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Abstract: To minimize cargo theft during transport, mobile radio frequency identification 

(RFID) grouping proof methods are generally employed to ensure the integrity of entire 

cargo loads. However, conventional grouping proofs cannot simultaneously generate 

grouping proofs for a specific group of RFID tags. The most serious problem of these 

methods is that nonexistent tags are included in the grouping proofs because of the 

considerable amount of time it takes to scan a high number of tags. Thus, applying grouping 

proof methods in the current logistics industry is difficult. To solve this problem, this paper 

proposes a method for generating multilayered offline grouping proofs. The proposed 

method provides tag anonymity; moreover, resolving disputes between recipients and 

transporters over the integrity of cargo deliveries can be expedited by generating grouping 

proofs and automatically authenticating the consistency between the receipt proof and pick 

proof. The proposed method can also protect against replay attacks, multi-session attacks, 

and concurrency attacks. Finally, experimental results verify that, compared with other 

methods for generating grouping proofs, the proposed method can efficiently generate 

offline grouping proofs involving several parties in a supply chain using mobile RFID. 

Keywords: radio-frequency identification; multilayered grouping proof; supply chain 

management; anonymity; multi-session attacks; concurrency attacks 
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1. Introduction 

Mobile radio frequency identification (RFID), a widely adopted technique in supply chain 

management (SCM), involves using a mobile reader to scan RFID tags [1,2]. In each SCM stage, RFID 

tags can be employed to store cargo information and facilitate autonomous stocktaking, thereby 

improving inventory management and accelerating the retail cycle [3]. RFID tags can also be employed 

to track and locate cargo, which not only improves order management [3], but also reduces management 

costs. For example, by adopting an RIFD SCM system, Wal-Mart reduced its annual distribution costs 

by approximately 6%–7%, an equivalent saving of US$1.4 billion [4].  

Although tracking cargo through RFID is easier than using other logistics management methods, 

malicious members of a supply chain can steal cargo during the transfer process [5,6]; consequently, 

delivery of all cargo cannot be guaranteed. Annually, cargo theft accounts for approximately US$30 

billion in losses worldwide [4]. However, when determining whether the suppliers, transporters, and 

recipients are suspects, disputes may arise when the actual suspect cannot be confirmed [7]. To solve 

this problem, Zhou and Rodrigues have proposed a smart grid based infrastructure to verify the generated 

codes for each recipient [8]. Lo et al. [9] proposed a cargo tracking system utilizing RFID. The tracking 

system provides the ability to report the real-time locations of the cargo and its flow. RFID systems have 

been designed to generate grouping proofs for all RFID tags during cargo transfer [10–12]. Accordingly, 

in the event of a dispute, transporters can use the receipt proofs as evidence of having delivered the 

cargo. Moreover, by generating a receipt proof when the cargo is delivered, the recipient provides 

undeniable proof that they have received their shipment in full. 

However, if a poorly designed integrity check mechanism is used, malicious users can exploit the 

mechanism, thereby compromising its credibility. For example, attackers can record the messages 

communicated between tags and readers and then replay them to generate bogus proofs that can pass 

authentication protocols, despite nonexistent tags being used in the attack. Saito and Sakurai [13] employed 

timestamps generated by a verifier to replace random numbers [14] to protect against replay attacks. 

However, tag impersonation attacks can be used to exploit generating timestamps in systems that generate 

multiple grouping proofs simultaneously. Therefore, Peris-Lopez et al. [15,16] have proposed a protocol 

for generating grouping proofs that protect against tag impersonation attacks and safeguards the method 

proposed by Yu, Hou, and Chiang [17] by not only protecting against multisession attacks, in which 

malicious users intercept pieces of grouping proofs transmitted in the same time zone and then generate a 

composite bogus proof, but also protecting RFID systems from most attacks targeting online grouping 

proofs. However, because generating the grouping proof protocol requires writing data to an RFID tag 

multiple times, concurrency attacks can occur when multiple readers concurrently generate grouping 

proofs for the same RFID tag, causing messages from the readers to interactively overwrite the tag content 

generated by each reader in the tag, thus generating the erroneous grouping proofs. Therefore, Lin, Lai, 

Tygar, Yang, and Chiang [18] proposed a protocol that instantly generates grouping proofs to protect 

against concurrency attacks that prevent grouping proofs from being generated.  

When transporters receive or deliver cargo in areas where mobile readers cannot connect to the 

verification server (verifier) for authentication, the server cannot generate a trustworthy time value to 

initiate generating the grouping proofs [10]. Therefore, Sun, Ting, and Chang [19] and Hermans and 

Peeters [20] have utilized the timeout mechanism of RFID tags to ensure that the grouping proofs are 
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accurate. When group members cannot complete the protocol because they are not within range of a 

mobile reader, the reader cannot obtain the grouping proofs or ensure that all of the RFID tags are in the 

same interval when the proofs are generated. Lo and Yeh [21] and Ma, Lin, Wang, and Shang [22] have 

employed additional active tags or trusted devices that generate timestamps to ensure that the time 

difference between timestamps is within a time threshold before responding to a mobile reader’s requests 

for the generated proofs; thus, all the of the RFID tags involved in the grouping proofs must be present 

at the same interval.  

In addition to the correctness of the generated grouping proofs, the conventional grouping  

proofs [14,23–28] are generated by all tags on site one after another, thus making these tags incapable 

of simultaneously computing the pieces of proof assigned to the tags. The calculation time for generating 

this type of grouping proof increases with the number of tags; thus, it is unsuitable for cargo with a 

considerable number of RFID tags, which is common in most supply chains. Lien, Leng, Mayes, and 

Chiu [29] proposed a method that satisfies the exclusiveness of commutative property or is capable of 

combining the pieces of proof computed by the tags through XOR operands in order to generate grouping 

proofs. The method enabled the reader to request that proofs be generated by other tags before the pieces 

of proof have been reconstructed. Without needing to consider the sequence of requests, the request 

order can be directly combined to generate the final grouping proof. In addition, parallel computing 

accelerates the generation of grouping proofs. Jantarapatin, Mitrpant, Tantibundhit, Nuamcherm, and 

Kovintavewat [30] and Nuamcherm, Kovintavewat, Tantibundhit, Ketprom, and Mitrpant [31] have 

improved the security of message requests for grouping proofs by enabling mobile readers to directly 

broadcast the random number incorporated in the tags. All tags must simultaneously use both the key 

shared by the verification server and encrypt to obtain the random number sent by the reader in order to 

obtain protocol for generating the pieces of proof. Similarly, the final grouping proof is produced by 

reconstructing the pieces of proof generated by each tag through a process of exclusion or combination, 

which reduces the amount of time taken for generating the proof. However, with this method, 

compromised readers can be exploited to insert random numbers in the request messages before 

transmitting them to the tags; after recovering the pieces of proof from the tags, a piece of proof with a 

tag that is the same as the tag of the inserted random number can be used to generate bogus grouping 

proofs that can pass authentication, despite not having the tags. Thus, Sun, Ting, and Chang [19] 

proposed using message broadcast to render it impossible for readers to generate a bogus grouping proof 

with nonexistent tags through encrypting the returned messages of all the participating tags using a 

shared key. Yen, Lo, and Wu [32] indicated that when a reader is online (i.e., connected to a network), 

all tags should first be authenticated, and the grouping proofs should then be generated and transmitted 

to a backend verifier; thus, completion can be achieved by broadcasting only two messages. Hermans 

and Peeters [20] employed an additional timestamp to initiate the procedure of generating grouping 

proofs and signing the final collected grouping proof, thus achieving the same outcome except in an 

offline environment. 

The time taken for generating pieces of proof can be reduced considerably by using parallel 

computing because the requests for grouping proofs are broadcast to all RFID tags. However, when  

these tags transmit the pieces of proof to the reader, collisions occur because of simultaneously receiving 

a high number of tag messages. If messages are sent using anticollision mechanisms, such as  

tree-walking or the aloha protocol of ISO-18000 [33], then the time taken for responding to messages  
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increases [34,35]; thus, malicious users can exploit this time difference to generate a legitimate grouping 

proof from a group of tags that are not in the same time interval [36]. Therefore, Leng, Lien, Mayes, and 

Markantonakis [37] proposed a subgrouping grouping proof that minimized the number of collisions by 

using fewer grouping tags. This method involves dividing groups of tags into several subgroups and 

generating proofs sequentially; however, because only one reader is employed to generate the grouping 

proofs, retransmitting messages across subgroups can only be performed in the specific sequence; thus 

employing parallel retransmission does not improve the effectiveness. Moreover, the scanning 

restrictions on the maximum number of tags that can be read by the reader [38,39] render this method 

unfeasible in logistics management when a high number of tags requiring scanning are involved. 

Therefore, the present study proposed a method for generating multilayered grouping proofs to 

resolve the problem of needing to scan generated grouping proofs in batches because of the limited 

number of tags that can be scanned using a reader [38,39], which, in a supply chain environment, would 

invalidate the grouping proof because the processing time would exceed its time threshold. The goal of 

our method is proposing a hierarchical management framework that enables several readers to 

simultaneously generate pieces of proof; subsequently, the final grouping proofs are generated by an 

authorized reader. In addition, regardless of whether the reader can connect to the backend verifier, the 

cargo transporter can use the reader to collect tag information to generate proofs. When the messages 

are transmitted in an online environment, the verifier can confirm whether the tags were generated by 

readers in the same location. Thus, the proposed method is effective for (1) generating grouping proofs 

for a supply chain in which a considerable number of tags must be scanned simultaneously; (2) reducing 

the time required for generating proof concurrently through multiple readers when a high number of tags 

are involved; (3) providing undeniable proof of delivery for recipients, suppliers, and transporters by 

generating proofs before every cargo transfer and by acquiring signatures from all relevant personnel as 

evidence that the cargo was received in full and by the intended recipient; (4) ensuring that the tags are 

secure from replay, eavesdropping, and impersonation attacks, and as well as most attacks designed to 

generate bogus grouping proofs; (5) ensuring data confidentiality through using anonymous tags;  

(6) ensuring that the supply chain’s cargo routes remain confidential; (7) automatically determining 

whether the transporters deliver the cargo on time and according to order; and (8) dynamically scaling 

the number of cargo tags according to the scan rate at which the mobile reader scans to generate  

grouping proofs.  

