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Abstract: Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of 
sensors for detecting the environment. In this investigation such sensors are replaced 
and/or minimized by the use of a single omnidirectional camera picture stream. An area of 
interest is extracted, and by using image processing the vehicle is navigated on a set path. 
Reconfigurability is added to the route layout by signs incorporated in the navigation 
process. The result is the possible manipulation of a number of AGVs, each on its  
own designated colour-signed path. This route is reconfigurable by the operator with no 
programming alteration or intervention. A low resolution camera and a MATLAB® software 
development platform are utilised. The use of MATLAB® lends itself to speedy evaluation 
and implementation of image processing options on the AGV, but its functioning in such 
an environment needs to be assessed. 

Keywords: omnidirectional; image processing; area of interest; Prewitt edge detection; 
Kalman filter; colour routes; reconfigurable paths; MATLAB® 
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1. Introduction 

AGV sensors like infrared and ultrasonics are being replaced by using vision, which produces more 
information for controlling the vehicle. The AGV utilises a single digital camera providing 
omnidirectional (360°) vision for navigation [1]. A reconfigurable solution for manufacturers could be 
the reprogramming of such a vehicle to use alternative routes and keeping the operators’ programming 
input to a minimum, rather than implementing altering conveyor systems for transporting goods. 

The project involved a vision sensor, AGV vision navigation control and the development of  
a reconfigurable approach to prove the feasibility of using a single software platform like MATLAB®  

for speedy evaluation and implementation of image processing options. An overview of the system is 
illustrated in Figure 1. 

Figure 1. Illustrated layout of the complete system. 

 

2. Vision Sensing 

As the surroundings were to be detected by vision, the setup used a webcam using an omni-mirror 
setup placed on top of a National Instruments (NI, Austin, TX, USA) robot platform is shown in 
Figure 2. All the processing and control was done by a laptop placed on the NI platform. 

Figure 2. AGV platform using a laptop, NI robot platform and omnivision system. 
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A PC was used for the development and initial simulations. The code was then transferred to a 
laptop for navigation trials. Table 1 lists the specifications of the PC and the laptop.  

Table 1. Processor platform specifications. 

Personal Computer (PC) Laptop 
Microsoft Windows XP  

Professional Version 2002 with Service Pack 3  
Intel® Core™ Duo CPU E8400 @ 3.00 GHz  

2.98 GHz, 1.99 GB of RAM  

Microsoft Windows XP  
Professional Version 2002 with Service Pack 3  

Intel® Core™ Duo CPU T7500 @ 2.20 GHz  
789 Hz, 1.99 GB of RAM 

2.1. Omnidirectional Conversion for Vision Sensing 

Scaramuzza’s research proved that a polar transfer function can be implemented by creating  
a good panoramic image [2]. The polar transform implemented in MATLAB® applied Equation (1)  
shown below: 
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where Maximum radius represents the height of the frame to be converted and ϕ  the resolution width 
of the panoramic view, as can be seen in Figure 3. 

Figure 3. Graphical representation of a polar transform. 

 

Figure 4. Environmental picture in circular (680 × 670 pixels) mirror image. 
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This polar transform was applied to Figure 4 using MATLAB® with the result shown in Figure 5 ([3], 
pp. 1835–1839).  

Figure 5. Transferred image of Figure 4, −90° corrected and mirror image effect corrected. 

 

Figure 5 was generated with a MATLAB® function with a radial step resolution of 1° [4,5]. This 
function does the transform on pixel level and is very time consuming. It took almost 1 s for the image 
of 2.25 MB to be transformed with this function on an Intel® Pentium® 3.4 GHz CPU with 3.25 GB of 
RAM. Figure 6 shows the flowchart and Figure 7 an extract of the MATLAB® M-file providing the result. 

Figure 6. Flowchart for program—polar to Cartesian. 

Begin

Read image to be transformed

Determine the centre position of the image 
and to which point needs to be converted

Start at the first angle for conversion φ

Start at the first pixel in the centre to convert

Create new 
transform

Is the last pixel 
reached

Is the last angle 
reached

Transfer complete

End

No

No

 



Sensors 2014, 14 15673 
 

 

2.2. Omnidirectional Sensing Software in MATLAB® 

The initial development was done on single pictures taken with the omnidirectional photographic 
setup. These were changed to a video streamed system. Simulink® was incorporated for this purpose. 
Figure 8 shows a conversion model development for accessing the camera by utilising the From Video 
Device data block. The Embedded MATLAB function was written incorporating the conversion model 
seen in Figure 7.  

