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Abstract: The platform presented here was devised to address the unmet need for real time 

label-free in vivo sensing by bringing together a refractive index transduction mechanism 

based on Whispering Gallery Modes (WGM) in dye doped microspheres and 

Microstructured Optical Fibers. In addition to providing remote excitation and collection of 

the WGM signal, the fiber provides significant practical advantages such as an easy 

manipulation of the microresonator and the use of this sensor in a dip sensing architecture, 

alleviating the need for a complex microfluidic interface. Here, we present the first 

demonstration of the use of this approach for biological sensing and evaluate its limitation 

in a sensing configuration deprived of liquid flow which is most likely to occur in an  

in vivo setting. We also demonstrate the ability of this sensing platform to be operated 

above its lasing threshold, enabling enhanced device performance. 
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1. Introduction 

Over the last decade, whispering gallery modes (WGMs) have found applications in label-free 

optical biosensing, enabling operation down to the single molecule level [1,2] and also miniature laser  
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sources [3–5], waveguides [6], filters [7] and mechanical [8,9] and temperature [10,11] sensors. 

Generally, WGMs can be described as light being trapped within a resonator by total internal 

reflection, circulating along the inner surface and returning in phase after a single or multiple round 

trips to satisfy the resonance conditions [12]. Multiple resonator geometries have been reported in the 

literature, ranging from rings/toroids [13] and spheres [14] to cylinders and capillaries [15,16]. The 

spectral position of the resonances is dictated not only by the resonator geometry (diameter, sphericity) 

and optical properties but also by the refractive index of the environment surrounding the resonator [12], 

making this phenomenon particularly interesting for label-free biosensing applications. 

A key parameter of such resonators is the quality factor (Q) which effectively describes how many 

round trips a photon can undergo within the resonator before being lost by absorption or scattering. 

WGMs can exhibit extremely low losses; when the refractive index contrast at the resonator 

boundaries is high, the radius of curvature of the resonator exceeds several wavelengths and the 

intrinsic scattering and surface roughness is small [15], the Q factor can reach several millions, as 

demonstrated for silica spheres and toroids [13,17]. While such high Q factor resonators can exhibit 

outstanding sensing performance, their utilization remains restricted in practice. For high Q factor 

resonators, light must typically be coupled into the resonator through the evanescent field of carefully 

aligned fiber taper [12,14] or a prism [18]. These approaches are limited by the requirement to maintain a 

precise gap between the resonator and the tapered fiber or prism to stabilize the position of the  

resonance [19], realistically rendering these platforms unfit for non-laboratory applications such as point 

of care or in vivo diagnostics. 

Our approach is to combine WGMs as transduction mechanism using an active spherical resonator 

integrated onto the tip a suspended core Microstructured Optical Fiber (MOF) to create a label-free 

biosensing platform with the potential application for in vivo biosensing. A single dye doped 

microsphere is located onto one of the holes at the tip of a suspended core fiber as shown in  

Figure 1B,C. This simple approach takes advantage of the Purcell effect to amplify the emission of 

light from a gain medium at the resonance frequencies when located within the resonator [20]. 

Positioning the fluorescent microsphere onto the suspended core microstructured optical fiber tip as 

seen in the Figure 1A provides a pathway for both the remote excitation and collection of the WGM 

modulated fluorescence emission seen in the Figure 2A,B, alleviating the need for a cumbersome 

positioning/coupling scheme [21] as described above. While the use of a high refractive index polymer 

such as polystyrene (polystyrene = 1.59) as the sphere material enables us to use smaller resonators 

with higher refractive index sensitivity compared to larger silica spheres, this choice impact the 

resonator’s Q factor, since polymer microspheres have relatively low Q factors [22]. It is important to 

note that since the analysis of the WGM signal is performed using a standard monochromator to 

resolve both the spectral position and linewidth of the resonance features, the resolution is ultimately 

limited by the detection system, which is typically around 4 pm using a 2400 L/mm grating. 