The remainder of this paper is organized as follows. Section 2 introduces the environmental 

hypothesis for the grouping-proof protocol applied to many RFID readers, as well as the relationships 

among the tags, readers, and certain members in a supply chain. In addition, the initialization process 

and methods for generating and authenticating grouping proofs are explained in detail. Subsequently, 

Section 3 investigates the security of the proposed protocol and compares it with that of other grouping 

proofs. In Section 4, the computation effectiveness of the proposed method is analyzed and compared 

with that reported by related studies. Finally, Section 5 offers the conclusions for this study. 

2. Cargo Inspection Management of Mobile Logistics 

The method proposed in this study can be applied to improve SCM. As depicted in Figure 1a, the 

proposed method can be adopted to automatically generate grouping proofs to facilitate using mobile 
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RFID readers to manage cargo. To automate the scanning process for transporters delivering cargo, 

suppliers, transporters, and recipients adopting the protocol must first register their mobile RFID devices 

on a verifier (i.e., a server for backend authentication). In addition, the threat model developed is based 

on the hypothesis that malicious users can conduct eavesdropping attacks by intercepting the messages 

transmitted by RFID readers and tags. In addition, transporters might exploit the proposed protocol 

through the following two malicious behaviors: (1) providing a bogus proof to conceal stolen cargo; and 

(2) tampering with the proof timestamp to conceal delayed deliveries caused by negligence. Therefore, 

in this study, a clock tag was incorporated into the transporter’s reader to ensure that the timestamp 

generated under offline conditions is trustworthy for when the reader cannot connect to the verifier. 

As indicated by Step 1 in Figure 1a, when the transporter requests the verifier to authenticate the 

delivery of cargo to n recipients, denoted as 	ܲଵ, 	ܲଶ, … , 	ܲ௡, the delivery of cargo to any recipient can be 

expressed as shown in Equation (1): 	ܶ௤ = ൛ܶܦܫ௜௤│	∀݅ ௜௤ܦܫܶ ∈ ܲ௤, 1 ≤ ݅ ≤ ,ݍߜ ݍߜ ∈ ℤାൟ (1)

where ܶܦܫଵ௤,ܶܦܫଶ௤,…,ܶܦܫఋ௤௤  denote the RFID tag codes; δq represents the number of RFID tags; and ܲܦܫ	௤ is the recipient’s RFID code, which is incorporated into the tags. 

Assume that a supplier must deliver cargo with a group of RFID tags, denoted as ܶ଴ = 	 	ܶଵ ∪ 	 	ܶଶ ∪ …∪	 	ܶ௡, where n denotes the number of recipients. To ensure that the transporter can immediately check the 

integrity of cargo delivered to recipient 	ܲ௤, the verifier applies Equation (2) to obtain a verification code 

indicating the integrity of the delivered cargo: ܶܣ	௤ = …||ଶ௤ܪܶ||ଵ௤ܪܶ ఋ௤௤ܪܶ|| , ݁ݎℎ݁ݓ ∀݅ ௜௤ܪܶ = 	௜௤||ܶܵ௩ݐܭ||௜௤ܦܫ൫ܶܪ ൯ (2)

where ܶܣ	௤ is the verification code; ݐܭ௜௤ denotes the shared key for the verifier and the tag ܶܦܫ௜௤; and ܶܵ௩	  is a timestamp generated by the verifier. 

To enable the RFID reader to encrypt the multicast messages transmitted to the cargo tags and to 

establish a secure multicast channel between the readers and tags [40], the verifier generates the group 
keys for the k-ary tree with ܭܩ଴௤	as the starting node (a detailed explanation of key tree is provided in 

Section 2.1). At Step 2 in Figure 1a, the verifier transmits the following data to the transporter’s reader: 

a group of verification codes ܶܣ଴ = ,ଵܣܶ} ,ଶܣܶ … ,  ௡} for n recipients; a key tree comprising the groupܣܶ

of tags ܭܩ଴଴ = ,଴ଵܭܩ} ,଴ଶܭܩ … , 	଴௡} from the recipients; the timestamp ܶܵ௩ܭܩ ; and verification codes for 

the clock tags generated in the offline phase. Figure 1b shows that the reader generates verification codes 

for the transporter, supplier, all of the RFID tags involved in delivering the cargo, and a receipt proof for 

the cargo delivery. Subsequently, the check codes generated by the transporter’s reader and the verifier 

are compared to confirm whether they are identical in order to ensure the integrity of the cargo and that 

it has been received in full. 

As indicated in Figure 1c, when the transporter delivers cargo to each recipient, the cargo tags and 

recipient’s RFID tag are scanned using the reader, which then generates receipt proofs and verification 

codes for each recipient. The integrity and correctness of the delivered cargo are confirmed by ensuring 

that the verification code issued by the verifier and the receipt proof and verification code generated by 

the transporter are consistent. The reader transmits the pick proofs and receipt proofs to the verifier as 

soon as a connection is established. In the event of a dispute (e.g., the recipient denying having received 

the cargo), the receipt proof is evidence that the transporter has already delivered the cargo in full, as 
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illustrated in Step 6 of Figure 1a. By contrast, if the transporter denies that the cargo has been consigned 

by the supplier, then the pick proof is evidence that the transporter has already collected the cargo, as 

indicated in Step 4 of Figure 1a. Moreover, if the recipient notices that the cargo content differs from the 

consignment note, then the backend verifier can cross-reference the pick proof and receipt proof. Should 

the tags for the receipt proofs and pick proofs be identical, then the error is associated with the quantity 

shipped by the supplier. A discrepancy between the receipt proof and pick proof indicates that the transporters 

has lost cargo in route. Thus, the grouping proofs solve and clarify problems regarding lost cargo. 

 

Figure 1. Process of supply chain distribution and grouping proof: (a) steps of the supply 

chain distribution; (b) generate the grouping proofs for pick up and delivery; (c) generate the 

grouping proofs for cargo delivery. 

However, some problems remain unresolved in this method of logistics verification; when the reader 

cannot connect to the verifier, trusted proofs cannot be generated securely. Regarding the method 

proposed in this study, identical procedures are used for picking up cargo from suppliers and transporting 

cargo to recipients. Although pick proofs must be generated from cargo tags when suppliers consign 

cargo for deliver to multiple recipients, the method proposed in this study is no different except for the 

number of tags, the personnel engaged in the process, and the identification code of the reader. Without 

loss of generality, the subsequent sections discuss the following three phases for generating grouping 

proofs, which is achieved through the transporter and recipient using the identification codes ܦܫܣ and ܲܦܫ	௤ , respectively: (1) an initialization phase for generating the group key tree; (2) an integrity 

verification phase for generating grouping proofs and integrity check codes for when the multilayered 

reader is used in offline phase; and (3) a dispute resolution phase, in which all of the grouping proofs are 

examined to verify the cargo delivery process in the event of a dispute. 
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2.1. Initialization Phase 

When a cargo shipment with a tag collection 	 	ܶ௤ is delivered to recipient 	ܲ௤, the reader requests the 

verifier to establish a secure multicast connection to ensure that the generated grouping proofs accord 

with those on the recipient’s reader and that messages can be transmitted to the δq tags in 	 	ܶ௤. Therefore, 

the verifier generates a k-ary group key tree with a height difference of the subtree of ≤1 (tree height of ℎ௠௔௫ = ⌈log௞(ݍߜ ݇⁄ )⌉) for the shared key ݐܭ௜௤ available to all tags ܶܦܫ௜௤. In summary, the group keys 

that can transmit messages to δq tags in 	 	ܶ௤ are defined as ܭܩ଴௤, as illustrated in Figure 2. Figure 2a 

shows the numbering sequence that is generated when the group number of a certain node in the k-ary 
group key tree is ܩ௦௤: from top to bottom, from left to right, the number of parent nodes is ہܩ(ೞషభ) ೖ⁄ ௤ۂ , and 

the number of the child nodes ranges from ܩ௦∗௞ାଵ௤  to ܩ௦∗௞ା௞௤ . Figure 2b indicates an example of a 3-ary 

key tree generated by 	 	ܶ௤, a set of 23 tags; the group key ܭܩଶ௤ is employed to encrypt the multicast 

messages transmitted to the tags numbering from ܶܦܫଵ଴௤  to ܶܦܫଵ௤଼ , and the tags ܶܦܫଵ଴௤ ଵଵ௤ܦܫܶ , , and ܶܦܫଵଶ௤  

decrypt the multicast messages encrypted with the group key ܭܩ଻௤ by using the keys ݐܭଵ଴௤ ଵଵ௤ݐܭ , , and ݐܭଵଶ௤  shared with the verifier. 

 

Figure 2. Group Key tree of cargo tags of recipient 	ܲ௤: (a) Rule for numbering among group 

keys; (b) key tree for 3-ary group tags. 

