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Abstract: The demountable disk-drum aero-engine rotor is an important piece of equipment 

that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault 

has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring 

and fault diagnosis technique are required for identifying abnormal conditions. Customized 

ensemble multiwavelet method for aero-engine rotor condition identification, using measured 

vibration data, is developed in this paper. First, customized multiwavelet basis function with 

strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration 

signal is processed by customized ensemble multiwavelet transform. Next, normalized 

information entropy of multiwavelet decomposition coefficients is computed to directly reflect 

and evaluate the condition. The proposed approach is first applied to fault detection of an 

experimental aero-engine rotor. Finally, the proposed approach is used in an engineering 

application, where it successfully identified the crack fault of a demountable disk-drum  

aero-engine rotor. The results show that the proposed method possesses excellent performance 

in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method 

against noise is also tested and verified by simulation and field experiments. 
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1. Introduction 

Currently, aircrafts have an increasing number of applications in the transportation industry, as well 

as elsewhere. Furthermore, the safe operation of aircraft is always an important research interest.  

As one of the most important components of an aircraft, the condition of the aero-engine greatly 

impacts on the safe operation of the aircraft. Assembly looseness in the aero-engine rotor leads to local 

stress beyond safe limits on the pressure holes, which leads to a rupture accident of the labyrinth seal 

toothed disk in the high pressure compressor rotor of an aero-engine, or to catastrophic accidents 

directly [1]. Thus, fault diagnosis is a significant requirement when scheduling proper maintenance and 

for avoiding serious accidents. Thus far, many aircrafts have been equipped with condition monitoring 

and fault diagnosis systems. Vibration analysis might continue to be the one of the most popular and 

useful approaches employed in the fault detection of mechanical equipment [2,3]. The corresponding 

important problem of fault detection is how to process the vibration data in order to get the diagnostic 

feature information. One solution is to describe the vibration data as a process that can be 

parameterized based on simple statistical analysis (mean, minimum, maximum) or advanced higher 

order statistics (kurtosis, etc.) [4]. One more implementing method is to express the vibration signal in 

the frequency domain (fast-Fourier transform, etc.) [4]. However, this method would make no sense 

when the vibration data are acquired under a non-stationary operation regime. However, unfortunately, 

a great number of engineering practices indicate that vibration data gathered from machine-integrated 

sensors always appears non-stationary. This is why a rupture accident of the labyrinth seal toothed disk 

in the high pressure compressor rotor still often occurs in many different types of aircrafts, even if they 

have been equipped with condition monitoring and fault diagnosis systems [1]. Thus, an advanced and 

effective method should be developed and studied so that it may be introduced for this task. 

Many vibration signal-processing methods have been developed for mechanical equipment fault 

detection, such as envelope analysis method [5], empirical mode decomposition (EMD) [6], stochastic 

resonance (SR) [7] and spectral kurtosis (SK) [8]. Furthermore, these methods have also been applied 

in fault detection of mechanical equipment in recent years. However, all these signal processing 

method have some special limitations relevant to this task. Envelope analysis can effectively detect and 

extract periodic features, but it also suffers great difficulties in detecting transient features. One of the 

most typical features of EMD is that intrinsic mode functions (IMFs) are computed on the basis of the 

cubic spline function. Thus, EMD is sensitive to detect the harmonic feature on the vibration signal  

but invalid for transient features. SR will be helpless in this type of vibration signal because the  

signal-to-noise (SNR) ratio is too low. By computing the kurtosis value at “each frequency line”, SK 

can effectively detect the presence of the hidden non-stationarities in the vibration signal. Thus, SK is 

ideally suitable for vibration signal processing in long records and possesses special properties: 

frequency-concentration and sensitive to kurtosis. Therefore, mechanical equipment fault detection 

still calls for a more effective vibration signal processing method. 

As a powerful tool for describing the non-stationary signal, wavelet transform (WT) [9,10] has already 

shown its tremendous effectiveness in mechanical equipment condition monitoring and fault diagnosis 

because of its property of multi-resolution analysis [11–13]. Different from Fourier transform, a specific 

fault symptom can be matched and extracted by WT on the basis of selecting the basis function from the 

basis function library, which is greatly beneficial to fault feature extraction. However, the selection of basis 



Sensors 2015, 15 26999 

 

 

function is not uncontrolled because there are limited basis functions in the library. Furthermore, any 

inappropriate wavelet basis function employed in the special engineering application will directly lower the 

accuracy of the condition monitoring and fault diagnosis. Therefore, it is a vital step to select an appropriate 

wavelet basis function for vibration data processing. In fact, no fixed basis function that is related to the 

special vibration data can match a data feature entirely in all applications. Moreover, no scalar wavelet in 

the wavelet basis function library can possess orthogonality, symmetry, compact support and higher order 

of vanishing moments simultaneously. Unfortunately, these properties are significant for describing 

vibration data comprehensively and precisely. In addition, multiwavelet transform only pays attention to 

multi-resolution analysis in low frequency band, which may omit useful condition feature information.  

