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Abstract: The autonomous vehicle is an automated system equipped with features like 

environment perception, decision-making, motion planning, and control and execution 

technology. Navigating in an unstructured and complex environment is a huge challenge 

for autonomous vehicles, due to the irregular shape of road, the requirement of real-time 

planning, and the nonholonomic constraints of vehicle. This paper presents a motion 

planning method, based on the Radial Basis Function (RBF) neural network, to guide the 

autonomous vehicle in unstructured environments. The proposed algorithm extracts the 

drivable region from the perception grid map based on the global path, which is available 

in the road network. The sample points are randomly selected in the drivable region, and a 

gradient descent method is used to train the RBF network. The parameters of the  

motion-planning algorithm are verified through the simulation and experiment. It is 

observed that the proposed approach produces a flexible, smooth, and safe path that can fit 

any road shape. The method is implemented on autonomous vehicle and verified against 

many outdoor scenes; furthermore, a comparison of proposed method with the existing  

well-known Rapidly-exploring Random Tree (RRT) method is presented. The 

experimental results show that the proposed method is highly effective in planning the 

vehicle path and offers better motion quality.  
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1. Introduction 

In the last few decades, both industry and academia have put enormous efforts in developing the 

technologies for autonomous road driving. The autonomous driving technology has ability to improve 

the safety, efficiency, energy consumption, and mobility in road driving [1]. Motion planning for 

autonomous vehicle is a core problem that is gaining importance in the research on autonomous 

driving in unstructured environments. 

The objective of the motion planning is to compute a feasible and smooth path to reach a 

destination point without colliding with any obstacles [2,3]. The optimal path can meet many requests 

such as: collision free, shortest, maximize smoothness, or time-minimum. 

There are various methods available for motion planning in the field of robotics in related literature. 

Heuristic planning methods [4–6], such as A*, are common solutions used to find the shortest path 

based on a certain decision criteria. However, a disadvantage of the A* algorithm is that the planning 

result in a grid-based configuration is rigid and it consists of a combination of straight lines. 

In order to improve the efficiency of the classic methods, the probabilistic algorithm like  

Rapidly-exploring Random Trees (RRTs) has been developed. The RRTs employ the randomization 

process to efficiently explore the large state spaces and it can satisfy the vehicle’s kinematic or 

dynamic requirements [7,8]. However, this method fails guarantee a safe distance between the vehicle  

and obstacles. 

Many autonomous vehicles have demonstrated the motion planning ability to travel on the urban 

road at Defense Advanced Research Projects Agency (DARPA) urban challenge 2007. The vehicle 

“Junior” developed by Stanford applied a motion planning method based on a hybrid approach A*. 

This method assigns a continuous vehicle coordinate to each discrete cell, and the generated path can 

be realized by the actual robot [9]. Team AnnieWay developed a motion planning method that is based 

on a set of “tentacles” with different curvatures. The “tentacles” represent a set of pre-calculated 

trajectories defined in the ego-centered coordinate space of the vehicle. The route planner then selects 

the optimal “tentacle” as the generated path in real-time [10]. 

It is important to notice that motion planning algorithms of DARPA urban challenge teams are 

effective in the urban environment and these do not sufficiently prove to be useful in any unstructured 

environment. The main challenges in designing the motion planning algorithm for unstructured 

environment are: (1) the safety requirement, in the unstructured environment where the shape of the 

road is usually irregular, the generated path must guarantee a safe clearance from obstacles; (2) a 

limited sensing capabilities, such as range and perception accuracy, the planning method must be 

adaptive to the time-varying environment; (3) the nonholonomic constraint of vehicle. 

With a framed-quadtrees data structure and an optimal algorithm, an online path planner was 

applied to incrementally re-plan optimal paths in outdoor mobile robots [11]. Based on Voronoi 

diagram, Garrido and Moreno invested a clearance-based shortest path planner [12]. In this paper, 
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shortest path was firstly calculated by Dijkstra’s algorithm. However, these methods are not suitable 

for autonomous vehicle motion planning because of the limitations of planning time and the 

dependency to the perception ability. 