In-vivo biological sensing is an emerging field with much promise for revolutionary medical 

diagnostic applications and fundamental breakthrough in biology by enabling measurements to be 

performed where it has not been possible so far [23]. In this context, optical fiber probes are 

particularly suited for minimally invasive procedure where the tip of the fiber is rendered active toward 

the detection of a specific biochemical compound [24,25]. While it is now possible to detect a wide 
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range of biomolecules, ranging from metabolite ions and chemicals [23] such as glucose [25] to 

enzymes [23,24], the specific detection and quantification of proteins remains an unmet challenge. 

Here we evaluate the performance of our fiber tip WGM sensing platform [16,21] for biosensing 

applications using biotinylated microsphere to specifically capture neutravidin as a first demonstration 

of the biosensing capabilities of this platform. To mimic the conditions that such a sensor is likely to 

encounter in an in vivo sensing situation, we have deliberately chosen to perform the detection in static 

conditions and evaluate the detection limit as function of the surrounding neutravidin concentration to 

assess its suitability for such application. We also investigate how to improve the detection limit by 

inducing lasing of the WGM to increase the sensor resolution and eventually detection limit. 

 

Figure 1. (A) schematic of the optical setup; (B,C) bright field and fluorescence images of 

a 20 µm diameter dye doped polystyrene microsphere positioned onto the tip of a 

suspended core silica fiber respectively (Øcore = 4 µm, Øhole = 17 µm). 

 

Figure 2. (A,B) WGM spectra below and above the lasing threshold respectively;  

(C) resonance amplitude as function of the pump power. 

20 μm 
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2. Experimental Section 

2.1. Chemicals 

Polystyrene (PS) microspheres (Ø~20 µm, nPS = 1.59) were purchased from Polysciences, Inc., 

(Warrington, PA, USA). Nile red fluorescent dye, xylene, poly(allylamine hydrochloride) (PAH),  

MW ~15,000 Da and poly(sodium 4 styrenesulfonate) (PSS), MW ~70,000 Da were received from 

Sigma-Aldrich (Sydney, Australia) , glycerol, >99%, was obtained from Chem-Supply (Gillman, 

Australia), all chemicals were used as received. N-hydroxysuccinimide (NHS), 1-Ethyl-3-[3-

dimethylaminopropyl], carbodiimide hydrochloride (EDC), and ethanolamine hydrochloride (EA), 1 

M, were obtained from VWR International (Murarrie, Australia) as a part of the Biacore amine 

coupling kit. Phosphate buffered saline (PBS) was received in the form of tablets from Sigma-Aldrich 

(Sydney, Australia) and dissolved in deionized (DI) water yielding a pH of 7.4. Biotin D and 

neutravidin were received from Sigma Aldrich (Sydney, Australia) and diluted to the relevant 

concentration in PBS. 

2.2. Microspheres Preparation 

Polystyrene microspheres with a nominal diameter of 20 µm (ΔØ = 0.8 µm, n = 1.59) were doped 

with a fluorescent laser dye (Nile Red, λabs = 532 nm, λem = 590 nm) using a liquid two phase  

system [16,21]. Among the different techniques reported in the literature to either introduce a gain 

medium within a polymer microsphere [26] or simply coat its surface with either quantum dots or 

organic dye molecules [27,28], this approach enables high dye content to be loaded within the polymer 

sphere which is critical for reaching the lasing threshold of the WGMs. The fluorescent dye was first 

dissolved into xylene until the solubility limit was reached. The resulting solution was poured on top of 

an aqueous solution of diluted microspheres and left on a magnetic stirrer plate until the xylene had 

completely evaporated. As xylene and water are immiscible and the fluorescent laser dye used 

hydrophobic, when the xylene evaporates, the fluorescent dye is transferred into the microspheres that 

come into contact with the dye solution. After the doping procedure, the microsphere solution was 

heated above the boiling temperature of the xylene for 1 h to remove any trace of solvent from the 

microspheres. The microspheres were then washed by centrifugation, the supernatant removed and the 

lost volume replaced by Millipore water. 