In order to reduce these limitations of the scalar wavelet transform, ensemble multiwavelet analysis 

method is developed. Multiwavelet transform, as the newer development of the traditional wavelet 

transform theory, was firstly developed by Geronimo et al. [14]. Multiwavelet not only possesses the 

ability of multi-resolution analysis but also simultaneously grasps such important properties as 

orthogonality, symmetry, compact support and higher order of vanishing moments that traditional 

scalar wavelet basis function does not [15]. Since possessing multiple wavelet basis functions, 

multiwavelet transform does well in identifying signal feature with multiple kinds of shapes for the 

fault detection. Moreover, ensemble multiwavelet is constructed to avoid a mistake in the selection of 

the basis functions in a special application. Lifting scheme [16] is a useful method for the wavelet 

basis function construction developed by Sweldens in recent years. Due to not relying on the Fourier 

transform and the whole construction step derived in the time domain, it provides much more freedom 

and flexibility for the construction of biorthogonal wavelet. The performance of any existing wavelet 

basis function from the basis function library can be enhanced by the lifting scheme according to the 

actual requirement in the special engineering application, which brings about the possibility of 

constructing a customized wavelet. Chen et al. [13] developed customized lifting multiwavelet based 

on the common lifting scheme for the condition identification of mechanical equipment. However, the 

mentioned method has the severe shortcoming of low adaptivity on the developed multiwavelet basis, 

which limits the ability to customize lifting multiwavelet on signal feature extraction. Wang et al. [17] 

and Chen et al. [18] developed customized lifting multiwavelet based on multiwavelet symmetric 

lifting scheme for the fault detection of mechanical equipment. Ensemble multiwavelet transform is 

performed to achieve the multi-resolution analysis in the entire signal frequency band, which is 

beneficial with describing the vibration data precisely and comprehensively. The remaining important 

problem to solve is how to reflect and evaluate the current state of mechanical equipment by a simple 

rule based on the vast customized ensemble multiwavelet transform coefficients. 

Information entropy was first proposed by Shannon in 1948 as a useful indicator to reflect and 

evaluate the uncertain degree of a system [19]. Based on the information entropy theory, the largest 

entropy value means the most uncertain probability distribution and the smallest entropy value equals 

the most certain probability distribution. From then on, more and more scholars have joined in the 

study of information entropy for special application. Ren et al. [20] proposed the contents of wavelet 

entropy and relative wavelet entropy to detect structural damage. EI Safty et al. [21] developed the 

wavelet information entropy method with neural-fuzzy inference system for fault detection in 

transmission lines and to identify the phases related to the fault of power systems. Lin et al. [22] 

identified the misalignment fault of the motor shaft based on multi-scale entropy for wavelet 
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denoising. Many kinds of definitions for information entropy have been developed in detail for some 

special and concentrated applications, such as fuzzy entropy [23] for customized bacterial foraging, 

sample entropy [24] for the tool condition detection, hierarchical entropy [25] for biological data 

analysis, cross entropy [26] for the multi-target tracking, Rényi entropy [13,27] for high-resolution scalar 

quantization, and so on. Since wavelet transform has the powerful ability to describing un-stationary 

vibration data in both the time and frequency domains. The definition of wavelet information entropy is 

developed to describe the dynamic characteristics of the measured vibration data from mechanical 

equipment. Based on this, a new method based on the ensemble multiwavelet transform and 

normalized information entropy is studied for the condition identification of aero-engine rotor. 

In this paper, a fault detection method based on ensemble multiwavelet transform is proposed for 

assembly looseness fault detection in aero-engine rotors. Benefiting from characteristics of multi-resolution 

analysis and the multiple basis functions, multiwavelet has great advantage when describing  

non-stationary vibration data. However, the fixed basis functions of conventional discrete multiwavelet 

transform, which is not related to vibration data, may decrease the preciseness of fault detection. 

Moreover, multiwavelet transform does not realize multi-resolution analysis in the high frequency band, 

which may result in omitting some useful fault feature information. To overcome these limitations, a 

customized multiwavelet basis function is constructed via symmetric lifting scheme. Then, the measured 

vibration data from the mechanical equipment is processed by the ensemble multiwavelet transform. The 

relative energy in a decomposed frequency band of the ensemble multiwavelet transform coefficients 

means a percentage of the whole signal energy is taken as probability. Normalized information entropy is 

computed on the basis of the relative energy to reflect the current state of a mechanical system. The 

proposed method is first applied to the fault detection of an experimental aero-engine rotor. Finally, the 

proposed approach is used for the engineering application and it successfully identified weak crack fault 

in a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses 

excellent performance in fault detection of aero-engine rotor. 

The rest of this paper is organized as follows. In Section 2, the theory of multiwavelet is summarized 

briefly. In Section 3, the multiwavelet symmetric lifting scheme is first described and the customized 

multiwavelet basis function is constructed based on the symmetric lifting scheme. Then, the proposed 

method, called ensemble multiwavelet analysis method, is proposed. In Section 4, this method is applied to 

two cases to demonstrate its usefulness and performance. Conclusions are provided in Section 5. 

