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Abstract: This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high 

voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic 

Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient 

signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall 

plate achieves high magnetic sensitivity and low offset. A new spinning current modulator 

stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. 

The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of 

the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output 

voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The 

output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.  

Keywords: monolithic Hall sensor; sensitivity and linearity; Hall offset; dynamic offset 

cancellation technique 
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1. Introduction 

Hall device as a key component of contactless sensors for the detection of linear position, rotation 

angle, speed, and current, etc., have been widely used in the fields of industrial control, consumer 

electronics, and the automotive industry [1–3]. They are usually integrated with a bias circuit, a read and 

interface circuit, an offset and noise elimination circuit, and a temperature stability circuit in a single 

chip, by increasing the system complexity to expand the functions of Hall sensor and improve the 

reliability [4–6]. Nowadays, monolithic integrated complementary metal-oxide semiconductor (CMOS) 

Hall sensors are greatly in demand due to the significant advantages such as high reliability, low power, 

and low cost. Unfortunately, the high doping level and shallow depth of the N-well active area lead to 

low magnetic sensitivity for the CMOS integrated Hall devices [7,8]. At the same time suffering from 

mask misalignment, non-uniformity distribution of impurities in active area, and influence of packaging 

stress etc., the offset voltage of CMOS integrated Hall devices is therefore very high [8–10]. For two 

kinds of Hall devices, namely horizontal Hall devices (HHDs) and vertical Hall devices (VHDs), the 

VHDs suffer lower magnetic sensitivity and higher offset than HHDs due to serious short circuit effects. 

Accordingly, the VHDs are generally fabricated in high-voltage (HV) CMOS technology with a deep 

N-well to reduce the short circuit effect, named HV-VHD [11]. However, the production cost of Hall 

sensors in HV CMOS technology remains relatively high. For this reason, Pascal et al. devised a shallow 

N-well VHD with high resolution using low-voltage standard CMOS technology, called LV-VHD [12]. 

In this device, the external contacts, i.e., sensing contacts are situated outside the active region so that 

the short circuit effect is strongly suppressed. As a result, the offset and 1/f noise are considerably 

reduced, although the magnetic sensitivity remains low.  

The well-known dynamic spinning current technique is very efficient for HHDs and HV-VHDs to 

remove the offset and 1/f noise [10,13]. It is worth to note that in the LV-VHDs, the Hall voltage is 

readout from the external contacts, which makes the role of the traditional two-phase spinning current 

circuit not obvious for offset and 1/f noise elimination [14]. On the other hand, the traditional spinning 

current circuit cannot provide a stable quiescent output voltage to ensure reliable operation of the follow-up 

amplifier [10,15]. In addition, there usually needs a more complicated signal conditioner following the 

spinning current circuit [15,16]. 

Presently, many techniques have been proposed to improve the performances of an integrated Hall 

sensor microsystem. Osberger et al. proposed a practical way to lower the 1/f noise and improve the 

resolution for LV-VHDs using a four-phase bi-current spinning current technique [14,17]. They showed 

that this spinning current technique not only sufficiently lowers the 1/f noise, but also efficiently reduces 

the non-linear offset caused by the PN junction field effect. A resolution of 37 μT over 1.6 kHz 

bandwidth and a residual offset of 0.1 mT were obtained for a LV-VHD senor fabricated in 0.35 μm 

standard CMOS technology, which is comparable to the performances of HHDs [17]. Heidari et al. 

recently presented a current-mode Hall magnetic sensor microsystem. Compared with the conventional 

voltage-mode Hall sensor, the current-mode Hall sensor provides a differential output Hall current signal 

to perform the current-mode signal processing and meanwhile uses the current spinning technique to 

cancel out the offset [18]. Consequently, a low residual offset of 50 μT and an extremely low power 

consumption of 120 μW were achieved by means of 0.18 μm standard CMOS technology [18]. 
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In this paper, the horizontal Hall sensor microsystem with high sensitivity and high linearity is studied 

by optimizing the Hall plate structure and improving the traditional spinning current technique.  

We present a 5-V monolithic linear CMOS Hall sensor using dynamic spinning current offset cancellation 

technique. A cross-like Hall plate (horizontal Hall device) with long-contact structure is used to reduce the 

offset voltage from mask misalignment in the manufacturing process. By optimizing the ratio of finger 

length to finger width (L/W), the voltage related sensitivity (SV), and current related sensitivity (SI) of the 

cross-like Hall plate are improved simultaneously. In addition, a novel two-phase spinning current circuit 

is proposed to stabilize the quiescent output voltage in 1/2VDD. Based on 0.8 μm HV CMOS process, a 

monolithic linear Hall sensor integrated with an on-chip switched Hall plate and an efficient signal 

conditioner for offset cancellation and signal amplification has been fabricated and tested. 