Therefore, the nodes with the group number of ܩ௦௤ are composed by 1 to a number of k subtrees, with 

Equation (3) indicating the group key incorporated by any node ܩ௦௤. Group key ܭܩ௦௤ exists in all the 
parent groups numbered ܩ௦௣௔௥௤  that incorporate ܩ௦௤ and satisfy the intersection of group number ܩ௦௤	and ܩ௦௣௔௥௤  equaling ܩ௦௤. The difference set between ܩ଴௤ and ܩ௦௣௔௥௤  and the intersection between ܩ଴௤ and ܩ௦௤ as 

an empty set is as indicted in Equation (4). 
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௦௤ܩ = ቄܭܩ௟௤│∀݈	ܭܩ௟௤ ∈ ,௦௤ܩ ݏ ∗ ݇௛ + ௞೓ିଵ௞ିଵ ≤ ݈ ≤ ݏ ∗ ݇௛ + ௞(௞೓ିଵ)௞ିଵ , ℎ ∈ ℤ଴ା, ݏ ∈ ℤ଴ାቅ 
௦௣௔௥௤ܩ = ۔ۖەۖ

௦௤ܭܩۓ ∈ ቨೞషೖ೓షభೖషభೖ೓ܩ ቩ௤ , ℎ ∈ ℤ଴ା, ݏ ∈ ℤ଴ାۙۘۖ
ۖۗ ௦௤ܩ	௦௤,whereܭܩ	ݏ∀			, ∩ ௦௣௔௥௤ܩ =  ௦௤ܩ

(3)

and ൫ܩ଴௤ − ௦௣௔௥௤ܩ ൯ ∩ ௦௤ܩ = ∅ (4)

Table 1. Definition of symbols. ܸ ܸ݁ݎ݂݁݅݅ݎ: a third-party verification server to reinspect grouping proofs  ܵ ܵݎ݈݁݅݌݌ݑ: shipping supplier ݎ݁ݐݎ݋݌ݏ݊ܽݎܶ ܣ: transporter who delivers cargo  	ܲ௤ ܴ݁ܿ݅ݐ݊݁݅݌: q-th recipient who receives the cargo  ݇ܿ݋݈ܥ ܥ	ܶܽ݃: a third-party clock tag providing time for the system in offline phase ܦܫܣ Identification code for ܦܫܥ ܣ		 Identification code of a trusted and active third-party ܦܫܴ ܥ଴	  Identification code of the reader used by ܽ ܲܦܫ	௤ Identification code of 	ܲ௤ ܴܦܫ௝௤ Identification code of the ݆-th reader used by ܲ௤  ܶܦܫ௜௤ Identification code of the ݅-th tag for ܲ௤ ܩ௦௤ ݏ-th group code for 	ܲ௤ ܶܪ௜௤ Verification hash value for ܶܦܫ௜௤ ܿܭ Shared key for ܥ and ܸ ݎܭ௝௤ Shared key for ܴܦܫ௝௤ and ܸ ݐܭ௜௤ Shared key for ܶܦܫ௜௤ and ܸ ܭܩ௦	௤ Shared key for ܩ௦௤	and ܸ ܵܭ௝௤ Session key among readers  ܲܭ	௔ Public key for ܽ ܴܲ	௔ Private key for ܽ ܲܭ	௤ Public key for 	ܲ௤ ܴܲ	௤ Private key for 	ܲ௤ ܰݎ௝௤ Random number generated by ܴܦܫ௝௤ ܰݐ௜௤ Random number generated by ܶܦܫ௜௤ ܰܿ		 Random number generated by ܥ ܰܽ		 Random number generated by ܽ ܰ݌	௤ Random number generated by ܲ௤ ܶܵ௩	  Timestamp generated by ܸ ܶܵ௖	  System time of ܥ Δܶ Time threshold for generating grouping proofs (݃ݏܯ,ݕ݁݇)ܧ Encryption function generated by message (݃ݏܯ) through an employment of symmetric key (݇݁ݕ) ܵ݅݃݊(݇݁݃ݏܯ,ݕ) Signing function generated by ݃ݏܯ through an employment of private key	(݇݁ݕ) (݃ݏܯ,ݕ݁݇)ܥܣܯ Function for message authentication code generated by ݃ݏܯ by an employment of (݃ݏܯ)ܪ ݕ݁ܭ Message authentication code generated from an employment of hash function by ܨ ݃ݏܯ 	ܱ௤ Judgement of whether the grouping proof for ܲ௤ is generated in online or offline phase 
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In addition, this study defined the ⌈ఋ௤ ௞⁄ ⌉ -number of key trees coded from ඃ(ഃ೜ ೖ⁄ )షభೖషభ ඇ  to  	ඃ(ഃ೜ ೖ⁄ )షభೖషభ ඇ + ⌈ఋ௤ ௞⁄ ⌉ − 1, that directly connects with the nodes on the tags, as leaf group, as indicated in 
Equation (5) and represented by ܩ௟௘௔௙,௠௤ . For example, tag codes ܶܦܫଵ௤, ܶܦܫଶ௤, and ܶܦܫଷ௤ connect with 

the leaf node ܩ௟௘௔௙,ଵ௤  of group code ܩସ௤. ܩ௟௘௔௙,௠௤ = ቄܶܦܫ௟௤│∀݈	ܶܦܫ௟௤ ∈ ௟௘௔௙,௠௤ܩ , (݉ − 1)݇ + 1 ≤ ݈ ≤ ݉݇, 1 ≤ ݉ ≤ ቒఋ௤௞ ቓቅ (5)

Table 1 provides the definition of the symbols used in the protocol. 

2.2. Integrity Verification Phase: Grouping Proof Protocol of a Multilayered Reader 

After the transporter delivers the cargo to the recipient and simultaneously generates grouping proofs 

using the reader with a maximum reading capacity of r, the group keys are distributed to several mobile 

readers from the transporters’ reader ܴܦܫ଴ to securely multicast messages to δq tags via the recipients’ 

readers, thus enabling each reader to receive the maximum number of tags by performing only one 

multicast; in other words, the grouping proof is generated using the minimum number of group keys. 

During the initialization phase, Equation (3) is employed to generate the group keys and construct a 

complete k-ary key tree for ܴܦܫ଴ with a tree height of ℎ = ⌈log௞(ݍߜ ݇⁄ )⌉ − ݎ)log௞ہ ݇⁄ ୪୭୥ೖہ݇ for multicasting ۂ( ௥ۂ tags; in other words, the key tree satisfies the maximum number of reading limits, r, and can 

encrypt the maximum number of tags with group keys, thereby forming a complete subtree. Therefore, 

when the number of tags that ݇௛ group key (whose height ℎ equals that of the key tree) can encrypt 

(݇௛ × ୪୭୥ೖہ݇ ௥ۂ tags) equals δq, the complete key tree with successive group keys with a multicast range 

from 1 to ݎ	for multicasting ݇ہ୪୭୥ೖ ௥ۂ tags is derived, which also satisfies the nonrepetition requirement 

for the tags. ݂(ܽ) = ቞ቒ(ഃ೜ ೖ⁄ )షభೖషభ ቓା⌈ഃ೜ ೖ⁄ ⌉ିଵି௞ೌିଵ௞ିଵ௞ೌ ቟ (6)

However, if ݇௛ × ୪୭୥ೖہ݇ ௥ݍߜ < ۂ, then the k-ary key tree (Figure 3) would be incomplete. To enable 

the reader to scan all of the tags with the least number of group keys, the system must perform a search 

to determine whether any incomplete tree contains a group key that can encrypt a particular number of 

tags, the number ranging between ݇ہ୪୭୥ೖ ௥ۂ and r. Because an incomplete subtree would appear in the 

subtree with the maximum number of leaf nodes, Equation (6) is applied to determine ݂(ہlog௞  in (ۂݎ

order to determine the parent node code at the level of ہlog௞ height = ℎ) ۂݎ − 1) above the maximum 
leaf node code level ඃ(ഃ೜ ೖ⁄ )షభೖషభ ඇ + ݍߜ⌉ ݇⁄ ⌉ − 1. Subsequently, Equation (3) is employed to determine all of 

the leaf group codes in the encrypted nodes; also in addition, Equation (5) is applied to compute ܴܣ, the 

total number of tags that can be read. As expressed in Equation (7), when the maximum number of r 

tags scanned by the reader can contain ܴܣ number of tags, a group key with the code ݂(ہlog௞  which ,(ۂݎ

satisfies the number of tags between ݇ہ୪୭୥ೖ ௥ۂ and r quantity, is obtained. Consequently, the group key 
with the code ݂(ہlog௞  is selected as the first key ௙ܴ; else, the smallest code in which the message (ۂݎ

can multicast to ݇ہ୪୭୥ೖ ௥ۂ number of tags can be selected as the first key ௙ܴ. 

Subsequently, Equation (8) was employed to compute that under these two conditions, another group 
key code ܴ௘ larger than ௙ܴ , enabling the key with codes ranging between ௙ܴ and ܴ௘ to be capable of 

encrypting all tags, with none of the two keys repeatedly encrypting the same tag. 
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௙ܴ = ൜ log௞ہ)݂ (ۂݎ , ܣܴ ≤ log௞ہ)݂ݎ (ۂݎ + 1, ܣܴ > (7) ݎ

ܴ௘ = ۔ۖەۖ
ۓ ݇ ∗ ௙ܴ	, ݇ ∗ ௙ܴ < ቜہఋ௤ ௞⁄ ۂ − ݇݇ − 1 ቝ + ݍߜ⌉ ݇⁄ ⌉ − 1
ቜہఋ௤ ௞⁄ ۂ − 1݇ − 1 ቝ + ݍߜ⌉ ݇⁄ ⌉ − 1, ݇ ∗ ௙ܴ ≥ ቜہఋ௤ ௞⁄ ۂ − ݇݇ − 1 ቝ + ݍߜ⌉ ݇⁄ ⌉ − 1 (8)

For example, Figure 3a is a distribution diagram of Figure 2b that involves the results obtained from 

the 23 group keys tagged on the k = 3-ary group key tree for the reader with a reading capacity of r = 6. 