2. Summary of Multiwavelet Transform 

Multiwavelet is generated by two or more mother wavelets [28]. Similar to the scalar wavelet transform, 

the theory of multiwavelet is also based on the concept of multi-resolution analysis (MRA) [28].  
Multi-scaling function vector T

1 2,[ , , ]r       and multiwavelet function vector T
1 2[ , , , ]r       

satisfy the following two-scale matrix refinement Equations: 

( ) 2 (2 )
M

k
k o

t H t k k Z


      (1)

( ) 2 (2 )
M

k
k o

t G t k k Z


      (2)
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The coefficients  kH  and  kG  are r r  matrices instead of scalars and T
1 2[ , , , ]r      

denotes the multiwavelet function corresponding to multi-scaling function  . In the frequency 

domain, Equations (1) and (2) are:  

/2ˆ ˆ( ) ( ) ( )
2

iH e       (3)

/2ˆ ˆ( ) ( ) ( )
2

iG e       (4)

( )H   and ( )G   are the refinement symbols corresponding to   and  . The symbols in  

Z-domain are determined by: 

0

1
( )

2

M
k

k
k

H z H z


   and 
0

1
( )

2

M
k

k
k

G z G z


   (5)

With the starting vector coefficients 0,0 0,2 1
, , j 


 , the decomposition step of multiwavelet transform is: 

1, 2 ,j n k n j k
k

H    and 1, 2 ,j n k n j k
k

G    (6)

Low frequency coefficients 1,j n   and high frequency coefficients 1,j n   after the decomposition 

step are vectors of r-dimension. The reconstruction step of multiwavelet transform is:  
* *

, 2 1, 2 1,j k k n j n k n j n
n n

H G         (7)

Note that the superscript * means the complex conjugate transpose. 

Due to the translations and dilations operations of multi-scaling and multiwavelet vector functions, 

multiwavelet can seize the vital vibration data processing properties of orthogonality, symmetry, 

compact support and higher order of vanishing moments simultaneously [15], which has been proven 

to be impossible for scalar wavelets, except Haar wavelet. Thus, multiwavelet transform can describe 

any vibration data more precisely and comprehensively because of its multi-input and multi-output 

system. In addition, due to the matrix-valued filter-bank, two or more input streams are needed in the 

process of multiwavelet transform. However, the processing vibration data would be one input stream 

usually and so some kind of pre-processing should be done before the implementation of multiwavelet 

transform. Correspondingly, a post-processing step is needed after the multiwavelet transform and it 

must be the inverse process of the pre-processing step. There are many kinds of pre-filters with 

different properties [29]. It has also been proven that the pre-filter algorithm called oversampling is 

more beneficial to vibration data feature identification than critically sampling ones [30]. Therefore, 

oversampling algorithm is selected as the multiwavelet preprocessing operation in these applications. 

3. Ensemble Multiwavelet Analysis Method 

3.1. Multiwavelet Lifting Scheme 

Sweldens developed alifting scheme that made use of an existing wavelet and scaling functions to 

generate a new wavelet with prescribed or required properties via transformations in the time domain, 

which makes it possible to produce an adaptive wavelet. Assuming an initial set of biorthogonal filter 
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operators  , , ,old old old old
j j j jH H G G , then a new set of biorthogonal filter operators  , , ,j j j jH H G G  can 

be generated by conducting the lifting scheme as follows [16]: 
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(8)

The forward and corresponding inverse operations of the wavelet lifting scheme are shown in Figure 1. 

The noteworthy advantage of producing a new wavelet basis function based on the lifting scheme is that 

the abundant choices of S  can be realized. Once S  is selected, the lifting scheme ensures and reserves that 

all filters have the property of biorthogonality. Thus, as can be seen, the foremost advantage of the lifting 

scheme is that it supplies the possibility of generating a customized wavelet.  
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Figure 1. The forward and inverse transform of the lifting scheme. 

Even now, there are remarkable advantages for multiwavelet over scalar wavelet, but the fixed 

multiwavelet basis function, independent of the special vibration data, is still not the optimal selection 

for a specified engineering application. Thus, the lifting scheme is used to generate customized 

multiwavelet basis function or ensemble multiwavelet basis function. 

Based on the multiwavelet lifting scheme, a changeable set of biorthogonal filter operators 
 jjjj GGHH

~
,,

~
,  can be obtained as follows [18]: 
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(9)

where the determinant of )(zT  is a monomial and )(zS  and )(zT  are finite-degree. 

One of the most important properties of the multi-scaling function, which has noteworthy 

significance in engineering applications, is the approximation order. Based on the wavelet theory, we 

know that if a multi-scaling function owns an approximation order m, this indicates that the 

corresponding multiwavelet function owns m vanishing moments. In the following, the procedure of 

generating a new multiwavelet, based on the multiwavelet lifting scheme, and by use of an original 

multiwavelet with required numbers of vanishing moments will be explained. Firstly, select the 
original multiwavelet )(0 x  ( 10 )( x  or 2 ) from the basis function library and a set of translation 
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quantity k of scaling functions as well as wavelet functions )(,),(1 xx k  . Next, generate the new 

multiwavelet by use of the “lifting coefficients equation” as follows: 





k

i
ii

new xcx
1

00 )()( 
 

(10)

If the vanishing moment of a multiwavelet required to be lifted from p  to 'p , both sides of “lifting 

coefficients equation” are integrated. Then, a set of linear equations in the matrix form is obtained and 

displayed as follows: 
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(11)

The solutions  ic  of Equation (11) are exactly the coefficients of functions that are used to 

perform lifting operation. Equation (10) is carried out to z-transform and the multiwavelet lifting 

scheme is realized successfully. 