The Support Vector Machine (SVM) is used as an effective method to solve the motion-planning 

problem in unstructured environment. Qingyang et al. [13] proposed a method for unmanned ground 

vehicles by combining a basic path subdivision method for the topological maps of local environments 

and a SVM. The candidate routes boundary points are defined as positive and negative samples and 

SVMs are employed to train the separating surface. The smooth paths connecting the start and the 

destination points can be generated using the extended SVM. Huy et al. [14] proposed a path planning 

method for autonomous vehicle in cluttered environment with narrow passages. The RBF kernel SVM 

is used to maximize the safety margin for driving. The Lagrange multipliers of the SVM dual model 

are used to find the most critical points in the map and generate optimized hyperplane for the vehicle 

path. In the SVM-based planning methods, the stability of the generated path is largely influenced by 

the acquisition of margin data points. However in the complex environment, it is hard to construct a 

stable margin of roads depending on the existing sensors. 

This paper addresses the problem of autonomous vehicle motion planning in the unstructured 
environment using the Neural Networks. The Neural Networks for Robot Motion Planning (RMP) was 

first used in [15]. In another study [16], the biologically-inspired general neural network approach has 

been applied to RMP for real-time collision-free motion planning in a dynamic environment. Dean A. 

Pomrleau proposed a three-layer back-propagation network designed for the task of road following 

used in the ALVINN system (Autonomous Land Vehicle In a Neural Network). The images from a 

camera and a laser range finder are used as the input of the network, the direction which the vehicle 

should travel is generated as the output. The test results showed that the autonomous vehicle can 

follow real roads under certain field conditions, successfully, with this method [17,18]. Based on 

neural networks, Boumediene and Chourqaui invested a collision-free path planner for moving robot 

among obstacles in partially structured environment. The simulation examples show that this method is 

effective [19]. This general model has been applied to point mobile robots, manipulator robots, car-like 

robots, and multi-robot systems [20–26]. In summary, the traditional planning methods do not 

explicitly consider that the expected collision-free path is always high-order and nonlinear in 

unstructured environment, while meeting the requirements of smoothness and real-time performance. 

In addition, some approaches rely on precise information of the environment. In a real-world scenario, 

there always exists inaccuracy in the description of the environment. The safety of autonomous driving 

will deteriorate when the perception error arises. The main contribution of this paper is a real-time 

navigation approach, based on the RBF network, which produces smooth and safe path for 

autonomous vehicle over large distances in real unstructured environment. In this method, the 

drivability grid map and global path are used in the selection of training data points and the generated 

path can timely react to the real environment. 

The RBF network used for motion planning in unstructured environment possesses the following 

salient features [27–29]: (1) It is a universal approximator and possess the best approximation 

property. It is capable of approximating any nonlinear functions with high precision. The generated 

path can fit any road shape; (2) Considering the smoothness of the RBF, the generated path can be well 

executed by any autonomous vehicles; (3) Its learning rate is fast because of locally tuned neurons; 
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therefore, the planning module can meet the real-time requirement of autonomous driving; (4) This 

method is not sensitive to the environment. The path always keeps a safe distance to the obstacles as 

the experiments show. 

The remainder of the paper is organized as follows: Section 2 provides a brief introduction to the 

system architecture, especially the decision framework of the autonomous vehicle named “Intelligent 

Pioneer”. Section 3 describes the method of constructing the drivability map. Section 4 describes the 

RBF network and the learning algorithm, and then the simulation results with different RBF network 

parameters and a comparison of proposed method with higher-degree polynomial method are 

presented. The description of experiments, results, and future work is provided in Section 5. Finally, 

the conclusions are given in Section 6. 

2. System Architecture 

The autonomous vehicle named “Intelligent Pioneer” is built upon a 1.6 L Tiggo3 SUV made by 

Chery Automobile Co. The vehicle is equipped with two four-core computers and a suite of sensors 

including a GPS/INS receiver, three LIDAR sensors (two Sick LMS, one Velodyne HDL-64), and 

three cameras [30]. Figure 1 shows the sensor configuration of the intelligent vehicle. 

Figure 1. The autonomous vehicle named “Intelligent Pioneer”. 

 

The system architecture of “Intelligent Pioneer” is a distributed architecture [31]. It can be divided 

into five subsystems: environment perception system, decision making system, sensor system, control 

system, and the actuators. These subsystems are connected through Ethernet for inter-subsystem 

communication.  

The perception system uses the three-dimensional laser radar (Velodyne) to model the complex 

environment of urban road and extract the road boundaries. The camera is used for lane detection, and 

two-dimensional laser radar (SICK) is used for the detection of static obstacles. As a whole, the 

perception system generates a data grid map with 512 × 512 grid cells, in which resolution is 0.2 m × 0.2 m. 