2. High Sensitive Hall Plate 

2.1. Offset Reduction 

Among these offset origins mentioned above, the offset coming from the mask misalignment can be 

reduced by optimizing the layout of Hall device. According to the principle of conformal mapping, a 

Hall device with smaller contact can obtain higher geometrical factor G, which is beneficial to improve 

the magnetic sensitivity. Therefore, the traditional Hall device generally applies the short contact 

structure, and the contacts are confined inside the Nwell active area, as shown in Figure 1a. But in the 

actual manufacturing process, there is misalignment between the N+ contacts and the Nwell masks. The 

shorter contact structure more easily gives rise to a larger misalignment, generating a greater Hall offset [8]. 

In order to reduce the offset caused by contacts shifting or rotating relative to Nwell, the layout design 

rule is deliberately violated in our work. The four fingers of the cross-like Hall plate are completely 

covered by four long N+ contacts, as shown in Figure 1b. Consequently, when the long contacts shift 

relative to Nwell, they can always cover the fingers of the Hall plate, which avoids the larger offset 

generation. But the long contact structure will cause the degradation of magnetic sensitivity, thus we 

need to further improve magnetic sensitivity of the cross-like Hall plate by optimizing device size  

and structure. 

 
(a) (b) 

Figure 1. Cross-like Hall plate. (a) Conventional short contact structure; (b) Long  

contact structure. 
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2.2. Sensitivity Improvement 

The device geometrical factor G directly determines the magnetic sensitivity of the cross-like Hall 

plate. The correlation between the current related sensitivity (SI) and the geometrical factor G is a linear 

relationship, which is given by [8]: 
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with Hθ  the Hall angle defined by )(tan 1 BHH μθ −= . Hμ  is the Hall mobility and B is the magnetic  

flux density. 

It is found that the SI can be improved by increasing the ratio of finger length to finger width (L/W). 

However, with the increase of L/W ratio, the input resistance of the cross-like Hall plate is also increased. 

The voltage related sensitivity (SV) can be calculated by the SI divided by the input resistance Rin [8]: 
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where the input square resistance is the sum of the central region resistance (2/3) and two fingers 

resistances (2L/W).  

It is obvious that the SV will be reduced with the L/W ratio increasing. For the long finger structure 

(L > W), it is equivalent to an increase of the resistivity of the finger connected to the bias voltage, which 

leads to the SV reduction. Therefore, we must consider the influence of the L/W ratio on the SV.  

To improve the SV and meanwhile not to decrease the SI too much, we optimized the device L/W ratio 

and structure. By appropriately reducing the finger length, the input resistance is reduced markedly, 

resulting in the increase of SV. Fortunately, the decrease of SI is small. On the other hand, due to lateral 

diffusion, the doping level of the narrow finger is lower than that of the central region, which increases 

the input resistance. Therefore, on the premise of maintaining the optimal L/W ratio, we increased the 

width of the fingers to obtain the uniform doping level across the whole Nwell implantation region. 

Furthermore, we etched four small notches on the four intersections between the fingers and central 

regions, as shown in Figure 1b. After diffusion, the Nwell implantation area is increased, which can 

result in a more homogenous doping level cross the central and finger regions.  

2.3. Three-Dimension (3D) Device Simulation 

According to 0.8 μm high voltage (HV) CMOS process parameters, we first performed two-dimension 

(2D) process simulation using Silvaco Athena software. With the aid of the 2D process simulation, we 

can obtain the impurity Gaussian distribution in the Nwell. The depth of the Nwell is about 5.5 μm. 

There appears a maximum impurity concentration of about 1.5 × 1016 cm−3 near the surface of N-well. 

In addition, we can obtain the doping level and the thickness of N+ contacts, which are about 1 × 1020 cm−3 

and 0.3 μm, respectively. In terms of this key device process information provided by the process 

simulation, 3D device simulation of the cross-like Hall plate was carried out to obtain the offset voltage 

and magnetic sensitivity using Atlas device simulation tool. In the 3D device simulation, the physical 
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models including carrier transport in an applied magnetic field, Shockley-Read-Hall (SRH) and Auger 

recombination, etc., were taken into account. 

First of all, all the contacts of the two same cross-like Hall plates (L = 10 μm, W = 20 μm) with 

different contact lengths shift left 0.5 μm distance. The contact lengths of two Hall plates are 20 μm and 

10 μm, respectively. The contact width of two Hall plates is 2 μm. The simulated offset voltage in the 

absence of the magnetic field is shown in Figure 2. It is clearly seen that there is a much smaller offset 

voltage in the long contact Hall plate. At 3 V biasing voltage, the offset voltage of the short contact Hall 

plate is 42 mV, while the offset voltage of the long contact Hall plate is only 25 mV. Therefore, the 

contacts completely covering the finger region can effectively reduce the offset voltage caused by the 

misalignment between the contacts and the Nwell. 

Based on the long contact structure, we optimized the device structure parameters with the aid of 3D 

device simulation. When the L/W ratio of the cross-like Hall plate is decreased from long finger structure 

2:1 (20 μm/10 μm) to 1:1 (20 μm/20 μm), and the notch in the cross intersections is 2 μm, we can achieve 

the optimal SV and SI. Figure 3 compares the SV and SI between the optimized and long finger Hall plates. 