3.2. Symmetric Lifting Scheme 

The vital step in the ensemble multiwavelet transform is the customized construction of the 

multiwavelet basis function. In this section, the customized multiwavelet basis function is generated on 

the basis of the symmetric lifting scheme. Symmetry could guarantee the filter has linear phase or 

generalized linear phase, which is beneficial for perfect reconstruction. However, the symmetry is not 

realized in the traditional multiwavelet lifting scheme. To realize a symmetric multiwavelet lifting 

scheme, the vital factor is the appropriate selection of translation quantity k  of multiwavelet basis 
functions [18]. Taking 1 , for example, and supposing functions i  is symmetric or anti-symmetric at 

points 
i

a , respectively. The selection of translation quantity k  should meet the following Equation: 

11
)()( 2,1,  akakaa

iiii


 (12)

Note that 1, 2, 1      , 2, ,  i j k Z   . 

The symmetry of the original multiwavelet functions and multi-scaling functions can be described as: 

1
i
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 (13)

where 1  notes symmetry and 1  notes anti-symmetry. Taking the symmetry conditions into account, 

Equation (11) turns into the following Equation: 
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The solutions of Equation (14) are the coefficients for the lifting operation 1 , while the lifting 

operation on 2  is similar to 1 . Next, substitute the related lifting coefficients into the “lifting 

coefficients equation”. Then, corresponding lifting matrices T and S can be obtained through Z 

transform. The direct presentation of the multiwavelet lifting scheme is displayed as follows: 

))()()()(()( 22 zHzSzGzTzGnew   (15)

A new multiwavelet basis function with the symmetry property is successfully constructed based on 
the symmetric multiwavelet lifting scheme with the help of ( )T z  and ( )S z . 

In order to construct ensemble multiwavelet basis function with specified properties, the appropriate 

free parameters and optimization objective are needed to optimize this process. Equation (14) can be 
briefly described as MC = N, where 1 2[ , , ]T

kC c c c  , and matrix M means the related coefficient 

matrix of Equation (14). When the set of Equation (14) is underdetermined, there are 
( ' ) ( )N p p Rank M    free parameters, which mean that ensemble symmetric lifting scheme can be 

conducted by the optimization of the free parameters. 

As described in the Section 1, information entropy is a useful indicator to evaluate the uncertain 

degree of a system. Thus, choose the minimum entropy principle as an evaluation objective to guide 

the customized lifting multiwavelet basis function construction. The mathematical definition of the 

information entropy is displayed as follows [19]: 

ln
n

i i
i

E p p 
 

(16)

where ),,,( 21 nppp   reflect the probability density functions of the processed data amplitude.  

Based on information theory, the uniformity of the probability distribution directly affects the size 

of the entropy value, and the most certain probability distribution owns the minimum entropy value. 

Our objective in the customized construction process is to find the optimal multiwavelet basis function 

for the processed vibration data by searching the minimum value of entropy E . 

Obviously, optimization method is an essential tool for searching the optimal parameter. Genetic 

algorithm [31] on the basis of the idea of natural selection has the enormous advantage that it does not 

have mathematical requirements on the optimization problem. In addition, a great number of 

applications have indicated that genetic algorithm is a powerful tool in global optimization. Thus, 

genetic algorithm is adopted to construct the optimal multiwavelet basis function for a given measured 

vibration data by selecting the free parameters. According to our experimental experience and to 

increase the efficiency of the process, the parameters of genetic algorithm are set as follows: the 

number of iteration is set to 30, the range of the population scale is set to 50, the probability of 

crossover is set to 0.7 and the probability of mutation is set to 0.05. 

3.3. Ensemble Multiwavelet Analysis Method 

Customized construction of multiwavelet basis function can enhance the ability of multiwavelet on the 

vibration date feature extraction. However, multiwavelet transform only pays attention to multi-resolution 

analysis in low frequency band, which may omit the useful abnormal state feature information. The 

decomposition step of the multiwavelet transform and the corresponding frequency bands are shown in 
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Figure 2. In order to overcome this disadvantage, ensemble multiwavelet transform is performed based on 

the customized multiwavelet filter-bank. Then, the multi-resolution analysis can be realized in both low 

frequency band and high frequency band. Thus, ensemble multiwavelet analysis method is a more precise 

and comprehensive vibration data processing tool than the multiwavelet transform [18,32–34]. Let l be the 
transform level and ,( )l ix  be the ensemble multiwavelet transform coefficients at the l  decomposition in 

the i  frequency band. Nf  means the upper frequency limit of the signal ( )x t . Then, the decomposition 

step of the ensemble multiwavelet transform and the corresponding frequency bands are shown in Figure 3. 

 
(a) (b) 

Figure 2. (a) The decomposition step of multiwavelet transform and (b) the corresponding 

frequency bands. 

 
(a) (b) 

Figure 3. (a) The decomposition step of ensemble multiwavelet transform and (b) the 

corresponding frequency bands. 

The ensemble multiwavelet transform also obeys the energy conservation principle due to its 

biorthogonal basis. After the l  transform, the 2l  frequency bands can be obtained and each 
decomposed frequency band owns the same bandwidth. Let  ,l ix k  be the ensemble multiwavelet 

transform coefficients at the l  decomposition in the i  frequency band, then its energy ,l iE  and relative 

energy ,l iE  are, respectively, calculated as follows: 

 
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     (17)
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Obviously, 
2

,
1

1
l

l i
i

E


 , the summation of total relative energy equals to 1. 