RNDF (Road Network Definition File) contains geometric information on lanes, lane markings, 

stop signs, parking lots, and special checkpoints. MDF (Mission Definition File) consists of checkpoints 

and it decides the order of checkpoints. 
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Intelligent decision is a core problem in the study of autonomous vehicles. Based on the grid map 

provided by the perception system, the goal is to arrange the proper behavior and find a path without 

obstacles in complicated traffic environment, conforming to the rules of the road. A three-layer 

planning system consisting of global path, behavioral, and motion planning is used to drive in the 

urban environment, as shown in Figure 2. The output of decision-making system is a smooth path that 

consists of 200 two-dimensional (2D) points Pi (xi, yi), i ∈  [0,199]; where xi is the latitude of the point, 

and yi is the longitude of the point. The controller receives the path as input, and then calculates the 

control command. 

Figure 2. The software architecture of decision-making system. 

 

The control system [32] is constructed over the Controller Area Network CAN-2.0B bus topology. 

The computer of control system receives the status information of vehicle through CAN bus, and send 

the control command to each controlled member to achieve the goals of controlling the turn, brake, 

accelerator, gear, horn, and lights. 

3. Construction of Drivability Grid Map 

In order to apply RBF network, the effective data points are selected from the grid map provided  

by perception system. In this step, the digital map and generated global path is used as a  

priori knowledge. 

Figure 3. (a) Overhead view of the test area; (b) The digital map; (c) The road network 

constructed based on the digital map; and (d) The global path planning result. 

 
(a) (b) 
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Figure 3. Cont. 

 
(c) (d) 

The digital mapping is a process by which a collection of data is compiled and formatted into a 

virtual image. The primary function of this technology is to produce maps that accurately present 

particular areas detailing major road arteries and other points of interest. In this step, the points located 

on the roads and the intersections from the database of digital map are extracted to construct the road 

network map, as shown in Figure 3c. The A* algorithm is applied to obtain the global optimal path, as 

shown by the red line in Figure 3d. 

In the motion planning application based on RBF network, the selection of training data points from 

the perception map is a necessary step; the drivability grid map is used to solve this problem, as shown 

in Figure 4. After generating the global path and mapping it to the grid map, the data points which are 

not occupied in the grid map from this path to the borders are selected. Based on these points, the 

drivable region is generated; this is shown as the gray region in Figure 4. All the perception data 

including the static and moving obstacles, drivable and non-drivable regions are rendered in the grid 

map. The locations of obstacles are detected by Velodyne. The blue points are global path interpolation 

result based on B-Spline. The red region represents the non-drivable region and the white points show 

the obstacles within the non-drivable region. The sampling points are taken as inputs from the drivable 

region for RBF network training. More importantly, this planning method does not require accurate 

information about the environment; furthermore, the planning result is not influenced by the minor 

change of drivable region. 

Figure 4. The drivability grid map. 
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4. RBF Network for Motion Planning 

The RBF network behaves like a local approximation neural network and offers several advantages. 

The RBF network features a faster training compared to the back propagation network. It is less 

susceptible to the problems associated with non-stationary inputs due to the behavior of the radial basis 

function hidden units. In comparison to the sigmoid or S-shaped activation function used in back 

propagation, the hidden units in RBF network use a Gaussian or other similar basis kernel function. 

Each hidden unit acts as a locally tuned processor that computes a matching score between the input 

vector and its connection weights or centers. The weights connecting the basis units to the outputs are 

used to derive the linear combinations of the hidden units in order to produce the output.  

4.1. The Structure of RBF Network  

The basic structure of RBF network consists of three distinct layers: an input layer, a hidden layer 

with a non-linear RBF activation function, and a linear output layer, as shown in Figure 5. 

Figure 5. The structure of the RBF network. 
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The inputs of hidden layer are the combinations of the input vector x = [x1, x2,…, xn]
T. The 

incoming vectors are mapped over the radial basis functions in each hidden node. The output layer 

yields a vector y by linearly combining the outputs of the hidden nodes to produce the final output. The 

network output can be obtained by: 
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where, ωi is the weight of i-th center, )(xiφ  is some radial function, and k is the total number of hidden 

nodes. A radial basis function is a multidimensional function that describes the distance between a 

given input vector and a pre-defined center vector. There are different types of radial basis functions 

used in related literature. A normalized Gaussian function is usually used as the radial basis function, it 

is given as: 
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where μi and σi denote the center and spread width of the i-th node respectively. There are many 

advantages of using the Gaussian function, some of the major advantages include: 
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 Simple representation for multiple input variables. 

 Radial symmetry. 

 Better smoothness. 