2.3. Surface Functionalization 

Immobilization of relevant proteins onto the microspheres surface was done through the use of 

polyelectrolyte (PE). Positively and negatively charged PE solutions, polyallylamine hydrochloride 

(PAH) and polystyrene sulfonate (PSS) respectively were prepared by dissolving 2 mg/mL of either 

PAH or PSS into a 1 M NaCl buffer. The deposition of the polyelectrolyte onto the microspheres  

was performed using the layer by layer technique described elsewhere [28,29]. Five layers 

(PAH/PSS/PAH/PSS/PAH) were deposited onto the spheres. Covalent binding of biotin-D onto the 

primary amine of the PAH coated sphere was performed in solution using 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling reagents. A 
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1 mg/mL biotin-D solution in PBS buffer (200 µL) was mixed with both a 1M EDC solution (100 µL) 

and 1 M NHS (100 µL) and then left incubating with the dye doped sphere solution (~2.5% volume, 

100 µL) for two h. After the immobilization of the biotin-D onto the sphere surface, the microspheres 

were washed by centrifugation, the supernatant removed and the lost volume replaced by PBS. The 

passivation of the non-specific binding sites was achieved by incubating the functionalized spheres  

in a 2.5% casein solution for 24 h. After the passivation step, the sphere were again washed by 

centrifugation and redispersed in PBS buffer before being stored at 4 °C. 

2.4. Optical Setup 

The optical setup used to operate the sensor is depicted in the Figure 1A. A doubled frequency 

YAG laser (λ = 532 nm, ~9 ns pulse duration, 10 Hz repetition rate) was used for the excitation of the 

active microspheres. The beam emerging from the laser was first spatially filtered using a single mode 

fiber (Øcore = 8 µm) before being coupled into a silica suspended core Microstructured Optical Fiber 

(MOF; Øcore = 4 µm, Øhole = 17 µm). A λ = 550 nm long pass filter was used at almost normal 

incidence, behaving as a dichroic mirror. This simple optical setup allowed the WGM modulated 

emission originated from the dye doped resonator, to be recaptured by the MOF, and launch it into a 

monochromator (600, 1200 and 2400 L/mm grating) equipped with a cooled CCD (2048 pixels) to 

record the WGM signal, while the sensor head, hence resonator onto the fiber tip, was dipped into a 

200 µL sample holder.  

2.5. Microsphere Attachment onto the MOF Tip 

An inverted microscope equipped with a second three axis translation stage was used to position the 

microsphere onto the MOF tip. A drop of the microsphere solution was deposited onto a glass cover 

slip and inspected using the inverted microscope while the freshly cleaved MOF end was attached to 

the second translation stage with the fiber’s tip pointing toward the drop of microsphere solution.  

A microsphere was selected from the many within the drop by qualitatively analyzing its emission 

spectrum via the confocal excitation and collection provided by the inverted microscope. Once located, 

the microsphere was brought into contact with the tip of a 80 cm long MOF which was aligned using 

the independent microscope stage. The microsphere and the MOF tip are both hydrophobic. Thus, once 

they come into contact, the microsphere tends to adhere to one of the holes of the MOF as shown in 

both Figure 1B,C. Once the microsphere is attached onto the fiber tip, it remains in this position, 

allowing easy manipulation of the sensor. 

3. Results and Discussion 

3.1. Characterization of the Lasing Behavior of the Dye Doped Resonator 

To determine the lasing threshold of the processed dye doped polystyrene microspheres, the 

excitation power was systematically varied from 5 µW to 100 µW and the corresponding WGM 

spectra were recorded. The excitation power was calculated assuming a 50% coupling efficiency 

between the single mode fiber delivering the 532 nm double YAG and the suspended core fiber. This 

coupling efficiency was measured under the same conditions with a 532 nm CW laser following the 
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same optical pathway. Then, the mode exhibiting the highest lasing intensity was selected and fitted 

with a Gaussian function. Figure 2A,B shows typical WGM spectra below and above the lasing 

threshold from the same microsphere while Figure 2C displays the resulting dependence of the peak 

intensity on the excitation power. On Figure 2A,B the periodic repetition of the first order  

mode with different mode number and polarization can be seen as previously reported in the  

literature [4,8,21,22,26]. 