Then, the definition of normalized ensemble multiwavelet information entropy Ent can be described 

as follows: 
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In Equation (19), the base of logarithm is 2
l

. The value Ent belongs to [0, 1] in this definition. We 

can find that if every frequency band has the same relative energy 1(2 )
l   (like equal probability 

distribution), then Ent = 1; if only one of the 2
l

 frequency bands concentrates the whole energy of 

vibration signal, its relative energy would equal to 1 (like the most certain probability distribution), and 

then Ent = 0. Thus, we can regard Ent as normalized information entropy. In this paper, the normalized 

ensemble multiwavelet transform information entropy is developed and introduced for assembly 

looseness fault detection in aero-engine rotors. 

The procedure of the developed method, called normalized ensemble multiwavelet transform 

information entropy, can be concluded in the following flow chart, as displayed in Figure 4. 

Meanwhile, the process of the normalized ensemble multiwavelet transform information entropy for 

the assembly looseness fault detection of aero-engine rotors can be summarized as follows: 

1. Choose the original multiwavelet with the vanishing moment p . Then, with the given 

vanishing moment 'p , the translations of   and   are symmetrically selected; 

2. Initialize the free parameters  1 2, ,
fNf f f  and substitute them into matrix M . Meanwhile, 

make the matrix satisfy ( ) 'Rank M p p  ; 

3. Select the optimal free parameters on the basis of vibration signal by the genetic algorithm and 

the rule of the minimum information entropy principle; 

4. Determine the transform level and conduct the ensemble multiwavelet transform. Obtain the 

corresponding ensemble multiwavelet transform coefficients; 

5. Compute the total energy and the relative energies in each decomposed frequency band. Calculate 

the normalized information entropy for assembly looseness fault detection in aero-engine rotors. 
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Figure 4. The flow chart of the proposed method. 
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4. Assembly Looseness Fault Identification of Dismountable Disk-Drum Aero-Engine Rotors 

In this section, the proposed method is firstly applied to the fault detection of an experimental 

dismountable disk-drum aero-engine rotor for verifying the performance in this task. Then, the 

proposed method is used for an engineering application. Further verification is performed by 

monitoring an aero-engine rotor of the same type, but from the engineering field. 

4.1. Case 1: Analysis on the Experimental Vibration Signals  

The photograph of the experimental dismountable disk-drum aero-engine rotor is displayed in 

Figure 5. The experimental system mainly consists of a dismountable disk-drum aero-engine rotor, a 

data acquisition system, a signal generator, an exciter and sensors. The sketch map of this experimental 

system is shown in Figure 6. The dismountable disk-drum aero-engine rotor consists of a labyrinth seal 

toothed disk (serial number 10 in Figure 6), nine disks (serial numbers 1–9 in Figure 6) and a shaft 

(serial number 11 in Figure 6). An exciter (serial number 11 in Figure 6) is mounted below the shaft to 

excite the aero-engine rotor. A signal generator is applied to produce excitation vibration signal for the 

exciter. There are four accelerometers on the sensor installation surface, which is next to the labyrinth 

seal toothed disk in order to acquire the dynamic response signal of the dismountable disk-drum  

aero-engine rotor with bolts from looseness to tightness. Sony EX data system acquisition system is 

adopted to measure and store the dynamic response data. 

 

Figure 5. Photograph of the dismountable disk-drum aero-engine rotor. 

 

Figure 6. Illustration for structure of the aero-engine rotor and locations of the sensors: 1–9 are 

the first–ninth disk, 10 is the shaft, 11 is the location of the exciter. 

The measured dynamic response data are collected from the experimental system under three 

different assembled quality conditions: looseness condition 1 (tighten up the dismountable disk-drum 

aero-engine rotor with force moment M1); looseness condition 2 (tighten up the dismountable  

disk-drum aero-engine rotor with force moment M2 after condition 1); qualified condition 3 (tighten 
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up the dismountable disk-drum aero-engine rotor with force moment M3 after condition 2), such that 

M1 < M2 < M3. Four vibration signals are measured by the sensors described above for each 

condition. Therefore, twelve vibration data are measured under all the three states. The sample 

frequency is set at 6400 Hz. The measured dynamic response data under each assembled quality state 

from the same sensor in time domain and the corresponding frequency spectrum are displayed in 

Figures 7–9. The dynamic response signals under each assembled quality condition are damped in the 

time domain. It is shown that there are no evident features to identify the three different assembled 

quality conditions directly in the time or frequency domains. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-6

-4

-2

0

2

4

6

Time(s)

A
m

pl
itu

de
(g

)

0 500 1000 1500 2000 2500 3000 3500
0

0.02

0.04

0.06

0.08

0.1

0.12

Frequency(Hz)

A
m

pl
itu

de
(g

)

 
(a) (b) 

Figure 7. The measured vibration signal under the assembly condition 1 and the 

corresponding frequency spectrum. (a) vibration signal; (b) frequency spectrum. 
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(a) (b) 

Figure 8. The measured vibration signal under the assembly condition 2 and the 

corresponding frequency spectrum. (a) vibration signal; (b) frequency spectrum. 
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(a) (b) 

Figure 9. The measured vibration signal under the assembly condition 3 and the 

corresponding frequency spectrum. (a) vibration signal; (b) frequency spectrum. 
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The proposed method in this paper is used to process the measured vibration signal. First, generate 

the customized multiwavelet basis function, which is lifted from cubic Hermite splines (Strela et al. 