Figure 7. MATLAB® program extract—polar to Cartesian. 

% select picture for processing  
A = imread('C:\Image.JPG');  % Figure 4 
% select area of interest 
A = A(40:726,24:702,:); 
figure, imshow(A) 
 
% centre and the radius 
xc = 340; 
yc = 342; 
radius = 333; 
% display centre and radius 
hold on; 
plot(round(xc),round(yc),'yx','LineWidth',2);   % yellow centre 
plot(round(xc+radius),round(yc),'r+','LineWidth',2);  % red + at end 
 
startradius = round(radius); 
stopradius = 0; 
degrees = 0.8;  % resolution or width 
stopang = round(360/degrees); 
 
for thetac = 0:1:stopang  
 rst = 0; 
 for rsteps = startradius:-1:stopradius  
 Ypix = 
 round((rsteps*sin(thetac*degrees/180*pi))+(yc)); 
 Xpix = 
 round((rsteps*cos(thetac*degrees/180*pi))+(xc)); 
 rst = rst + 1; 
 tranf(rst,(stopang-thetac)+1,:)=A(Ypix,Xpix,:);  
 end  
end  
 
figure 
imshow(tranf) 

Figure 8. Simulink® model for converting omnivision pictures to a panoramic picture stream. 
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Implementing the Concept of an Area of Interest 

With the results obtained in Section 2.1, it seemed imperative to reduce the computation time for 
acquisition, conversion and display. This could be done by selecting a smaller area of interest in the 
direction of movement of the AGV as illustrated in Figure 9. 

Figure 9. Illustration of capturing a frame, selecting an area of interest for conversion and 
final resolution for conversion. 

 

2.3. Transferring the Omnivision Software from Computer to Laptop Platform 

MATLAB® has a feature, called bench, to evaluate the processing strength of computers in different 
calculating areas. The result for the platforms used in Table 1 is shown in Figures 10 and 11. 

Figure 10. MATLAB® bench feature displayed as the PC’s result, for the process speed in seconds. 

 

Figure 11. MATLAB® bench feature displayed as the laptop’s result, for the process speed in seconds. 
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Figures 10 and 11 clearly indicate that the particular PC used outperformed the laptop platform to 
which it was compared. The comparison data for other computer platforms are stored in a text file, 
“bench.dat”. Updated versions of this file are available from MATLAB® Central [6]. Keeping these 
results in mind, the results shown in Table 2 were obtained. 

Table 2. Frame rates incorporating different area of interest sizes compared to the results 
obtained on a PC and laptop. 

Input Frame Size Output Frame Size Frame Rate Obtained on PC Frame Rate Obtained on Laptop 
640 × 480 720 × 186 3.5 frames per second 0.5 frames per second 
640 × 480 720 × 186 4.5 frames per second 0.7 frames per second 
640 × 480 360 × 186 7.5 frames per second 1.3 frames per second 
640 × 480 180 × 96 14 frames per second 2.4 frames per second 

3. Navigation for the AGV Using Vision 

In a reconfigurable environment it should preferably be possible to alter the route that the AGV 
needs to travel, depending upon ordering information (origin or pickup point) and delivery of parts 
(destination) [7]. This concept was assumed for evaluating the omnivision sensor implemented in 
MATLAB® for the navigation and control of an AGV.  

3.1. Route Identification for Navigation 

Sotelo et al.’s work proved the use of lines on the side of a route or walkway, or alternatively  
a chroma route could be used for route navigation [8]. MATLAB®’s “Chroma-based Road Tracking” 
was altered for this purpose. Figure 12 illustrates the Simulink® model of the demo [9]. When running 
the demo a pre-recorded video was used as source to be processed for evaluating the road tracking 
concepts used. The model then used the chroma information of the frames to detect and track the road 
edges. The “Chroma-based Road Tracking” demo model illustrates the use of the Colour Space 
Conversion block, the application of Hough Transform block, and the advantage of the Kalman filter 
block to detect and track information using hue and saturation values of the frames from the video. 