 Highly analytical; thus, it is easy to carry on the theoretical analyses. 

The output of network using Gaussian function is given as: 


=

−−==
k

i
iii uxxfy

1

22 )2/||||exp()( σω  (3) 

The Gaussian basis function is local to the center vector in the sense that: 

lim 0ix
x uρ

→ ∞
− =  (4) 

This means that an RBF network with enough hidden neurons can approximate any continuous 

function with a wide range of precision value.  

The application of all the existing data points as training set in the drivable region can lead to 

critical problems; some of the issues are listed in following: 

 In general with a large training set, the solution of the matrix inversion function will be instable 

because of the large amount of conditions of hidden output matrix H, which is caused by the 

training data. 

 The noises in samples will lead to over-learning, it is better to approximate the samples instead 

of interpolating. 

To address those problems, the regularization network is used in this article. The structure of the 

network is shown in Figure 6. 

Figure 6. The structure of the regularization network. 
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The main advantages of regularization network are described in following. 

 The regularization network is a universal approximator that can arbitrarily approximate any 

multivariate continuous function provided the availability of enough hidden units. 

 The regularization network reaches the best approximation property. In this case, for each 

unknown nonlinear function F, there is always a choice of coefficients that approximates F 

better than all other possible choices. 
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 The solution computed by the regularization network is optimal. The optimality here means that 

the regularization network minimizes a functional that measures the deviation of the solution 

from its true value as represented by training data. 

Assume the samples set is: 

{( , ) | 1,2, }i i ns x y R R i N= ∈ × =   (5) 

The normal standard error term Es(F) is: 
2

1

1
( ) ( ( ))

2

N

S i i
i

E F y F x
=

= −  (6) 

In this article, a term which constraint the complexity of approximation function is added 

based on the standard error term. 
21

( )
2RE F DF=  (7) 

where D is the liner differential operator. The total error term of regularization network is defined as: 

( ) ( ) ( )S RE F E F E Fλ= +  (8) 

where the first term is used to control the precision of approximation function, the second term is 

called regularization term that controls the smooth degree of approximation function; λ is the parameter of 

regularization network. The solution of the above regularization problem can be derived as: 

1

( ) ( , )
N

i i
i

F x G x xω
=

=   (9) 

where G(x,xi) is the Gaussian function and ωi is the weight value. The larger curvature of the solution 

of regularization network F(x) results in a large value of ||DF||, consequently get damped with a  

higher factor. 

2

2
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4.2. Learning Algorithm 

Normally, the design and training of RBF network can be divided into the following three sections: 

computing the widths σi, adjusting the centers μi and adjusting the weights ωi. 

In this paper the width is fixed according to the spread of the centers. 

2

2
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− −
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where h is the number of centers, d is the maximum distance between the chosen centers. Thus: 

2

d

h
σ =  (12) 

The smaller the value of d results in smaller width of RBF; it makes the base function  

more selective. 



Sensors 2014, 14 17557 

 

 

In this study, a single output RBF network-learning method with forgotten factor is used to 

calculate the centers and weights of the RBF network, as Algorithm 1 shows. 

 
Algorithm 1: RBFN( ) 

1. Take a number of center k; 
2. for j = 1,2,…,k do 
3. Choose samples randomly as the center μj = xp, p ~ RAND(1, N); 

4. 
2

j

d

h
σ σ= =  

5. end for 
6. for i = 1,2,…, n do 
7. for j = 1,2…, k do 
8. Choose the weight value ωij randomly, ωij ~ Rand(ωmin, ωmax) 
9. end for 
10. end for 
11. while error is more than 0.05 do 
12. add a sample (xp, yp) 
13. for i = 1,2,…, n do 

14. calculate 
2

2
( ) exp( )

2
i

i
i

x u
xφ

σ
−

= −  

15. for j = 1,2,…,k do 
16. adjust weights 

17. 
1

( ) ( )
N

j p j j p
p

t e xω η β φ
=

Δ =   

18. ( 1) ( ) ( )j j jt t tω ω ω+ = + Δ  

19. end for 
20. end for 
21. for j = 1,2,…,k do 
22. adjust center step 

23. 
2

1

( ) ( )( )
N

j
j p j j p p j

pj

t e x x
r

ω
μ η β φ μ

=

Δ = −  

24. ( 1) ( ) ( )j j jt t tμ μ μ+ = + Δ  

25. end for 
26. end 

where Фi(Xj) is the output of the i-th hidden unit and η is the learning rate. 