1994 [29]), as the original multi-scaling function. Due to the simple waveform, more freedom and 

flexibility can be obtained to construct the multiwavelet with customized properties. The multiple 

scaling functions are shown in Figure 10. In this and the next special applications on fault detection, 
the vanishing moment is set as 4p   and the support length is 5, based on the actual requirements. In 

fact, the vanishing moment and support length can be selected and determined according to the special 

engineering requirements. After the optimization process based on the genetic algorithms, the 

customized multiwavelet functions, derived from cubic Hermite splines, are generated for measure 

vibration signal under the three different assembly conditions displayed in Figures 11–13, respectively. 
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(a) (b) 

Figure 10. The multiple scaling functions of cubic Hermite splines. (a) 1 ; (b) 2 .  
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(a) (b) 

Figure 11. The multiwavelet 1  and 2  constructed for vibration signal under assembly 

condition 1. (a) 1 ; (b) 2 . 
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(a) (b) 

Figure 12. The multiwavelet 1  and 2  constructed for vibration signal under assembly 

condition 2. (a) 1 ; (b) 2 . 
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(a) (b) 

Figure 13. The multiwavelet 1  and 2  constructed for vibration signal under assembly 

condition 3. (a) 1 ; (b) 2 . 

Since the ensemble multiwavelet analysis method is applied to analyze the measured vibration data 

of an assembled quality condition to the extent of level 3 by the research experience, there are eight 

frequency bands attained. Each frequency band has the same bandwidth. According to Equation (18), 

the frequency band energy of the ensemble multiwavelet transform coefficients from three assembled 

quality states is calculated and the corresponding distributions are displayed in Figures 14–16, 

respectively. We can find that the frequency band energy of the ensemble multiwavelet transform 

coefficients from the three different assembled quality stats shows some similarities and differences. 

The similarities are that the fifth frequency band aggregates the main frequency band energy of the 

ensemble multiwavelet transform coefficients from three assembled quality conditions, and, 

meanwhile, the energy in other transform frequency bands are much smaller. The differences are that 

with the assembled quality from looseness to tightness, the sixth frequency band energy decreases, 

and, meanwhile, the main frequency band (the fifth frequency band) energy of the ensemble 

multiwavelet transform coefficients increases. The normalized ensemble multiwavelet information 

entropy of the acquired four vibration data under each assembled quality states is, respectively, 

calculated based on Equation (19), which is displayed in Table 1. Compared with the three assembled 

quality states, the normalized ensemble multiwavelet transform information entropy decreases 

distinctly with the assembled condition from looseness (fault condition 1) to tightness (normal 

condition 3). The result shows that the developed method can identify the bolts looseness fault of the 

dismountable disk-drum aero-engines effectively. 
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Figure 14. The distribution of the frequency band energy on the ensemble multiwavelet 

transform coefficients in the assembled quality condition 1.  
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Figure 15. The distribution of the frequency band energy on the ensemble multiwavelet 

transform coefficients in the assembled quality condition 2.  
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Figure 16. The distribution of the frequency band energy on the ensemble multiwavelet 

transform coefficients in the assembled quality condition 3.  

Table 1. The normalized ensemble multiwavelet transform information entropy of three 

assembled conditions. 

 Signal 1 Signal 2 Signal 3 Signal 4 Average 

Condition 1 0.340 0.328 0.314 0.310 0.323 
Condition 2 
Condition 3 

0.273 
0.167 

0.258 
0.155 

0.241 
0.143 

0.239 
0.147 

0.253 
0.153 

4.2. Case 2: Analysis on the Vibration Signals from Engineering Field  

Maintenance is indispensable in making sure that the components continue to perform the functions 

for which they are designed. The basic objectives of the maintenance activity are to deploy the 

minimum resources to ensure system reliability and to ensure that components perform their intended 

functions properly. At present, the scheduled maintenance, known as time based (or planned) 

maintenance, and involving repair at regular time intervals, is still widely adopted on most of the  

aero-engine in service in China. Due to vibrations exceeding limits, the aero-engine of military aircraft 

in this case cannot be used normally after working for 446 h. However, the first scheduled repair time 

interval is 500 h. Thus, the reason for the overweight vibration, and reasonable maintenance are 

needed. According to engineering experience, the fault called rupture accident of the labyrinth seal 

toothed disk in the high pressure compressor rotor of an aero-engine emerges frequently. In order to 

solve this problem, our group carried out the related study on the assembly looseness and crack fault 

condition monitoring of this dismountable disk-drum aero-engine rotor. 
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The dynamic response signal is acquired from the experimental system, as shown in Figure 6. The 

sample frequency is 6400 Hz. The dynamic response signal of this aero-engine rotor from one 

accelerometer and the corresponding frequency spectrum are shown in Figure 17. The dynamic response 

signal is also damped in the time domain. From the frequency spectrum, the largest amplitude value occurs 

at 2200 Hz and there are three other main spectral peaks at 1000 Hz, 1400 Hz and 2600 Hz. It is shown 

that we cannot find the evident features to identify the assembled condition directly, in both time and 

frequency domains. 