Figure 12. MATLAB® “Chroma-Based Road Tracking” demo. 
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The demo model performs a search operation to define the left and right edges of a road by 
analysing video frames for a change in colour behaviour. The model then selects a line either because 
of an edge detected, or a line created by a change of chroma pixels, whichever has the greater 
precedence. The search is initiated from the bottom-centre of each frame and moves to both the  
upper-left and upper-right hand corners of each frame. From this model outputs were generated to 
navigate and control the AGV on a set route. 

3.2. Laptop to Motor Speed Control Interface 

There was a need to communicate the associated direction commands from the evaluation images  
of the camera system to the AGV platform. A PIC microcontroller board and software was developed 
in such a way that the direction control signal of the AGV was sent serially via the USB port of the 
laptop to the PIC board also using MATLAB®’s serial communication data block. 

4. Reconfigurable Approach Using Sign Recognition 

The concept of sign detection in conjunction with route tracking is to provide the AGV controller 
with an indication as to which route is to be taken when encountering more than one option. This is 
accomplished by incorporating left- and right turn signs, with a stop sign at its destination. This gives 
the AGV a reconfigurable route set by the operator, without programming intervention or changes, by 
placing the required signs along a changeable route. Altering the colour which the AGV responds to, 
gave rise to alternative routes for different AGV’s to follow, best illustrated by Figure 13. 

Figure 13. Incorporating signs for defining reconfigurable routes for multiple AGV’s by 
using different colours. 

 



Sensors 2014, 14 15677 
 

 

Correlation was achieved by implementing templates of the signs after initial detection of the preset 
colour for the specific AGV. An example of the templates is shown in Figure 14. 

Figure 14. Three sign templates: stop, left and right; with three orientations each, 0° + 7.5° 
and −7.5°; generated for the recognition process. 

 

4.1. Displaying the Recognition Results 

After a potential sign has been detected in consecutive video frames, the model identifies the sign to 
generate the appropriate command to be sent to the AGV. Examples of signs detected are shown in 
Figure 15. 

Figure 15. Left, right and stop signs recognised by the AGV and identification sign of each. 

   

4.2. Detecting the Colour for Different AGV Routes 

Different methods for colour detection were investigated, which included: 

• the RGB video signal implementing a tolerance for each colour signal representing this selected 
route colour;  

• HSV signal rather than the RGB signal; and  
• the YCbCr signal. This produced better results using the colour signals red (Cr) and blue (Cb). 

Using Equations (2)–(4) below, and substituting typical constants for the Y signal, Equation (5) was 
derived. The equation was implemented with the Simulink® model shown in Figure 16: 

𝑌 = 𝑘𝑟. 𝑅 + 𝑘𝑔. 𝐺 + 𝑘𝑏. 𝐵 (2)  

𝐶𝐵 = −𝑘𝑟. 𝑅 − 𝑘𝑔. 𝐺 + 𝑘𝑏. 𝐵 (3)  

𝐶𝑅 = +𝑘𝑟. 𝑅 − 𝑘𝑔. 𝐺 − 𝑘𝑏. 𝐵 (4)  

𝐶𝑔 = −1.5𝑅 + 2𝐺 − 0.54𝐵 + 0.5 (5)  

This method proved experimentally the most successful, as the colour selected made the output 
signal less sensitive to variations in different levels of lighting. 
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Figure 16. MATLAB® implementation of the Simulink® model evaluated for a set  
Green signal. 

 

4.3. Implementing Sign Detection Command Control 

Detecting the command signs successfully posed a problem with respect to the reaction time of the 
AGV to execute the relevant command. This made a difference in the distance from the sign to the 
specific position of the AGV.  

The size of the different signs was standardised to be approximately 18 cm × 18 cm. By knowing 
the sign size, the distance from the AGV to the sign could be calculated using the number of pixels 
representing the image size recognised ([10], pp. 324–329). Table 3 gives a summary of the distance 
relevant to pixel count, obtained experimentally using the omnivision sensor.  

Table 3. Summary of distance from AGV to signs with respect to image pixel count. 