4.3. Simulations 

In the simulation, the learning rate is set to 0.001 and the target error is set to 0.05. The numbers of 

hidden nodes is automatically determined by the numbers of sampling points. The algorithm is 

described in Algorithm 1. 

The simulation results are shown in Figure 7, the black points represents the road sampling data 

when simulating that the autonomous vehicle drives along a tortuous route. This sampling data is used 

in the training of RBF network training as the input. 



Sensors 2014, 14 17558 

 

 

Figure 7. The fitting results of the RBF network with different parameters. 

 

According to Equation (13), the calculated expansion constant is 1, the other two network widths 

are chosen for comparison. The training results are shown with three different colors. The red solid 

line, blue solid line and green solid line are with three different values of σ, namely, σ = 0.6, σ = 1, and 
σ = 2 in each case. 

From Figure 7, it can be observed that if σ is small, the training results have higher precision; 

however, the approximation will have a narrow peak at each data point resulting in a non-smooth 

observation. The large value of σ will ensure the smoothness of curve however at the cost of precision. 

The value of σ = 1 has proven an optimal performance with an average individual RBF. 

For the same group of training samples, these samples can fitted with the method of higher-degree 

polynomial. The results are shown in Figure 8. The blue line shows the training result of RBF network, 

the green and red line represents the fitting results of quartic polynomial and six-order polynomial 

separately. In Figure 8, it can be seen that the fitting precision is higher when the order of polynomial is 

higher. The fitting result of six-order polynominal is similar to the training result of the RBF network. 

Figure 8. The fitting results of the RBF network and polynominal function. 

 

However, the fitting with higher order polynomials is not applicable for autonomous vehicle driving 

in complex dynamic environment due to increased ill-conditioning. Figure 9 simulates the lane change 

behavior of autonomous vehicles. 
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Figure 9. The fitting results of the RBF network and polynominal function. 

 

As shown in this figure, the ill-conditioned polynomial makes the curve oscillatory. The higher 

order of polynomial results in a larger frequency of oscillation. While the training results of the RBF 

network still maintains a higher precision and smoothness. Hence, the motion planning method based 

on the RBF network is well adaptive to the complexity of driving environment. 

5. Experimental Results and Discussion 

In order to verify the effectiveness of the motion planning method, a real experiment is performed 

on “Intelligent Pioneer” and results are presented in this section. Two typical unstructured scenarios, 

such as zone and rural environments, are used in the experiments. In the experimental zone, a rotary 

course is designed. In the rural environment, the road has two lanes, each three meters wide. During 

these scenarios, the vehicle traveled at speeds up to 15 miles per hour, avoiding all the static and 

dynamic obstacles. Both the environments involved straight paths, curved paths, and obstacles. The 

sensed information around vehicle is changing all the time. Therefore, the results of the experiments 

can show the effectiveness of the real-time motion-planning algorithm. 

The planning experiments produced the grid maps plotted by program. The deep blue line in  

Figure 10 shows the planning result of a 90 degree turn in the zone. In this scenario, the waypoints of 

intersection are used to divide the sampling points into two groups and then put two paths together. 

Figure 10. The experiment result in scenario 1. (a) shows a 90 degree turn in the zone;  

(b) shows the path generation result. 

 
(a) (b) 
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Figure 11 shows the result of curve in the zone. The path generated by RBF network is smooth and 

stable enough for “Intelligent Pioneer” to track. Figures 12 and 13 show navigating in the obstacle 

field. The deep blue line avoids the obstacles successfully and properly fits to the road shape. 

Figure 11. The experiment result in scenario 2. (a) shows the curve in the zone; (b) shows 

the path generation result. 

 
(a) (b) 

Figure 12. The experiment result in scenario 3. (a) shows navigating in the obstacle field; 

(b) shows the path generation result. 

 
(a) (b) 

Figure 13. The experiment result in scenario 4. (a) shows navigating in the obstacle field; 

(b) shows the path generation result. 

 
(a) (b) 

The main evaluation indicators of motion planning results are listed in Table 1, which are generated 

based on Figures 14 and 15. It can be observed that, in these scenarios, the planning times are 

confirming to the requirement of real-time planning. The maximum turning curvature of Tiggo3 SUV 

is 0.19 m−1. The maximum curvatures of the generated paths meet the requirement of the vehicle’s 
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nonholomic constraint. As Figure 14 shows, the curvature is continuous so that the path is smooth. The 

small-scale jitter of curvature is caused by the discretization of perception grid map. Figure 15  

shows that all the planning results have a safe clearance to obstacles, which enable the safe driving 

during experiment. 