These figures show that only the modes located around 620 nm are lasing despite the fact the 

maximum emission of the dye used to dope the resonator is near 590 nm. This phenomenon can be 

explained by the higher absorption losses of the polystyrene at lower wavelengths [30], which reduces 

the gain at shorter wavelengths. The evolution of the peak intensity shows clearly two linear regimes 

with lower slope below and higher slope above threshold, respectively. Therefore, the lasing threshold 

could be determined by linear fitting of the two linear regions of spontaneous and stimulated emission 

as indicated by the dash lines in the Figure 2C and subsequent calculation of their intersection. This 

approach yields a lasing threshold for this resonator of 28 µW, in excellent agreement with previous 

reported values for a toroidal micro laser [31] and polystyrene microspheres [4,32], both with 

comparable Q factor. While the non lasing spheres typically exhibit a Q factor, (Q = λresonance/Δλresonance), 

around 3 × 103 ± 0.8 × 103, the lasing modes are significantly narrower as it can be seen in the  

Figure 2B, yielding a Q factor above 1.5 × 104 ± 0.5 × 104. As the Q factor is defined as the ratio of the 

stored energy into the resonator to the energy lost per cycle [33], a higher gain into the resonator, 

especially upon lasing will increase the stored energy while the lost energy per cycle which is an 

inherent property of the resonator remains constant, resulting in an increased Q factor. This increase of 

the Q factor is highly beneficial for sensing purposes as it increase the resolution of the sensor, 

enabling the detection of smaller changes in the resonance wavelength position [34]. 

3.2. Analysis of the Sensing Performance of the Dye Doped Resonator 

To characterize the sensing performance of spheres in a situation that mimics an in vivo setting, we 

have deliberately chosen to simply dip the sensor head, meaning the microresonator attached to the 

fiber tip, into small Eppendorf tubes without providing any agitation of the solution under study. We 

do this to reflect the liquid flow that is most likely to occur while performing a measurement in vivo 

instead of using microfluidic flow cells. We sought also to identify the number of PE layers required to 

achieve a complete surface coverage of the sphere by monitoring the successive deposition of PE 

layers in real time for non-functionalized spheres. Once a suitable lasing resonator was identified and 

positioned onto the fiber tip, the sensor head was dipped into a 200 µL Eppendorf tube filled with 

Millipore water. A reference spectra of the sphere above its lasing threshold was acquired with the 

highest resolution grating available, yielding a resolution of 4 pm. The sensor head was then removed 

from the Millipore water and dipped into a second Eppendorf tube filled with PAH. Again another 

spectra was acquired under the same experimental conditions. After leaving the sensor head immersed in 

PAH solution for 30 min, it was removed and dipped into Millipore water for rinsing for 10 min before 

acquiring another spectra. As the concentration of the PE solutions used are very high (2 mg/mL), the 

coating efficiency/kinetic is thought not to be diffusion limited. This procedure was repeated for the 

deposition of each PE layer, up to five layers in total, with three different sensors. From each WGM 
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spectra, the spectral position of the resonance features were identify by fitting the resonance peaks with a 

Gaussian function. 

The wavelength shift for three different spheres as function of the number of PE layers deposited is 

shown in Figure 3A. The error bars on Figure 3A are given as the fitting error of the resonance peaks.  

Figure 3B shows the results of the calculation of the deposited thickness achieved after each PE layer 

while the error bars on the determination of the layer thickness have been calculated as the standard 

deviation between the three different equivalent experiments and represent the accuracy in terms of 

reproducibility rather than the resolution of the sensor itself. 

 

Figure 3. (A) Wavelength shift of the WGM of a Ø = 20 µm polystyrene dye doped 

microsphere for increasing number of deposited polyelectrolyte layers; (B) Cumulative and 

individual layer thickness calculated after the deposition of each polyelectrolyte layer. 

From the wavelength shift, the increase of radius of the sphere can be calculated using Equation (1), 

where Δλ is the wavelength shift, λ the initial resonance position, ΔR the effective increase in radius,  

R the initial resonator radius, e the thickness of the deposited layer, nL and ns the refractive index of the 

deposited layer, typically 1.5 for both PAH and PSS in solution [35], and the resonator respectively: ∆λλ = Δ =  (1)

The initial radius can be calculated from the peak spacing of two successive modes with the same 

polarization using Equations (2) and (3): = λ 2π  (2)

= λλ − λ + 1 (3)

where m is the mode number, λm+1 and λm the wavelength of two successive first order modes with the 

same polarization.  
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It becomes clear from the Figure 3B that the first layer (PAH) is significantly thinner than 

subsequent PAH layers. This indicates that the first layer doesn’t fully cover the resonator which is not 

surprising and has been previously reported in the literature [28,29]. Nevertheless, the thickness of the 

first bi-layer (PAH/PSS) is about 3 nm, the second about 6.8 nm, which is good agreement with 

reported thicknesses of PAH/PSS bi layer deposited under the same conditions [36]. Therefore, we 

assumed for the subsequent surface functionalization steps that five PE layers would be sufficient to 

ensure good surface coverage and consequently maximize the density of free amine available for 

subsequent immobilization of biomolecules. 