The proposed method in this paper is applied to the condition monitoring of this aero-engine rotor. 

The ensemble multiwavelet functions constructed from cubic Hermite splines for the vibration signal 

in Figure17 are shown in Figure 18. Since the ensemble multiwavelet transform is applied to process 

the signals of an assembled quality condition to the extent of level 3, by research experience, there are 

eight frequency bands attained. According to Equation (18), the frequency band energy of the 

ensemble multiwavelet transform coefficients is, respectively, computed and the distribution is 

illustrated in Figure 19. We can find that the main frequency band energy of the ensemble 

multiwavelet transform coefficients for this aero-engine rotor also lies in the fifth frequency band and 

the energy in other frequency bands are much smaller, which is similar to that in the experiment in 

case 1. The differences are that the energies of the first frequency band and the seventh frequency band 

increase distinctly.  
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(a) (b) 

Figure 17. The measured vibration signal of the aero-engine rotor in case 2 and the 

corresponding frequency spectrum. (a) vibration signal; (b) frequency spectrum. 
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Figure 18. The multiwavelet 1  and 2  constructed for vibration signal in case 2.  

(a) 1 ; (b) 2 . 
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Figure 19. The distribution of the frequency band energy on the aero-engine rotor in case 2.  

In order to reflect and evaluate the state of this aero-engine rotor, the normalized wavelet 

information entropy of the acquired signal is computed according to Equation (19), which is shown in 

Table 2. According to the results, the normalized ensemble multiwavelet transform information 

entropy of this rotor is a little larger than the value of condition 2 in case 1, which implies that there is 

an assembly looseness or crack fault in this aero-engine rotor. The faulty rotor is detached for further 

validation. Through this overhauling, cracks of different degrees on seven pressure holes in the 

labyrinth seal toothed disk of this rotor are found. The photograph of this rotor with a crack fault on a 

pressure hole is shown in Figure 20. The result reflects that the assembly looseness fault of the rotor 

result in this maintenance before the scheduled maintenance. Meanwhile, the result implies that the 

normalized ensemble multiwavelet transform information entropy possesses excellent performance in 

the assembly looseness fault detection of the aero-engine rotor, which provides an effective technology 

for the condition monitoring and health management on the aero-engine rotor. 

Table 2. The normalized ensemble multiwavelet transform information entropy of the 

aero-engine rotor in case 2. 

 Signal 1 Signal 2 Signal 3 Signal 4 Average 

Case 2 0.292 0.277 0.279 0.270 0.280 

 

Figure 20. The photograph of this rotor with the crack fault on the pressure hole. 

5. Verification on Robustness of the Used Methods against Noise 

The effectiveness of the proposed method on fault diagnosis of demountable disk-drum aero-engine 

rotor has been verified by the two cases in Section 4. Moreover, the robustness of the used methods against 

noise will be tested and verified in this section by simulation and field experiments. 
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5.1. Simulation Experiment Verification 

To verify the feasibility of the proposed method for noisy signal analysis, a simulation experiment 

is designed and carried out. First, 100 simulated signals with White Gaussian noise are generated to 

simulate the actual case without fault and a sample is shown in Figure 21. When a defect appears on 

one of the main parts of rotating machinery, such as bearing or gearbox, periodic impulse signals are 

generated in operation. Nevertheless, influenced by non-stationary operation, noise in sampling and so 

on, it is very difficult to extract features corresponding to the defect. To simulate the related actual 

case, 100 simulated signal of the length 2048 is composed for the periodic impulses with a period of 

0.25 s, as illustrated in Figure 22a. The sampling frequency is 2048 Hz. White Gaussian noise is added 

with the signal-to-noise ratio per sample of 9 dB, illustrated in Figure 22b. Obviously, the impulse 

components are masked by the noise, and we can hardly find the features of periodic impulses of the 

noisy signal sample in Figure 22b. 
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Figure 21. The simulated signal sample with White Gaussian noise. 

(a) 

(b) 

Figure 22. (a) The periodic impulse signal sample with a period of 0.25 s and (b) the noisy 

impulse signal sample. 
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The proposed multiwavelet method is adopted for analyzing all the simulated signal samples. Since the 

multiwavelet transform is applied to process the signals of all the simulated condition to the extent of  

level 3, by research experience, there are eight frequency bands attained. The normalized multiwavelet 

transform information entropy of the simulated signal is computed according to Equation (19), which is 

shown in Figure 23. According to Figure 23, we can find that the multiwavelet entropy values of White 

Gaussian noise samples on normal condition are 0.67–0.83. Meanwhile, the multiwavelet entropy values of 

noisy simulated signals on fault condition are 0.52–0.59. The result shows that the proposed method can 

effectively distinguish the different conditions using the noisy signals. 
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Figure 23. The multiwavelet information entropy values of all the simulated signals. 