Distance to a Sign Approximate Pixel Count 
40 cm 174 × 174 
50 cm 144 × 144 
60 cm 120 × 120 
70 cm 106 × 106 
80 cm 96 × 96 
90 cm 84 × 84 

100 cm 76 × 76 
110 cm 66 × 66 

A safe distance from the AGV to a sign or obstruction was found to be between 70 cm and 90 cm. 
This resulted in the choice of image size, representing the stochastic distance to a sign selected and 
evaluated, of approximately 84 × 84 pixels (total of 7056 pixels). The distance to the sign selection 
was developed to be a variable input in the Simulink® model. 

Determining this distance to the sign was achieved by using the area of the bounding box placed 
around a detected sign and then comparing this pixel count with the required size (total pixel count). 
When true, the relevant sign command detected was executed. Provision was made for a multiple 
count of signs detected in a single frame during consecutive frames.  
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Figure 17 shows the implemented Simulink® model block where the area of the detected sign 
(Prod) and the variable distance (Dist) is needed as input with the stop, direction and switch control 
signals generated as output. 

Figure 17. Simulink® model implementing AGV motor control at a set distance depending 
on the area in terms of the number of pixels. 

 

Figure 18. Flowchart for the Distance function block generating stop, direction and switch control. 
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Figure 18 shows the flowchart and Figure 19 indicates an abbreviated version of the MATLAB® 
function block code generating the control and switching signals. Only the forward, left, right and stop 
signals are shown for illustrative purposes. 

Figure 19. Abbreviated MATLAB® code for the Distance function block generating stop, 
direction and switch control. 

function [STOPc, DIRc, Bsw] = fcn(Prod, STOPi, Dist) 
%STOPc - STOP(1) no lane control output 
%DIRc - Forward, Left and Right Direction Control 
%Bsw - Boolean switch 
%Prod - Area of specific BBox, to be compared to distance value 
%STOPi - STOP(1), Left(2) and Right(3) Direction control input 
%Dist - distance setting 
STOPc = single(0); %set movement control to default 
DIRc = single(240); %default forward 
Bsw = single(0); 
Tag = single(length(Prod)); % = amount of tags; 
if (Tag > 0) % depending on variable maxNumSigns 
 for ind = 1 : Tag 
 if (Prod(ind)>Dist) 
 if (STOPi(ind) == 1) %STOP 
 STOPc = single(1); %STOP control  
 DIRc = single(119); %no direction - STOP 
 Bsw = single(1); %switch to control output  
 end 
 if (STOPi(ind) == 2) %Left 
 STOPc = single(0); %STOP control - moving 
 DIRc = single(255); %direction control LEFT 
 Bsw = single(1); %switch to control output  
 end  
 if (STOPi(ind) == 3) %Right 
 STOPc = single(0); %STOP control - moving 
 DIRc = single(0); %direction control RIGHT 
 Bsw = single(1); %switch to control output  
 end  
 end 
 end 
end 

5. Results and Discussion 

Looking at the specifications of the PC and laptop used, the speed of the processor and size of RAM 
were the major factors that caused the difference in processing power. Figure 20 shows the drastic 
decrease in frames per second available to work with in image processing after each stage of the 
system, including that obtained by the PC for comparison. The frame rate of 30 frames per second 
available from the camera is decreased to almost 14 frames available after acquisitioning with a 
selected frame size of 96 × 128 pixels. This frame rate is further decreased to 2 frames per second after 
the omnivision conversion process available on the laptop and 7 frames per second on the PC for 
image processing.  
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Figure 20. Decrease in frames per second along the image processing on the laptop 
platform relative to that of the PC. 

 

5.1. AGV Performance as a Result of Using MATLAB® 

The maximum respective speeds of two different AGV types were 2.7 and 1.3 km per hour without 
using any vision—as depicted in Table 4. The maximum frame rates achieved by using the omnivision 
sensor in the study were 7 frames per second for the PC and 2 frames per second for the laptop, seen in 
Figure 2019. This information relates to a distance travelled of 36.5 cm per second with the slowest 
AGV, or approximately 18 cm travelled by the AGV per frame, using the laptop control which 
performs at 2 frames per second. 

Table 4. Comparative speeds of the 3- and 4-wheeled NI AGV’s used in the research 
without vision. 