3.3. Demonstration of the Detection of a Specific Interaction 

A similar experimental procedure was used to measure the specific binding kinetics of neutravidin 

onto the biotinylated surface of the resonator and determine what would be the detection limit in an  

in vivo sensing scenario. We choose to use biotin/neutravidin as a specific interaction model because it 

has been well characterized with other sensing platforms and therefore provides a useful benchmark test. 

Also it forms the basis of a surface functionalization process we recently used to produce an antibody 

coating with a specific orientation to increase the corresponding antigen capture efficiency [37]. 

From the estimate of the increase of radius from the previous section, one can calculate the quantity 

of adsorbed molecules as follows. The mass per unit surface of the adsorbed molecule is a convenient 

parameter that does not depend on the geometry of the sensor considered and therefore enables a direct 

comparison between different techniques and different sensor geometries. The mass per unit surface, d, 

can be calculated using the following equations [2]: = σ  (4)

σ = αε − 1δ  (5)

here, M is the molecular weight, NA is the Avogadro number, σp
−1 the projected area of the adsorbed 

molecule, αex its excess polarizability, and nm the refractive index of the medium surrounding the 

microsphere (nm = 1.33 for PBS buffer). In a first approximation, the polarizability, α, of the adsorbed 

molecule which can be calculated by means of the Clausius-Mossotti equation was used instead of the 

excess polarizability: α = ε − 1ε + 2 3 ερ  (6)

here, εr is the dielectric function of the considered molecule (εr = n2 where n = 1.5 for most  

proteins [38], NA is the Avogadro number and ρm the mass density (ρm = 1.37 g·cm−3 for most  

proteins [38]). 
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3.3.1. Binding Kinetics below the Lasing Threshold 

As a first test, we replace the pulsed YAG laser pump source with a CW 532 nm solid state laser  

(2 mW pump power) and triggered the excitation with the acquisition (0.1 s) of the WGM signal 

performed once per minute to reduce the photobleaching of the organic dye. The objective behind  

this first set of measurements was to benchmark the binding kinetics when the sensor is operated 

below its lasing threshold. Figure 4A shows the binding kinetics for the neutravidin (M = 55,000 kDa) 

with concentrations ranging from 1600 nM (88 µg/mL) down to 4 nM (0.22 µg/mL). As observed in 

the Figure 4A, the highest concentration (1600 nM) can be easily detected and a saturation of the 

radius increase occurs within the first minute. We found that the surface density achieved at the steady 

state with the 1600 nM concentration is about 177 ± 45 ng/cm2. This value, within the error, is about 

half of the density of a full neutravidin monolayer as reported in literature with surface plasmon 

sensors (445 ng/cm2) [37]. 

 

Figure 4. Binding kinetic for neutravidin on a Ø = 20 µm biotin functionalized sphere with 

sphere operated (A) below and (B) above the lasing threshold. 

An explanation can be found from the observation that approximately one half of the resonator 

protrudes from the hole on the suspended fiber tip. Given that low concentrations are used during this 

experiment and that the sample is not subjected to agitation, we infer that the neutravidin did not 

penetrate into the hole of suspended core fiber, leaving a significant portion of the resonator surface 

unexposed to the analyte. For the 400 nM concentration, it takes about 5 min to reach the saturation 

level with a saturation value about half that obtained with the 1600 nM concentration while for the  

100 nM concentration, equilibrium is reached after 15 min with an even lower saturation level. 

Reducing further the concentration a similar trend is found, although the equilibrium regime is then 

barely reached after 30 min. For the lowest concentration used, 4 nM, no noticeable change of the 

resonance position was observed beyond the noise level, indicating that this concentration is beyond 
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the detection limit of the sensor. The error bars have been calculated as the standard deviation from the 

three sets of experimental data acquired for each concentration. 