According to ⌈logଷ(23 3⁄ )⌉ − logଷ(6ہ 3⁄  the group key with the tree height of 2 can multicast ,2=0-2=ۂ(

message to three tags and encrypt the maximum number of tags within the capacity that can be read by 
the reader. In addition, of the parent node located in the level of ہlogଷ ۂ6 = 1 above the group key	ܭܩଵଵ௤  

of the largest leaf group within an incomplete key tree coded 11, the leaf group keys ܭܩଵ଴௤  and ܭܩଵଵ௤  

incorporated in key ܭܩଷ௤, with a tree height of 1, can read three and two tags, respectively. This study 

computed that an incomplete subtree with the height of 1 can read a total of 5 tags, which was less  

than 6, the number of tags that can be simultaneously read by a reader; in addition, the tags that can be 
encrypted by the largest leaf node was already incorporated within the group key	ܭܩଷ௤ (݇ × ௙ܴ = 3 ×݂(2) =9→9 < 11). Therefore, a reader generates grouping proofs from the group keys coded from 3 to 
 .(ଽ௤ܭܩ ଷ௤ toܭܩ) 9

Figure 3b is a similar distribution diagram of Figure 2b as that of Figure 3a as it presents the results 

from the group key to the reader on the key tree; however, Figure 3b differs from Figure 3a in that the 
reader had a reading capacity of r = 4. In this example, the starting group key ܭܩଷ௤ of an incomplete 

subtree with the height of 1 can read five tags, which was larger than the number of tags that can be 
simultaneously read by a reader. Therefore, the group key ܭܩଷ௤	was replaced by the subgroup keys ܭܩଵ଴௤  

and ܭܩଵଵ௤  and the reader with the reading capacity of four tags generated grouping tags using group keys 

ranging from ܭܩସ௤ to ܭܩଵଵ௤ . 

 

Figure 3. Examples showing group key selection in an incomplete group Tree: (a) the 

number of remaining tags ܴܣ ≤		reading capacity of ݎ tags; (b) ܴܣ	 >  .ݎ	

Subsequently, the following two strategies were employed to distribute ܴ௘ − ௙ܴ + 1 number of group 

keys to the reader with a reading capacity of r. 
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I. Only one group key was distributed to each reader used by a recipient to maximize the benefit of 
concurrent reading; consequently, a total of ඃೃ೐షೃ೑ೝషభ ඇ + ܴ௘ − ௙ܴ readers was required to generate 

the grouping proofs. 

II. Distribute one or multiple group keys to the reader to satisfy the condition that within all the 

readers, the total number of tags that can be encrypted by the key was less than the number of r 

tags, and only a minimal number of readers for recipients was required [41–43]; therefore, 

grouping proofs were generated using the least resources. 

Finally, when the number of recipients’ readers was larger than r, reader ܴܦܫ଴	  cannot simultaneously 

transmit messages to all recipients’ readers. The method as indicated in Figure 2a in Section 2.1 was 

thus employed to form a read tree and code reader to solve the problem in which several readers 

simultaneously generate grouping proofs. To ensure the security of group key transmission and message 
transmission among readers, any reader ܴܦܫ௝௤ can use the key shared with the verifier to generate a 

session key ܵܭ௝௤ for encrypting messages transmitted between the parent node as well as to generate a 

maximum number of r keys (ranging	from	ܵܭ௝∗௥ାଵ௤  to ܵܭ௝∗௥ା௥௤ ) for child node communication, and for 

encrypting messages transmitted between two readers. For example, Figure 4 presents the read tree in 
which each or several of the seven group keys ܭܩଷ௤, ܭܩସ௤, ܭܩହ௤, ܭܩ଺௤, ܭܩ଻௤, ܭܩ௤଼, and ܭܩଽ௤, as indicated 

in Figure 3a, were distributed to each reader. Figure 4a indicates that when the seven keys were processed 

into seven readers to enable all readers to concurrently read all the tags, transporter’s reader ܴܦܫ଴	  with 

a reading capacity for only six tags could not simultaneously transmit messages to seven readers owned 

by the recipients; instead, a middle reader was required for transferring messages. Thus, eight  
(ඃೃ೐షೃ೑లషభ ඇ + ܴ௘ − ௙ܴ = 8) readers were required in total. Pieces of proof were generated by ܴܦܫଶ௤  to ܴܦܫ௤଼ ; among them, reader ܴܦܫ଻௤  generated pieces of proof with tag codes ܶܦܫଵଷ௤ ଵସ௤ܦܫܶ , , and ܶܦܫଵହ௤  

from the distributed group key ܭܩ௤଼, with the proofs encrypted by session key ܵܭ଻௤ and transmitted back 

to the reader for decryption by parent node ܴܦܫଵ௤. Moreover, Figure 4b presents the results when several 

keys were written into the same reader; thus, only four readers (ܴܦܫଵ௤  to ܴܦܫସ௤ ) were needed to 

simultaneously generate the pieces of proof for all tags. However, because a single reader such as ܴܦܫସ௤ 

distributed two group keys ܭܩ௤଼ and ܭܩଽ௤, thus six pieces of proof for tags coded from ܶܦܫଵଷ௤  to ܶܦܫଵ௤଼  

must be generated. 

 

Figure 4. Read Tree with the reading capacity of six tags: (a) A single group key;  

(b) several group keys. 

(a) (b)
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After group keys were distributed, the following explains the three stages regarding grouping proof 

protocol OMRGP proposed in this study: how can ܴܦܫ଴	  generates a grouping proof under offline 

conditions in which the reader cannot be instantly connected to the backend verification server. From 

Figures 5–7, the contents in the boxes at the top indicate that the contents were information already 

written into protocol during the initial setting and before the execution of the protocol. First, through 

third-party active clock tag, Stage 1 obtained the trusted start timestamp for the system. Second, Stage 2 

gradually generated pieces of grouping proof and inspection pieces from the read tree’s leaf nodes, with 

the parent node combining all pieces of proof from child nodes until the tree root. Finally, Stage 3 

incorporated affirming whether the grouping proofs signed by both the transporter and recipient and sent 

to the clock tag-grouping proof in the beginning was completed in time. 

As illustrated in Figure 5, Stage 1 indicates that when transporter’s reader ܴܦܫ଴	  cannot connect to the 

verification server, the timestamp ܶܵ௩	 	written into the reader in the initial setting must be first 

transmitted to trusted clock tag to acquire the trustworthy initial time. After the clock tag receives the ܶܵ௩	  transmitted by the reader ܴܦܫ଴	 , it uses the identification code CID, verifier’s shared key ܭ஼	 , tag’s 

current timestamp ܶܵ௖		 , and the received timestamp ܶܵ௩	  to compute the signed timestamp TSC. The 
message verification code ௖ܸ	 = 	௖ܭ|หܦܫܥ൫ܪ)ܪ |หܶܵ௩	 ൯||ܶܵܥ) is also computed and transmitted to the 

reader ܴܦܫ଴	  along with TSC. Finally, to authenticate the source of the received message TSC, the reader ܴܦܫ଴	  uses the clock tag check code ܪ൫ܦܫܥห|ܭ௖	 |หܶܵ௩	 ൯ received from the verifier and the acquired TSC 

to compute the message verification code ௖ܸ	.  

 

Figure 5. Signed timestamp acquired from trustworthy clock tag. 

At Stage 2, the reader ܴܦܫ଴	  uses the keys in the layered read-tree and child node (Figure 4) to encrypt 
recipient’s identification code ܲܦܫ	௤, timestamp ܶܵ௩	 , signed timestamp ܶܵܥ, group key set ܴܩ௝௤ for the 

child node reader ܴܦܫ௝௤, and tag verification code set ܴ ௝ܶ௤ and transmits them to all child nodes until all 

leaf nodes have been reached. For example, as indicated in Figure 4a, the reader ܴܦܫ଴	  first uses the key ܵܭଵ௤  to encrypt ܲܦܫ	௤ , ܶܵ௩	 ܥܵܶ , , ܴ ଵܶ௤ = ଵଷ௤ܪܶ} , ଵସ௤ܪܶ , ଵହ௤ܪܶ , ଵ଺௤ܪܶ , ଵ଻௤ܪܶ , ଵ௤଼ܪܶ } , and  ܴܩଵ௤ = ,௤଼ܭܩ}  ଵ௤ܭܵ ଵ௤, which employs the session keyܦܫܴ ଽ௤}, and then transmits them to the readerܭܩ

to decrypt the message and encrypt ܲܦܫ	௤, ܶܵ௩	 ܴ ,ܥܵܶ , ଻ܶ௤ = ଵଷ௤ܪܶ} , ଵସ௤ܪܶ , ଵହ௤ܪܶ ଻௤ܩܴ ,{ = 	௤, ܶܵ௩	ܦܫܲ ,{௤଼ܭܩ} ௤଼ܴܶ ,ܥܵܶ , = ଵ଺௤ܪܶ} , ଵ଻௤ܪܶ , ଵ௤଼ܪܶ }, and ܴܩ௤଼ =  ௤଼, andܭܵ ଻௤ andܭܵ by using the session keys {ଽ௤ܭܩ}

Clock TagReader0

1. TSv

 If Vc' = Vc

    Message TSC  Authenticated;

2. TSC, Vc 

 get TSc

 TSC = MAC(Kc, CID||TSv||TSc)