Table 1. The main evaluation indicators of motion planning results. 

Indicator 
Scenario 

Planning 
Time (ms) 

Minimum 
Distance to 

Obstacle (m) 

Max Curvature 
(m−1) 

1 21.38 2.12 0.15 
2 25.12 2.01 0.15 
3 26.22 2.05 0.12 
4 29.36 1.92 0.12 

Figure 14. The curvatures of the generated path in different scenarios. 

 

Figure 15. The distance to the nearest obstacle recorded in different scenarios. 

 

To verify the motion planning system, the vehicle was put in the parking lot environment. The deep 

blue line in Figure 16b shows the planning result of the narrow space in the parking zone. This 

scenario containing large number of obstacles, such as vehicles and pedestrians, mean great increase in 

the complexity of the whole motion planning system. The deep blue line, which has a safe distance to 

the obstacles is smooth, safe, and easy to be followed. 
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Figure 16. The experiment result in scenario 5. (a) shows navigating in the narrow space; 

(b) shows the path generation result. 

 
(a) (b) 

The proposed method is compared with the traditional RRT method in the scenario shown in  

Figure 16a. The path generated based on the RRT method is not smooth enough for vehicle to execute, 

therefore, the Bezier interpolation method is used to smooth it, as shown in Figure 17. As the RRT 

algorithm produces random results; therefore, the same experiment has been performed 500 times and 

the average characteristics are provided. 

Figure 17. The path planning result of RRT+Bezier in scenario 5. 

 

Table 2 shows the average planning time, minimum distance to the nearest obstacle for final path, 

and the maximum curvature. The planning time for the path based on the RBF network is less than the 

method of RRT+Bezier, they are both meeting the real-time planning requirements. 

Table 2. The comparison of final path with two methods. 

Approach

Indicator 
RRT + Bezier RBFN 

Time (ms) 38.28 23.42 

Max Curvature (m−1) 0.15 0.14 

Minimum distance to 

obstacle (m) 
0.5 0.9 
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The maximum curvatures of both the methods satisfy the requirement of vehicle nonholonomic 

constraint. The path smoothness of RBF network and RRT + Bezier are almost same and both are able 

to generate a drivable path for vehicle to execute.  

The minimum distance to the nearest obstacle for the path based on RBF network is smaller than 

the method of RRT + Bezier; therefore, it is much safer. This can be caused due to the fact that the 

Bezier interpolation method does not pass through the control point generated by RRT, therefore, the 

precision of path is influenced. In this narrow space, the distance between the path generated by RRT 

method and obstacles is small; the vehicle might be colliding with obstacles due to the control error. 

Figure 18 shows the GPS trajectory of “Intelligent Pioneer” encoded by SPAN-CPT. “Intelligent 

Pioneer” successfully achieved the goal of autonomously navigating through well-defined routes in 

zone and rural environment, validating the proposed approach. 

Figure 18. The GPS trajectory of “Intelligent Pioneer” recorded during experiment.  

(a) The red line indicates the trajectory recorded in the zone; (b) The red line indicates the 

trajectory recorded in the rural environment. 

(a) (b) 

6. Conclusions 

This paper presented the RBF network algorithm, a neural network motion-planning algorithm 

specifically developed for autonomous vehicles and operating in uncertain, complex environments, 

such as rural environment or complex driving zones. By employing proper algorithm parameters, the 

planner can react intelligently and promptly to the new situations developed during the vehicle 

navigation. The path generated approximates any road shape with high precision, while satisfying the 

constraint of vehicle kinematic. The RBF is a kind of local approximation neural network with the 

advantage of fast learning speed; therefore, it can react fast to the environment and meet the real-time 

requirement of autonomous driving.  

The experimental results indicate the suitability of this approach for autonomous vehicles 

navigation when a smooth and collision free path is possible. The autonomous vehicle reacts properly 

in the presence of obstacles, curves, and a 90 degree turn;  

The complete motion-planning algorithm proved well-suited to tackle the challenges posed at  

the China Intelligent Vehicles Future Challenge (FC’2012). Its suitability for navigation in rural 

environment easily surpasses the demands of the Future Challenge.  
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Considering the online and sensor-based nature of the grid map environment model, it is believed 

that this motion-planning algorithm can also be applied to dynamic environments (with moving 

obstacles). The future work will focus on planning a path to allow dynamic obstacle avoidance, and the 

use of the algorithm in urban environment 
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