3.3.2. Binding Kinetic above the Lasing Threshold 

We repeated the same binding kinetics measurements using the frequency doubled YAG laser as  

a pump source to operate the spheres above their lasing threshold in an attempt to increase the Q factor 

and thus improve the detection limit of the sensor defined as the ration between the sensor’s resolution 

and resolution (DL = R/S) [34]. 

The binding kinetics presented in Figure 4B, obtained with lasing resonators, follow a similar trend 

as the binding kinetics obtained while exciting the resonators below their lasing threshold. Saturation 

of the sensor surface upon exposure to the 400 nM neutravidin solution is observed after few minutes 

while the other concentrations never yielded saturation within the 30 min time frame. However a slight 

wavelength shift of the WGM, and therefore binding of the neutravidin onto the sensor surface can be 

observed with the 4 nM concentration, which is not the case with the spheres operated below their 

lasing threshold. To confirm the specificity of the interaction, the results observed with the lowest 

neutravidin concentration were repeated using the microspheres without the biotin coating but 

passivated against non-specific binding with casein following the protocol previously described. In this 

case, no binding was observed confirming that casein can efficiently block non-specific binding from 

neutravidin and that for the lowest concentration, the observed wavelength shift is only due to the 

specific binding of neutravidin onto the biotinylated spheres. This is not surprising considering an 

effective increase of the Q factor induced by the lasing behavior and the resulting increase of limit of 

detection. In fact, it can be clearly seen by comparing Figure 4A,B that the error on the measurement 

which has been determined as the deviation from the mean value from the three sets of independent 

measurements performed is much lower when the microsphere is excited above its lasing threshold 

which allows to discriminate the increase of wavelength shift or surface density as presented in both 

Figure 4A,B from the noise. Despite the absence of flow, which certainly limits the sensor’s 

performance, a limit of detection of 4 nM neutravidin solution is achieved. In term of surface density 

of bound protein, this is equivalent to 1.3 × 1015 molecules/m−2 or 120 pg/mm2 in an environment 

deprived of liquid flow. This is approximately 50 times lower than the fiber based WGM sensor 

reported by Boleininger et al. (LOD = 7 × 1016 molecules/m−2) [39] or half of the detection limit 

claimed by Chao et al. (LOD = 250 pg/mm−2) [40]. 

4. Conclusions 

In this paper, we have demonstrated the ability of a single dye-doped polymer microsphere to be 

turned into a microlaser at the tip of a suspended core optical fiber which in turns enables enhanced 

sensor resolution in individual measurements and can also to be used to detect a specific analyte, 

neutravidin in this case, down to a concentration of 4 nM (0.20 µg/mL) in an experimental setting 

deprived of liquid flow, mimicking the conditions anticipated for in vivo sensing applications. This 

result raises the question of the suitability of such sensing platform for the detection of proteins using 

an antibody/antigen assay, especially when the molecule to be detected is in small concentration. 

Therefore, at its present stage of development this technology is best suited to the detection of protein 
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that are present in relatively high concentrations such as for example ApoE or clusterin which are 

stress marker indicators with normal regulation range of 20 to 50 µg/mL [37,41]. To expand the 

application range of this platform a smaller resonator could offer improved refractive index sensitivity. 

In this paper, we have used Ø ~ 20 µm polystyrene microspheres which typically have a refractive 

index sensitivity of 25 nm/RIU. Reducing the diameter of the resonator to 10 µm should results in a 

two-fold increase of the refractive index sensitivity [21] although lasing with such microsphere has not 

been demonstrated yet. A more efficient approach would be to use coupled microspheres to take 

advantage of the Vernier effect to increase the sensitivity such as proposed by Boriskina [42] or 

recently demonstrated by Ren et al. [43] in coupled capillaries with refractive index sensitivity above 

2510 nm/RIU. Beyond the current limitation of this platform, we demonstrate that this simple and 

robust sensing architecture can be used as a dip sensor, and we envision that it can be used to perform 

immunoassays in areas that that are present difficult to access with existing sensors. 
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