5.2. Field Test Experiment Verification 

The planetary gearbox test rig shown in Figure 24 was designed to perform verification experiments 

for the multiwavelet analysis method on fault diagnosis of planetary gearbox by noisy vibration 

signals. The test rig includes a 20 HP drive motor, a bevel gearbox, two planetary gearboxes, two 

speedup gearboxes and a 40 HP load motor. The load was applied through the drive motor. Sensors 

were installed at the output shaft of the second stage planetary gearbox. There are three planet gears in 

the first stage planetary gearbox and four planet gears in the second stage planetary gearbox. The first 

stage sun gear is connected to the bevel gear by shaft #1. The first stage planet gears are mounted on 

the first stage carrier, which is connected to the second stage sun gear by shaft #2. The second stage 

carrier is located on shaft #3. Ring gears of the first stage and the second stage planetary gearboxes are 

mounted on the housing of their stages, respectively. 

 

Figure 24. The planetary gearbox test rig. 
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In this test rig, accelerometer sensors are installed on the casing of the second stage planetary 

gearbox. The sampling frequency is 10 KHz. A planetary gearbox dataset containing two subsets is 

obtained from the experimental system under the two different operating conditions. The two 

conditions include faulty and normal conditions on planetary gearbox. Planet gear in experimental 

planetary gearbox with tooth breakage fault is shown in Figure 25. Each data subset corresponds to one 

of the two conditions and it consists of 100 samples. Each sample is a vibration signal containing  

5000 sampling points. Figure 26 gives typical raw data samples for each condition. Figure 26a,b, 

respectively, show the two conditions of planetary gearbox: normal condition and tooth breakage fault 

in planet gear. From the raw vibration signals, it is not easy to identify the different faults and it is 

extremely difficult to separate the normal condition and fault conditions using only the raw vibration 

signals. Thus, in order to identify the two different conditions of planetary gearbox accurately, it is 

necessary to apply an efficient method. 

 

Figure 25. The photograph of tooth breakage fault in planet gear. 

 
(a) 

 
(b) 

Figure 26. Typical raw data samples of experimental planetary gearbox in normal 

condition (a) and fault condition (b). 

The proposed method is adopted for this task. The normalized multiwavelet transform information 

entropy of the condition vibration signals is computed according to Equation (19), which is shown in 
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Figure 27. According to Figure 27, we can find that the multiwavelet entropy values of vibration data 

on normal condition are 0.62–0.71. Meanwhile, the multiwavelet entropy values of vibration data on 

fault condition are 0.39–0.52. The result shows that the proposed method can accurately identify the 

fault condition of planetary gearbox based on noisy condition vibration data. 
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Figure 27. The multiwavelet information entropy values of all the of vibration signals on 

experimental planetary gearbox. 

6. Conclusions 

A fault diagnosis method based on ensemble multiwavelet analysis is proposed for the condition 

identification of aero-engine rotor. Multiwavelet has been proven to be a powerful tool to describe the 

non-stationary vibration signal due to the property of multi-resolution analysis and the multiple 

wavelet basis functions. To overcome some mentioned limitations, ensemble multiwavelet basis 

function is constructed via a symmetric multiwavelet lifting scheme. Then, the ensemble multiwavelet 

transform is performed on the vibration signal of aero-engine rotors. The relative energy in each 

frequency band of the ensemble multiwavelet transform coefficients, which is equivalent to a 

percentage of the whole signal energy, is taken as the probability. Normalized information entropy is 

computed based on the relative energy to reflect and evaluate the state of aero-engine rotor. The 

proposed method is first applied to the fault detection of an experimental aero-engine rotor. Then the 

proposed method is used for an engineering application and the results shows that the proposed method 

performed excellently in this task. Finally, the robustness of the multiwavelet method against noise is 

also tested and verified by simulation and field experiments. 

Moreover, it must be said that although a similar multiwavelet method is also be used for equipment 

condition identification in reference [13], the severe shortcoming of low adaptivity on the developed 

multiwavelet basis greatly limits the ability of customized lifting multiwavelet on signal feature 

extraction. In addition, some findings need to be introduced based on the experimental results. First, 

fault feature identification and extraction is the fundamental and vital step in this method. Thus, the 

customized construction of the ensemble multiwavelet basis function is a very key step in this method, 

which greatly affects the performance of fault detection. Although the multiwavelet lifting scheme is a 

popular method, we are looking forward to developing some more novel and effective methods for 

construction. Next, evaluation index is another key factor for the fault detection of aero-engine rotors 
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as well as the construction of an ensemble multiwavelet basis function. The evaluation index must 

reflect the state information from the fault feature sensitively and effectively. A more useful index 

should be studied to reflect the state of the development of faults comprehensively in the future. All in 

all, ensemble multiwavelet analysis method can play a more important role in the detection of faults in 

aero-engine rotors in the future. 

In addition, the authors have attracted some interesting results and will carry out a related study in the 

future. First, the authors have checked the noise attenuation performance in simulation and experiments. 

However, it is also of significance to study the noise attenuation ability from the technical/methodological 

viewpoint by referring to the known model-based and signal-based methods [35]. Second, some 

interesting techniques, such as distributed sensor networks [36] and fault-tolerant techniques [37], are 

certainly useful for enhancing the ability of carrying out fault diagnosis of mechanical equipment. 

Thus, the above-mentioned techniques will be taken into consideration to study with the proposed 

method in future work. 
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