 Vc = H(H(CID||Kc||TSv)||TSC) 

CID, Kc

 If FO q equals 0 

     goto step3         

PIDq, RIDq, Krq, TAq, Gq, TSv, k, (CH)*1      PIDq, RID0, Kr0, TAq, G0, TSv, k, (H(CID||Kc||TSv))
*1

*1 When FO q = 1, the clock tag message must be authenticated.
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then sending them to the leaf node readers ܴܦܫ଻௤ and ܴܦܫ௤଼. Subsequently, all leaf node readers collect 

the pieces of proof from the corresponding tags to generate a grouping proof, which is then transmitted 

to the upper levels and transmitted back to the reader ܴܦܫ଴	 . 
Since the activities of any two readers in the read-tree are identical, the algorithm uses any leaf node 

reader ܴܦܫ௝௤ in the read-tree receiving a request from the parent node reader ܴܦܫ௞௤ to generate a grouping 

proof, as shown in the steps in Figure 6. After the leaf node reader ܴܦܫ௝௤ uses its session key ܵܭ௝	௤ to 

decrypt a message ܨ௝	 transmitted from the reader ܴܦܫ௞௤ of the recipient ܲܦܫ	௤, all group keys in ܴܩ௝௤ are 

extracted and the multicast message ܩܯ௝,௦௤  is encrypted using the keys ܲܦܫ	௤ , ܶܵ௩ , and ܶܵܥ  and 

transmitted to each tag to generate the pieces of proof. 
When any tag ܶܦܫ௜௤ receives a multicast message ܩܯ௝,௦௤  that is decrypted using the shared key ݐܭ௜௤ of 

the verifier, the decrypted messages are checked to determine whether they contain the correct ܲܦܫ	௤ in 
order to verify the read message. When the message is successfully verified, the shared key ݐܭ௜௤ of the 
verifier is employed to compute the pieces of proof ܯ௝,௜௤  assigned to a tag ܶܦܫ௜௤ generated by ܴܦܫ௝௤ for 

confirming the personal tag identification code ܶܦܫ௜௤ , a randomly generated number ܰݐ௜௤ , and a 

timestamp (when the offline stamp and online stamp are ܶܵܥ and ܶܵ௩, respectively). Subsequently, the 
hash value ܪ(ܶܦܫ௜௤||ݐܭ௜௤||ܶܵ௩) for ܶܦܫ௜௤, ݐܭ௜௤, and ܶܵ௩ are computed together with the pieces of proof ܯ௝,௜௤ 	and a random number ܰݐ௝,௜௤  to generate the message verification code ௝ܸ,௜௤  for the reader to reconfirm. 

When the leaf node reader ܴܦܫ௝௤ receives response messages from the tags, the obtained ܰݐ௜௤, ܯ௝,௜௤ , 

and tag verification value ܶܪ௜௤ =  ௞௤ (as indicated in Step 3)ܦܫܴ transmitted from (௜௤||ܶܵ௩ݐܭ||௜௤ܦܫܶ)ܪ

are computed to obtain ௝ܸ,௜௤ ; in addition, the message verification code ௝ܸ,௜௤ ᇱ transmitted by the tags are, 

this time, employed to inspect the message integrity and verify which tags transmitted the messages, 

which is derived from the other group members, in order to prevent malicious users from exploiting any 

of the recipients’ tags that are not associated with this delivery, thereby blocking transmission of the 
proof. Subsequently, the reader ܴܦܫ௝௤ combines all of the pieces of proof ܯ௝,௜௤  and the verification code ௝ܸ,௜௤  by incorporating the XOR operation of commutative law, both of which are generated by the group 

member tags, into pieces of proof ܯ௝,଴௤  without sequence and message verification code ௝ܸ,଴௤ . Through 

the shared key ݎܭ௝௤ of the verifier, the pieces of proof ܯ௝௤ generated by the reader are computed using 

the reader identification code ܴܦܫ௝௤ and the randomly generated numbers ܰݎ௝௤ and ܯ௝,଴௤ ; along with ௝ܸ,଴௤  

and ܰݎ௝௤, the message verification code ௝ܸ௤ is generated for all of the tags. The session key ܵܭ௝௤ is used 

to encrypt ܲܦܫ	௤, ܯ௝௤, ௝ܸ௤, ܰݎ௝௤, ܯ௝,௜௤ , and ܰݐ௜௤ for all group member tags, which are transmitted back to 

parent node reader ܴܦܫ௞௤. 

After the parent node reader ܴܦܫ௞	  receives the response message ܨ௞	  transmitted by child node reader ܴܦܫ௝௤, the session key ܵܭ௝	௤ is first used to encrypt the message to confirm that the message contains the 

same recipient ܲܦܫ	௤ in order to ensure the correctness of the message. Subsequently, using the same 
method as the leaf node reader, all of the received pieces of proof ܯ௝௤ and message verification codes ௝ܸ௤ of the child node reader are used to generate the pieces of proof 	ܯ௞௤ for the reader, and the message 

verification code ௞ܸ௤ is transmitted with message ہܨ(ೖషభ) ೝ⁄ 	ۂ 	 to the reader at the upper level. 
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Figure 6. Generating grouping proofs by multilayered reader. 

As shown in Figure 7, Stage 3 indicates that after the reader ܴܦܫ଴	  receives a message from the 
recipient ܲܦܫ	௤, the tag verification value ܶܣ௤ generated by the verification server, and the ܰݐ௜௤, ܯ௝,௜௤  ௝௤ transmitted by the child node reader are computed to confirm whether they match theܯ ௝௤, andݎܰ ,

message verification code ௝ܸ௤ to reconfirm the message integrity and verify the tag message. In addition, 

the shared key ݎܭ଴	  of the verifier is employed to generate the grouping proof ܯ଴௤ , which is then 

transmitted to the transporter’s tags depending on the results obtained from the identification code ܴܦܫ଴	 	of the reader, and a randomly generated number ܰݎ଴	  and all of the excluded pieces of proof sent 

back from the child node. 
When the transporter’s tag receives the grouping proof ܯ଴௤ from the reader ܴܦܫ଴	 , a random number ܰܽ 

is generated, and the transporter’s private key ܴܲ	௔ is used with the signing function to compute ܯ଴௤ and 

the signed proof ܯ௔௤; subsequently, ܯ௔௤ and ܰܽ are transmitted back to the reader ܴܦܫ଴	 . After the reader ܴܦܫ଴	  receives the message ܯ௔௤ signed by the transporter, ܯ௔௤ is then transmitted to the recipient’s tag for 

signing. Using the randomly generated numbers ܰ݌௤  and ܯ௔௤  and the private key ܴܲ	௤ , the recipient 
computes the signed proof ܯ௉௤; finally, ܯ௣௤ and ܰ݌௤ are then transmitted back to the reader ܴܦܫ଴. 

TagiTagq ReaderjReaderq ReaderqReaderk

PIDq
,  RIDq,  rrq, SKqPIDq, RIDj, Kr j, SKj PIDq, RIDq, Krq, SKq qPIDq, RIDk, Krk, SKj, TSv, RGj, RTj, (TSC)*2PIDq, TIDi,  tt iPIDq, TIDq, Ktqq

5. Mj,i, Nti, Vj,i
q qq

Fj = E(SKq, TSv||(TSC)*3|| Fj = E(SKj, PIDq||TSv||(TSC)*2||RGj ||RTj  )           
q q

If Vj,i = H(THi ||Mj,i||Nti ) 

    Vj,0 = {Vj,0⊕Vj,i | ∀i THi ∈ RTj }

    Mj,0 = {Mj,0⊕Mj,i | ∀i THi ∈ RTj }

    generate Nrj

    Mj = MAC(Krj, RIDj ||Nrj ||Mj,0)

    Vj = H(Mj ||Vj,0||Nrj )

    Fk = E(SKj, PIDq||Mj ||Vj ||Nrj ||{Mj,i, Nti |∀i THi ∈ RTj })
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If PIDq' = PIDq

    MGj,s = {Eg(GKs, PIDq||TSv||(TSC)*2) | ∀s GKs ∈ RGj }  
4. MGj,s

q

If

   Group ID Authenticated;

   generate Ntq

   M q = MAC(K q,  TDq||Ntq

q qq qq

q

{PIDq||TSv,||(TSC)*2} = Dg(Kti, MGj,s)

If PIDq' = PIDq

   Recipient ID Authenticated;

   generate Nti
   Mj,i = MAC(Kti, TIDi ||Nti ||(TS)*3)

   Vj,i = H(H(TIDi ||Kti ||TSv)||Mj,i ||Nti ) 

q q

If PIDq' = PIDq 

    Vk,0 = {Vk,0⊕Vkr+u | ∀u RGkr+u ⊆ RGk ∧ 1≤ u ≤ r}

    Mk,0 = {Mk,0⊕Mkr+u | ∀u RGkr+u ⊆ RGk ∧ 1≤ u ≤ r}    

    generate Nrk

    Mk = MAC(Krk, RIDk ||Nrk ||Mk,0)

    Vk = H(Mk ||Vk,0||Nrk )

    F[(k-1)/r] = E(SK[(k-1)/r], PIDq||Mk ||Vk ||Nrk ||{Mkr+u,i, Nti |∀i THi ∈ RTk })    
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*2 When offline FO q = 1, the timestamp is generated by the trusted clock tag.
*3 When offline FO q = 1, TS = TSC; else, TS = TSv .

