS bilayer was 

continuously absorbed on the surface of the nanosensor. The left black solid line is the reflectivity of that 

without the bilayer in air. The right purple solid line is the reflectivity of the α type sensor which 

absorbed 17 layers in air. The LSPR peaks shifts remarkably from 740 nm to 965 nm with the increase in 

the number of bilayers. The LSPR peak shows a tendency to stabilize when the α type nanosensor 

absorbed 17 layers of the PAH/PSS bilayer. The result shows that the delta wavelength of three 

nanosensors decreases with the increase in number of layers. For each sensor, four sets of data 

corresponding to the fourth, eighth, twelfth, sixteenth layer were selected to make fit an exponential 

curve according to Equation (1) as shown in Figure 6b. The values of m and l are shown in Table 1. 

Figure 6. (a) The plasmon resonant peak and reflectivity of the α type nanosensor in air;  

(b) The delta peak wavelength of three nanosensors as a function of number of layers. The 

fitting curve of α, β ,γ sensors (green, red and blue solid line, respectively). 

 

The RIS data have been measured according to two methods as shown in Table 1. The bulk RIS 

values of the three nanosensors have more sensitivity than the m measured by LbL assembly. However, 

the bulk RIS and m have good agreement with the tendency that the α type nanosensor has the best and 

the γ type nanosensor has the worst sensitivity in air. The α type nanosensor has great advantages not 

only in RIS, but also in the decay length among three nanosensors, indicating its potential for small 

molecule detection and improving the limit of detection. 
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Table 1. The parameters describing sensing performance for the three nanosensors. 

 Bulk RIS nm/RIU FOM m nm/RIU l/nm 

α 472.17 2.95 300 26 
β 300.13 2.50 127 10 
γ 100.21 1.87 35 8 

3.4. The Detection of Atrazine by the Core-Shell Nanosensor 

It has been proved that the three nanosensors can be used for LSPR sensing. Atrazine antigen and 

antibody were chosen to test the sensing ability of the three nanosensors [21]. After the three core-shell 

nanosensors were treated for 12 h by PBS buffer solution, the surface of the α, β nanosensors were 

broken. That is to say, the stability of the α, β nanosensors is poor, which is caused by the weak binding 

force between the nanoparticles and glass. To achieve higher stability for the α type sensor, the glass 

slide can be treated by EDA and carboxylic polystyrene spheres can be used. Carboxylic polystyrene 

spheres react with EDA and the PS become linked with the glass slide by amide bonds. This method can 

improve the stability of the α type sensor. However, the nanoparticles of the γ nanosensor were closed in Au 

shell and film, which constituted a whole, so it was very stable, so the γ nanosensor was used for the 

detection of atrazine. 

As shown in Figure 7, atrazine antibody reacted with atrazine solutions with different concentration, 

which were 10 ng/mL, 100 ng/mL and 1 μg/mL, respectively. The resonance wavelength shifted 1.5 nm, 

3 nm, 5 nm, respectively. The antibody-antigen reaction formed a new molecule and led to an increase of 

the refractive index on the surface of Au shell. The atrazine concentration can be tested by the LSPR 

peak response shown in Figure 7. Results show that the γ nanosensor can trace the content of atrazine at 

10 ng/mL. Even though there are many chemical procedures for biofunctionalization, these core-shell 

nanosensors have good potential with higher sensitivity and applicability through the use of plasmonic 

biosensors. 

Figure 7. The reflectivity value of the atrazine antibody in solutions with different atrazine 

concentrations of 10 ng/mL (green solid line), 100 ng/mL (blue solid line), 1 μg/mL (purple 

solid line); the red solid line is the reflectivity value of atrazine antibody fixed in core-shell 

nanosensors. 
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4. Conclusions 

We have presented a systematic study of the fabrication and the LSPR sensing performance of some 

new nanosensors. The core-shell nanosensors used were fabricated by assembly and ion sputtering 

technology and exhibited good repeatability and stability. The RIS was measured by two methods: one is 

the effect of the change of the surrounding medium on the refractive index; the other is using the 

polyelectrolyte LbL assembly. The decay length was obtained using polyelectrolyte LbL assembly and 

fitting to a model of an exponentially decaying surface plasmon field. Results show that the RIS and the 

decay length, which are important parameters relevant to sensing applications, could be tuned by 

varying the thickness of the Au shell for core-shell nanosensors. The core-shell nanosensors with Au 

film can monitor the content of atrazine at concentrations as low as 10 ng/mL. To meet different sensing 

demands such as biorecognition and concentration dectection, core-shell nanosensors should be further 

optimized to obtain good sensing performance. 
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