 3 Wheel AGV 4 Wheel AGV 
Maximum speed obtained in forward/reverse without vision 2.7 km/h 1.3 km/h 

Individual speeds denoted in meter per minute 45.24 m/min 21.9 m/min 
Individual speeds denoted in centimetre per second 75.4 cm/s 36.5 cm/s 

The speed of 18 cm per frame was clearly too fast to allow for image processing using the laptop. 
The AGV’s speed needed to be reduced, because 6 to 8 frames per second were necessary for  
proper vision control. This meant that the AGV travelled more than a meter at 6 frames per second  
(18 cm × 6 frames = 108 cm). This is more than a typical turning circle distance (90 cm) allowed 
before a control decision could be made. Altering the speed to suit the processing time related to a 
speed of 6 cm per second, which was not suited for the final industry application. Thus the laptop 
processing speed was insufficient for such a vision sensor AGV control application. 

5.2. Navigation and Control 

In this section the performance of the route navigational system of the AGV was evaluated in terms 
of following the route as indicated by coloured signs and using vision [11]. As there was no provision 
made for localisation of the AGV by means of dead reckoning as in Swanepoel’s ([12], pp. 41–44) 



Sensors 2014, 14 15682 
 

 

research or using laser scanners and visual odometry as in Scaramuzza et al.’s work [13], the 
movement of the AGV needed to be monitored and noted by observation.  

The results were compared and noted with respect to the orientation of the AGV and its position on 
the route. What was evident was that the AGV could follow a set route with ease and that the commands 
generated from the navigation system did give the desired output to the AGV drive controls. Figure 21 
shows typical plotted results and the position and orientation of the AGV for a specific evaluation 
performed. 

Figure 21. AGV position and orientation along a destined route plotted for evaluation. 

 

Figure 22 shows the corresponding direction control indication signals for monitoring purposes and 
AGV movement control.  

Figure 22. Corresponding frame captures for the positions indicated in Figure 21. 
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5.3. Reconfigurable Ability of the Vision System 

The sign recognition system provided the route reconfigurability to be applied by the operator by 
placing the applicable signs along the route for a specific AGV. The sign recognition system was 
designed and made provision for signs to be detected to a rotated angle of ±7.5°. The signs could 
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however be detected to a maximum rotated angle of 45° for the left and right sign, and 30° rotated 
angle for the stop sign. Figure 23 indicates the results achieved in simulations, as it was never placed at 
this angle in the actual evaluation runs.  

Figure 23. Indication of the degree at which the signs could be detected using sign recognition. 

 
Right sign ±45° 

 
Left sign ±45° 

 
Stop sign ±30° 

Encountering the signs at a horizontal offset angle also did not provide a problem, as the deviation 
from the straight-on position could vary by as much as 50° without causing a failure in recognising  
a sign, as can be seen in Figure 24. 

The AGV movement control acted on the signs control function at a predefined distance, set at  
70 cm for evaluation purposes, determined by the set area of the bounding box. The distance between 
the sign and AGV was determined by the average area of the bounding box (seen in Figure 23) around 
the sign. The width of the bounding box depended most on the angle at which the AGV approached the 
sign, thus it had the biggest influence on the area of the bounding box, as the sign size was constant. 
The result was that, at a large horizontal angle deviation from head-on to the sign, the AGV acted on 
the sign command much later, resulting in a distance of reaction of between 64 cm and 40 cm. This did 
not pose any problems, as the size of the platform was relatively small. It is perhaps better illustrated in 
Figure 25. 
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Figure 24. An indication of possible offset angles still resulting in successful sign recognition. 

 
Right sign at 50° and 60° right 

 
Left sign at 50° left and 65° right 

 
Stop sign at 50° left and 60° right 

Figure 25. Distance from the sign determined by area at different angles of approach. 

 

  

Bounding box 
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6. Conclusions 

The research covered in this article proved the viability of a developed omnidirectional conversion 
algorithm written in MATLAB®. Selecting a webcam and making use of an area of interest enabled the 
saving of valuable computational time in converting an image. 

MATLAB® was chosen as the complete software platform generating results, evaluating the camera 
setup and mirror configuration on a PC and later a laptop. The results obtained proved that the laptop 
processing time was too slow for omnivision purposes for the mobile system to be implemented  
in industry. 

The navigational goals, using vision, as described in this article were successfully met by the 
developed AGV platform and the route navigation with the sign recognition and control implemented. 
A reconfigurable layout could be achieved with relative success using an AGV recognising only  
a set colour for its specific route. 
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