6. Fk
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If the reader ܴܦܫ଴ cannot connect to the verifier when the receipt proofs and pick proofs are signed 
by the transporter and recipient, then the timestamp ܶܵ௩ and signed proof ܯ௣௤ must be transmitted back 

to trusted clock tag to verify that parts of the cargo could not have been moved to other locations while 

the proofs were being generated. When the clock tag receives a message indicating that the difference 

between the system time and the time when grouping proof was initialized (ܶܵ௖	 ) is below the threshold 

value, the shared key ܿܭ of the verifier can be employed to generate the final grouping proof ܯ௩௤ for ܯ௣௤, ܶܵ௩	 , ܶܵ௖	 , thereby providing evidence that all of the tags, the transporter, and the recipient are in the 

same interval. Using a light symmetric key encryption method, the key ܿܭ encrypts the grouping proofs ܯ௩௤ and ܶܵ௖	  into the message ܶܥ, which is transmitted back to the mobile reader and then to the verifier 

once a connection becomes available, for the protocol to be finalized. However, if the reader ܴܦܫ଴ can 

connect to the verifier when it receives the grouping proofs signed by the transporter and the recipient, 

then the clock tag is not needed and the grouping proof can be directly transmitted to the verifier to 

confirm whether the grouping proof has been completed within the time threshold. 

 

Figure 7. Affirm the tags and proofs signed by both sides and verify the time constraint. 

2.3. Dispute Resolution Phase 

When the transporter transmits the final grouping proof ܲ to the verifier, the verifier confirms the 

integrity of the transporter, recipient, and cargo. First, when ܨ 	ܱ௤ = 0, the shared key ܿܭ of the clock 

tag is employed to decrypt in order to obtain the grouping proof ܯ௩௤ and start time ܶܵ௖	  in message ܶܥ; 

subsequently, the recipient’s random number ܰ݌	௤ and public key ܲܭ	௤ are used to decrypt the grouping 

proof ܯ௩௤  in order to obtain ܯ௔௤ , and the transporter’s random number ܰܽ  and public key ܲܭ	௔  are 
employed to decrypt ܯ௔௤ in order to obtain the grouping proof ܯ଴௤. According to the total number of tags ݍߜ, segments k, readers ݍߚ, and the maximum number of concurrent scans r, the read-tree and grouping 

 generate Na

 Ma = Sign(PRa, M0||Na)q q
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q
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q

 If TSnow – TSc < ΔT

    Mv = MAC(Kc, Mp ||TSv||TSc)

    TC = LE(Kc, Mv ||TSc)

q q

q

 P = {(Nt1, Nt2, ..., Ntδq), (Nr0, Nr1, ..., Nrβq), Na, Npq, r, Mp, (TC)*4}q q q q q q q

If PID q' = PID q and Vu = Vu 

    M0,0 = {M0,0⊕Mu | ∀u RGu ⊆ RG0 ∧ 1≤ u ≤ r}    

    generate Nr0

    M0 = MAC(Kr0, RID0 ||Nr0 ||M0,0)    

q' q

q q q q q

q

q qq

*4 When the offline FO q = 1, the timestamp and grouping proof is encrypted by the clock tag.



Sensors 2015, 15 27102 

 

 

key are surmised from and adopted for generating the proofs. In accordance with the proposed protocol, ܯ଴௤ is recomputed and compared with the transmitted grouping proof ܯ଴௤ᇱ to determine whether the two 

are identical. Finally, according to the shared key ܿܭ, start time ܶܵ௩	 , and timestamp ܶܵ௖	  of the clock 
tag, the message verification code ܯ௩௤ = 	௖ܭ൫ܥܣܯ 	௣௤||ܶܵ௩ܯ, ||ܶܵ௖	 ൯ is computed to reconfirm whether the 

code corresponds with the authentication message provided by the clock tag, thus effectively completing 

the grouping proof. By contrast, when ܨ 	ܱ௤ = 0, the verifier first computes whether the time difference 
between the current system time and timestamp ܶܵ௩	  is below the threshold value; subsequently, ܯ଴௤ is 

computed by the read-tree, and ܯ௩௤ is confirmed to complete the reinspection through the proofs signed 
by both parties and the computed random number ܯ଴௤ᇱ. 

Therefore, in the process of generating the grouping proofs, the transporter and recipient each verify 

all of the involved tags and use their personal private keys to sign the proofs; thus, the grouping proofs 

guarantee the rights of both parties. Specifically, when cargo is received by the recipient, the transporter 

has undeniable proof that the recipient has received the cargo. In addition, if the recipient needs to return 

cargo through the transporter, the same protocol can be applied, except that the roles of recipient and 

transporter are swapped. The recipient also has the signed proof indicating that the cargo has been 

returned to the transporter, thus preventing the transporter from denying that cargo has been retrieved. 

3. Security and Performance Analysis 

The proposed method and the Internet connection method for the verifier use secure frameworks and 

can therefore be trusted. Extant mechanisms can also be employed so that the transporter’s reader ܴܦܫ଴	  
can extract the recipient’s identification code ܲܦܫ	௤, timestamp ܶܵ௩	 , tag check code ܶܣ	௤, and group of 
keys ܩ଴௤ by using the current security verification procedure to ensure that the connection is secure before 

the protocol proceeds. The following analysis is primarily focused on determining whether the protocol 

proposed in this study can prevent most known malicious attacks aimed at exploiting grouping proofs 

transmitted between tags and readers, and whether it can guarantee anonymity and message integrity. 

Prevent Replay Attack 

Malicious users intercept a message containing a previously generated grouping proof through an 

eavesdropping, and the previously captured message is replayed to produce grouping proofs for 
nonexistent tags. However, because any piece of proof for the tags incorporates a random number ܰݐ௜௤, 

timestamp ܶܵܥ, or ܶܵ௩ generated by tags, the reader can thus detect errors and ignore the replay message 

by using the message check code transmitted from the verifier to authenticate the received message. 

Prevent Tag Impersonation 

The tags generate the pieces of proofs ݐܭ)ܥܣܯ	௜௤, ௜௤||ܶܵ) and a message verification code ௝ܸ,௜௤	ݐܰ||௜௤	ܦܫܶ  from the shared key ݐܭ௜௤ of the verifier, and the reader stores the message verification code required 

for reading the tags, which is generated by the verifier. Because malicious users do not have the required 
shared key ݐܭ௜௤	of any tag in the tag group, the pieces of proofs generated by impersonated tags cannot 

pass the reader’s or the verifier’s authentication process. 
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Prevent Multi-session Attack 

If multiple readers simultaneously generate grouping proofs, the leaf node reader stores the tag check 

codes of all of the members in this tag group; thus, tags that are not assigned to the group cannot pass the 

authentication process; and thus, tag impersonation attacks are ineffective. Consequently, malicious users 

cannot forge extra grouping proofs by crisscrossing pieces of proofs derived from two different groups. 

Prevent Denial of Proof 

In addition to generating pieces of proof for every tag, the protocol also generates the message 
verification code ܸܣ௝,௜௤  with the tag verification code ܪ(ܶܦܫ௜௤||ݐܭ௜௤||ܶܵ௩). Although the leaf node reader 

has no shared key ݐܭ௜௤ for the tags and cannot generate tag verification codes, using the cargo integrity 

check code 	ܶܪ௜௤ = 	௜௤||ܶܵ௩ݐܭ||௜௤ܦܫ൫ܶܪ ൯ provided by the verifier, it can confirm whether a response 

message has cargo tag members that do not belong to this delivery, but are instead generated by a 

malicious user. Therefore, the condition of authentication failure being generated by the verifier despite 

the existence of all legitimate tags is prevented. 

Prevent Concurrency Attack 

When two readers simultaneously use the same tags, parameter confusion can occur, which enables a 

malicious reader to scan tags by crisscrossing tags, and block grouping proofs. However, in the proposed 

protocol, no cargo tag has a temporary parameter, and the reader needs to communicate with the tags only 

once to generate the pieces of proof. Therefore, it is impossible for a concurrency attack to occur. 

Anonymity 

In the proposed protocol, all messages used by the reader are multicast messages that do not contain 
specific tag information. In addition, the pieces of proof ܯ௜௤ and message check code ௝ܸ,௜௤  transmitted by 

any tag ܶܦܫ௜௤ are computed from using hash functions, along with the random numbers ܰݐ௜௤ generated 

each time and a shared key ݐܭ௜௤; thus, the anonymity of the cargo tags can be protected. In the final 

signed message, the confidentiality of the transporter’s and recipient’s tags is protected by random 

numbers ܰܽ and ܰ݌	௤, respectively. 

Prevent Tracking Attack 

The protocol proposed in this study can protect the anonymity of all the involved tags. The messages 
transmitted by a tag change according to the random number ܰݐ௜௤ , which is generated each time a 

message is sent, and the reader also uses a different session key for every message. Therefore, the 

relationship among the messages containing proofs for any tag cannot be obtained by analyzing multiple 

grouping proofs; thus, the protocol ensures the confidentiality of the location of the cargo tags to prevent 

the cargo from being tracked by malicious users. 

Message Integrity 

The pieces of proof ܯ௝,௜௤  transmitted back to the reader by the tags are require a random number ܰݐ௜௤ 

in order to be calculated; thus, when a malicious user intercepts the random numbers, despite the pieces 

of proof being generated by legitimate tags, the proofs cannot be successfully reconstructed by the 

verifier because the random numbers are different for every message. Therefore, the message verification 
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code ௝ܸ,௜௤  is employed to ensure that a response message has not been modified in order to ensure the 

message integrity. 

Table 2 shows the OMRGP proposed in this study and other grouping proof methods to compare 

whether they can protect against the major types of attacks targeting grouping proofs: replay attack, tag 

impersonation attack, multisession attack, denial of proof, concurrency attack, and tracing attack. The 

protocols can protect against those marked with an “O”; those marked with an “X” are a security threat; 

and those marked with “∆” can be are not a threat so long as certain conditions are satisfied. 

Table 2. Comparison table indicating the security of grouping proof. 

Protocol Replay Attack Tag Impersonation Multi-Session Attack Concurrency Attack Denial of Proof 

Burmester et al. [10] O O O X ∆2 

Saito et al. [13] X X O X X 

Lin et al. [18] O O O O X 

Sun et al. [19] O O O ∆1 X 

Hermans et al. [20] O O O X X 

Lo et al. [21] O O O O X 

Ma et al. [22] O O O O X 

Chien et al. [24] O O O X X 

Peris-Lopez et al. [26] O O O O X 

Piramuthu  [27] O O X X X 

Sundaresan et al. [28] O O O O O 

Yen et al. [32] O O O O ∆2 

Leng et al. [37] O O O X X 

Huang et al. [44] O X O X X 

OMRGP O O O O O 

Note: ∆1: Not overwriting the proofs from different readers; but the random numbers generated by proofs may 

still be overwritten; ∆2: Filters proofs that do not belong to a group of tags, but cannot prevent a denial of proof 

attack because of the compromised proof integrity. 

Table 2 shows that the grouping proof proposed in this study can protect against all major attacks 

currently in use. In the method proposed by Saito et al. [13], the tags generate messages but do not use 

random numbers that change for every message; consequently, malicious users can generate counterfeit 

tags by replaying old messages to generate grouping proofs [18,27,31]. The method proposed by Huang 

and Ku [44] can be exploited by replacing parts of the pieces of proof to forge tags [26,45] and 

authentication can be avoided if the verifier has listed tag as redundant in its cyclic redundancy check. 

Peris-Lopez et al. [15] showed that the method proposed by Piramuthu [27] was flawed because it 

enables malicious users to eavesdrop and intercept pieces of grouping proofs by crisscrossing two 

identical time intervals to forge an additional third proof. In addition, according to the methods proposed 

by Saito et al. [13] and Piramuthu [27], tags are read and written multiple times to generate grouping 

proofs; this causes the problem in which the previously written content can be overwritten by other 

readers [21]. Moreover, various methods for generating grouping proofs [10,20,24,37,44] require the 

reader to read the tags more than twice when generating grouping proofs. However, the tags cannot 

verify readers; thus, when several readers simultaneously generate grouping proofs for the same tag, 

concurrency attacks can arise, which can prevent grouping proofs from being generated because the 
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contents in previous tags are overwritten by subsequent readers. The method proposed by Sun et al. [19] 

requires the read group to be inspected every time tags generate proofs; thus, the proofs read by different 

readers are not overwritten; however, the random numbers are not subjected to the same security check 

in the previous step and may therefore be overwritten. Because the proposed method can complete the 

grouping proofs by reading and writing on the tags and because random numbers are also used in addition 

to the identification codes used in the prior authentication process, the proposed protocol prevents 

erroneous grouping proofs from being generated, thereby protecting against replay attacks, tag 

impersonation, multisession attacks, and concurrency attacks. 

In addition to the correctness of the generated proofs, the readers do not authenticate the response message 

tags in the grouping proof methods of [13,18–22,24,26,27,37,44]; thus, if response messages generated from 

tags that do not belong to the specific group of tags are included, the verifier rejects the messages and discards 

the proofs, resulting in a denial of proof [28]. Yen et al. [32] and Burmester et al. [10] have proposed that 

message integrity must be authenticated to prevent parts of a message from being modified, which causes 

the problem in which legitimate proofs cannot be authenticated by the verifier, resulting in a denial of 

proof [28]. Therefore, in the present study, readers were employed to verify all of the collected tags to 

prevent including tags that do not belong to the group and to avoid denial of proof from occurring. 

Finally, the method proposed by Sundaresan et al. [28] can protect known attacks on grouping proofs. 

However, as shown in Table 3, because the proposed method cannot enable all of the involved proof 

tags to reduce the time for generating grouping proofs through parallel computing, therefore, attackers 

can exploit this time difference to generate legitimate grouping proofs from a group of tags that do not 

exist in the same time and location [36]; consequently, this method is inapplicable to SCM where large 

volumes of cargo are involved. 

Table 3. Comparison of grouping proof performance. 

Protocol Anonymity Tracking Attack Offline Order Independent Simultaneity

Burmester et al. [10] O O O X ∆4 
Saito et al. [13] O ∆3 X X X 
Lin et al. [18] X X O X X 
Sun et al. [19] O O O O O 

Hermans et al. [20] O O O O O 
Lo et al. [21] O O O X X 
Ma et al. [22] O O O X X 

Chien et al. [24] O ∆3 X X X 
Peris-Lopez et al. [26] O O X X X 

Piramuthu [27] X X X X X 
Sundaresan et al. [28] O O O X X 

Yen et al. [32] O O X O O 
Leng et al. [37] X X X O X 

Huang et al. [44] X X O X X 
OMRGP O O O O O 

Note: ∆3: Single message that features anonymity; however, relevance among tags with messages from 

different sessions can be used to track tag movement; ∆4: Only parts of the tags in the group can concurrently 

compute pieces of proof. 
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Table 3 indicates that the proposed system can prevent cargo from being tracked and provide 

anonymity while operating in the offline phase; simultaneously, pieces of proof that do not need to follow 

the tag sequence can be generated to achieve the five types of security characteristics involved in 

processing grouping proofs. However, to ensure confidentiality, the system must be designed to prevent 

malicious attackers from obtaining the identity of the tag owner by eavesdropping on grouping proofs. 

Because many grouping proof methods [18,27,37,44] involve directly transmitting identification codes 

to the readers without first anonymizing the tag owner’s identity; consequently, the cargo owners’ private 

information can be stolen and the location of their cargo can be tracked [28]. Moreover, although the 

methods proposed by Chien et al. [24] and Saito et al. [13] ensure tag anonymity and thus ensure that 

malicious attackers cannot track the tagged cargo simply by monitoring the identification codes of the 

tags, nevertheless, because the request acknowledgement response messages sent by the tags are 

identical, malicious attackers can track the location of the tagged cargo by eavesdropping on multiple 

messages [26]. Therefore, this study incorporated random numbers into the messages to scramble the 

responses for preventing from being tracked in the supply chain, thereby achieving location privacy. 

According to the method proposed by Peris-Lopez et al. [26], a reader must be able to connect to  

the verifier for it to obtain a timestamp of when the proofs were generated; subsequently, the grouping 

proofs are immediately sent to the verifier to compare the time [22]. Similar grouping proof  

methods [13,24,27,32,37] also require immediate authentication from the verifier, and are unsuitable for 

generating grouping proofs in the offline phase. 

The grouping proofs proposed by Saito et al. [13] and Piramuthu et al. [27] pertain to conventional 

proofs generated by all tags on site one after another; thus, the verifier must verify the tags in the order that 

they were generated [29]; furthermore, methods for generating grouping proofs [10,18,21,22,24,26,44] 

typically have a particular sequence. Because the method proposed by Leng et al. [37] involves unicasting 

messages to tags, the participating members cannot concurrently conduct computation [19]. In the 

method proposed by Burmester et al. [10], the tree structure can permit only a few tags in the group to 

concurrently compute the pieces of proof, and the reader must follow the predetermined sequence when 

collecting the proofs. Therefore, the present study adopted the multicasting method to simultaneously 

generate the pieces of proof for all tags and can collect the grouping proofs without adhering to any 

sequence through the XOR operation of commutative law. 

4. Effectiveness Analysis 

Because the grouping proofs generated in sequence require the time complexity O(m!) when being 

authenticated by the verifier, this section compares the proposed OMRGP method only with those 

grouping proof methods that do not require a predetermined sequence [19,20,32,37] to examine the 

computing and transmission time for the tag and reader to generate proofs. To ensure that the comparison 

is objective, the experiments were conducted under the following constraints: each method involved 

using a reader that can scan r tags [39] to generate grouping proofs for m tags [46] at a rate of 3.55 M 

clock cycles per second. In addition, an error-correcting code and asymmetric encryption function with 

the same security strength (280 bits) were employed. 

Specifically, TSE denotes the computation time for conducting symmetric encryption and  

decryption [47], TEC indicates the time for conducting elliptic curve encryption and decryption [48], TG 
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represents the time for encrypting and decrypting a group key [49], TRNG denotes the required time for 

generating a random number [50], TH is the computation time for executing a hash function [47], and 

TSIG indicates the required time for proof signing [51]. In addition, because XOR logic operation can be 

neglected compared to the aforementioned computation time, the formulas in Table 4 do not consider 

the required time for this type of operand. To simplify the comparison, the computing capacity of the 

reader was adopted to present the required computation time for devices with a powerful arithmetic 

capability, as demonstrated by the additional timestamps used in the various methods. 

Table 4. Computational capacity of grouping proof tags (with m number of tags). 

Name of the Method Cargo Tag Mobile Reader 

Sun et al. [19] ⌈݉/ݎ⌉(2 ௌܶா + ோܶேீ) ௌܶா + 2 ுܶ 
Hermans et al. [20] ⌈݉/ݎ⌉(2 ாܶ஼ + 2 ோܶேீ) ௌܶூீ + ோܶேீ  

Yen et al. [32] ⌈݉/ݎ⌉(7 ோܶேீ) 2 ௌܶூீ + m( ோܶேீ) + 5 ோܶேீ  

Leng et al. [37] ݉(2 ுܶ + ோܶேீ) ݉( ுܶ) + ݉( ுܶ)ݎ + ுܶ 

OMRGP ܶீ + 3 ுܶ + ோܶேீ  
ܶீ + 2 ௌܶூீ + 3 ௌܶா + 7 ுܶ + 3 ோܶேீ  (⌈log௥(݉ ⁄ݎ )⌉)(2 ௌܶா + 2 ுܶ + ோܶேீ) 

Table 4 indicates the computational capacity of m tags according to the grouping proofs generated by 

the reader with r capacity for the maximum number of tags that can be scanned concurrently. Therefore, 

for the OMRGP method proposed in this study, each reader can manage a maximum of r and thus only 

one multicast is to be broadcasted to all tags. The grouping proof methods in [19,20,32] also send 

multicast messages to all tags; however, when m > r, the reader must transmit the message multiple 

times; thus, m tags required a computation time of ⌈݉/ݎ⌉ times. According to the method proposed by 

Leng et al. [37], a reader must send different messages to each tag, and each tag requires its own 

computation, in that m tags ultimately require m times of computation time. By contrast, Leng et al. 

indicated that the reader should assign messages to each tag; Yen et al. verified the identification code 

for individual tags, in which the computational capacity of the reader increased with the number of tags; 

and Hermans et al. and Sun et al. have employed methods in which identical messages were broadcast 

to all tags; thus, the required computational capacity for the reader to generate grouping proofs remained 

constant. The proposed method was designed for operation in a multilayered reader; despite a similar 

message is broadcast, the readers are required to communicate with other readers, thereby increasing the 

computational capacity to log௥  times. In Figures 8 and 9, readers with a maximum reading capacity ݎ/݉

of 200 tags were employed to analyze the computing time required by various methods when the number 

of tags and group tags in the reader doubled from 100 each time until the quantity reached 12,800. Since 

we use a group key with the tree height of 2, a reader can multicast message to 200 tags within the 

capacity that can be read by the reader. In the following simulations, 100 tags and 200 tags need two 

readers, 400 tags need three readers, 800 tags need five readers, 1600 tags need nine readers, 3200 tags 

need 17 readers, 6400 tags need 33 readers, and 12,800 tags need 65 readers. 
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Figure 8. Comparing the computational load of the tags. 

 

Figure 9. Comparing the computational load of readers. 

According to Figure 8, when the proposed OMRGP method involved fewer than 200 tags, more 

computing time was required because the group key has to be decrypted. When the number of tags 

exceeded 200, the number of grouping proofs [19,20,32,37] increased with the number of tags; thus, the 

computing time and tag number were linearly related. Therefore, when the grouping proofs were 

generated for an extreme number of tags, the tag computational capacity of the proposed OMRGP 

method was more efficient compared with the other methods. In addition, Figure 9 indicates the 

computational capacity of the reader in generating grouping proofs. Although the same message was 

broadcast, the required computation time was more than that of the other multicast methods [19,20,32] 

because the group messages must be encrypted, messages must be transmitted between readers, and 

proofs must be signed by both the transporter and the recipient. Because the method proposed by  

Leng et al. [37] adopted a unicast method, the required computation time under conditions involving 

extreme number of tags was higher than that required from using OMRGP method. 

This study subsequently compared the required transmission time for the proposed OMRGP with that of 

the other methods, for which LID denotes the length of a tag identification code (based on ISO-18000-6), LSE 

is the message length after applying symmetric encryption, LEC indicates the message length after 

applying elliptic curve encryption, LG represents the message length after performing group key 
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encryption, LRNG indicates the message length for a random number, LH represents the message length 

of a hash function, and LSIG represents the required message length after signing the proof. 

Table 5 indicates the transmission capacity of the grouping proofs generated by m tags. Because the 

proposed OMRGP method adopted a multilayered grouping proof structure, a maximum or r tags were 

distributed to each reader; thus, compared with the other methods, increasing the cargo volume did not 

increase the transmission time from the tags to the verifier. Moreover, in the transmission from the reader 

to tags, a read-tree was employed; consequently, the transmission time between readers increased ⌈log௥(݉ ⁄ݎ )⌉ times. In the methods proposed by Hermans et al., Yen et al., and Sun et al., the readers 

could not manage m tags simultaneously; consequently transmissions were repeated ⌈݉/ݎ⌉  times. 

According to the subgrouping proof of Leng et al., the reader transmitted the message ⌈݉/ݎ⌉ + ݉ times. 

For the sake of objectivity, all methods adopted the electronic product code Class-1 Generation 2 (EPC 

Class-1 Gen2), with the network bandwidth of the tags and readers set to 160 and 640 kbps,  

respectively [38]. The message lengths for LID, LSE, LRNG, and LH were arbitrarily set at 64 bits, and the 

message lengths for LECC and LG were arbitrarily set at 192 and 1024 bits, respectively. 

Table 5. Transmission capacity of m grouping proof tags. 

Name of the Method From Tag to Reader From Reader to Tag (or Reader) 

Sun et al. [19] ݉(ܮூ஽ +  (ுܮ3)⌈ݎ/݉⌉ (ௌாܮ2
Hermans et al. [20] ݉(2ܮா஼ +  (ோேீܮ)⌈ݎ/݉⌉ (ோேீܮ

Yen et al. [32] ݉(4ܮோேீ) ⌈݉/ݎ⌉(ܮ3ோேீ) 
Leng et al. [37] ݉(2ܮூ஽ + ுܮ + (ோேீܮ ூ஽ܮ2)⌈ݎ/݉⌉ + (ோேீܮ + ூ஽ܮ)݉ +  (ுܮ

OMRGP ܮ2)ݎு + ீܮ (ோேீܮ + (⌈log௥(݉ ⁄ݎ  (ௌாܮ2)(⌈(
Figures 10 and 11 show the transmission time for the tags to generate the grouping proofs. The 

methods of Sun et al. and the one proposed in the present study transmitted messages that were identical 

in length (3 × 64 = 192	bits); however, the proposed method divided all of the tags into several groups 

and every group could process concurrently. When the number of tags exceeded 200, the time for the 

reader to collect the tags, according to Sun et al., exceeded the fixed transmission time suggested in the 

proposed OMRGP method. In addition to the method proposed by Sun et al., the other three methods 

had to transmit messages that were longer than 192 bits. Hence, when >200 tags were involved, the 

transmission time of the proposed method was shorter than that of the other methods. Figure 11 depicts 

the time required for the reader to transmit messages. Leng et al. [37] did not adopt a multicasting 

protocol for transmitting messages, which increased the reader’s transmission time with an increased 

number of tags. When more than 200 tags were involved, the grouping proof methods of [19,20,32] were 

not able to scan all tags in one shot because of the reading capacity of the readers, which divided and 

read for several cycles, thereby increasing the transmission time. In this present study, grouping proofs 

were generated using the group key and the multilayered read-tree. When there was only a few tags 

involved, the proposed OMRGP method took longer to read than that other multicast methods; however, 

an observation can be made that the OMRGP method is more efficient compared with the other methods 

when a considerable number of tags is involved. 
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Figure 10. Comparing the message quantity of the collected tags. 

 

Figure 11. Comparing the message quantity transmitted by the reader. 

Figure 12 shows the total amount of time consumed when several tags generated the grouping proofs, 

including the computing and transmission times of the tags and readers involved. In the OMRGP method, 

although an increased time was taken for computation, the transmission capacity was evidently larger 

than the computational capacity and thus prevented the time for generating grouping proof to increase 

considerably with an increased number of tags. In addition, the OMRGP method features a mechanism 

for verifying tags. According to Sun et al., readers that were not required to verify tags reduced 

computation load; however, the time for generating grouping proofs when an extreme number of tags 

were involved exceeded the time for the OMRGP method. Yen et al. employed a random function to 

generate grouping proofs; groups could not be selected under their method; thus, under the condition in 

which a mechanism for verifying tags existed, the effectiveness of OMRGP method becomes more 

obvious once the number of tags exceeds a certain threshold. Leng et al. adopted a unicast method, in 

which the reader was required to perform a high number of transmissions; therefore, in less time than it 

would take unicast grouping proofs, the OMRGP method can generate grouping proof in advance and 

when there are fewer tags. Finally, Hermans et al. adopted a high elliptic curve encryption and decryption 

to generate grouping proofs, demonstrating the effectiveness of the OMRGP method when there are 

fewer tags. 
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Figure 12. Comparing the time for generating grouping proofs. 

5. Conclusions 

This study proposed a method for generating multilayered grouping proofs to solve the disputes over 

the loss of cargo when high-quantity shipments are transferred in the supply chain. Through the layered 

parallel scans, the requirement in which the generated grouping proofs must be read in batches because 

of the maximum tag-reading capacity constraint on a reader in the supply chain environment can be 

solved. Group keys were employed to distribute the tags corresponding to each reader to ensure that the 

tags are not repeatedly read, thus exceeding the time threshold. In addition, both the transporter and 

recipient were allowed to verify the cargo and sign the proofs to guarantee the integrity of the grouping 

proof. The anonymity and message integrity characteristics of the OMRGP method can defend against 

most of the currently known attacks on grouping proofs: replay attack, multi-session attack, tag 

impersonation attack, denial of proof, and tracing attack. The OMRGP method overcame the problem 

of at least one type of characteristic not complying with the security standards, a problem possessed by 

most studies. This study also analyzed the computation load of the tag and reader. The effectiveness of 

grouping proof protocols were compared, and the results show that when an extreme number of tags are 

involved, the increase in the number of tags did not evidently increase the time for generating grouping 

proofs under the proposed protocol. Consequently, the protocol can be applied to SCM to reduce the 

time required to generate grouping proofs, and prevent exceeding the time threshold value for generating 

grouping proofs, thus preventing attackers from hijacking tags when the grouping proof is being 

processed, causing grouping proof problems. 
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