It can be found that for the optimized Hall plate, the SV is significantly increased from 0.03 V/VT to  

0.035 V/VT at 3 V bias voltage. In contrast, the SI is reduced from 360 V/AT to 320 V/AT at 1 mA 

biasing current. The reduction of SI is relatively smaller. 

 

Figure 2. Offset voltage comparison of long-contact and short-contact Hall plates.  

 
(a) (b) 

Figure 3. Magnetic sensitivity comparison of long-finger and optimized Hall plates. (a) SV; (b) SI. 
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3. System Design and Simulation 

Figure 4 shows a simplified block diagram of the CMOS integrated linear Hall sensor microsystem. 

The dynamic offset cancellation is implemented by two-phase spinning current technique [8,10]. Firstly, 

a low frequency Hall signal is modulated into the high frequency domain by a two-phase spinning  

current (SC) circuit that is controlled by a pair of complementary clocks ck and nck, respectively.  

At each clock state change, the Hall signal changes its polarity, while the polarity of the offset voltage 

is unchanged. After the spinning current modulation, the mixed signals including the Hall signal and 

offset are amplified by instrumentation amplifier (IA) simultaneously with two-sides output. Then, these 

two output signals of the instrumentation amplifier, corresponding to the first and second phase of 

spinning current course respectively, are sampled and held by two sample/hold (S/H) circuits. In order 

to avoid sampling at each plate switching, two narrow pulses clk1 and clk2 determine the sampling time 

of S/H circuits. It is worth noting that the polarity of Hall voltage hold by two S/H circuits is the same, 

while the polarity of offset voltage hold by two S/H circuits is the opposite. Following this, the outputs 

of the two S/H circuits input to the adder circuit to complete the demodulation function, thereby 

eliminating the offset signal and recovering the low frequency Hall signal. Finally, the low pass filter 

removes the high frequency components and linearly outputs the Hall voltage. 

 

Figure 4. Block diagram of CMOS integrated linear Hall sensor microsystem. 

3.1. Switched Hall Plate 

The conventional two-phase spinning current circuit only consists of four N-channel  

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) NMOS and four P-channel MOSFET 

switches. Due to unbalanced equivalent Wheatstone bridge resistances of Hall plate and nonidealities of 

MOSFET switches, the output common mode voltage of the spinning current circuit is deviated from 

the center voltage of 1/2VDD, which seriously affects the reliable operation of the following-up amplifier. 

Therefore, the quiescent output voltage stability in 1/2VDD is critical for improving the performance of 

the following signal conditioner.  

To solve this problem, a novel two-phase spinning current modulator is proposed, as shown in Figure 5. 

In addition to eight N-channel MOSFET switches M1~M8 controlled by two-phase complementary 

clocks ck and nck, it necessarily contains an operational amplifier. According to the concept of “virtual 

short” of the operational amplifier, the electric potential of the noninverting and inverting input terminals 

are equal. Thus, the common mode voltage of the operational amplifier is also equal to 1/2VDD. The 

NMOS switches M5~M8 are completely symmetrical, so the common mode quiescent output voltage of 

the spinning current modulation circuit clamps in 1/2VDD. 
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When ck level is high and nck level is low, the switches M1 and M4 turn on, and then the device bias 

current flows from the contact A to contact C. Consequently, the Hall voltage difference generates 

between the contact B and the contact D. At that moment, the transistors M5 and M8 turn on, and the 

output voltage is expressed by: 

OPHout VVV +=
2

1
 (3)

When nck level is high and ck level is low, the switches M2 and M3 turn on, and then the bias current 

flows from the contact B to contact D, so the Hall voltage appears between the contact A and the contact C. 

At this time, the transistors M6 and M7 turn on, and the output voltage is given by:  

OPHout VVV +−=
2

1
 (4)

It can be seen that the clocks ck and nck become high level in sequence and the current flow in the 

device changes from 0° to 90° state. The polarity of output Hall voltage VH changes, so Hall signal is 

modulated from the low frequency to high frequency. It is very interesting to note that the polarity of the 

offset voltage VOP remains quasi-constant during the spinning current course. As a result, the offsets 

coming from Hall device and instrumentation amplifier can be removed simultaneously. 

 

Figure 5. Circuit diagram of spinning current modulator of Hall sensor. 

3.2. Signal Conditioner 

The signal conditioner includes two key components of the instrumentation amplifier and the 

demodulator. The instrumentation amplifier is a negative feedback loop amplifier that is composed of 

two basic operational amplifiers, as shown in Figure 6. It is dedicated to amplify Hall voltage and transports 
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single-ended input signal into double-ended output signals. The closed loop gain of instrumentation 

amplifier is given by: 

1
2

31
1 +

+
=
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Au  (5)

 

Figure 6. Instrumentation amplifier. 

Figure 7 shows the demodulator with S/H and adding functions [10]. When the common mode 

voltages of the S/H circuits are neglected, the output signals VA and VB of S/H circuits are expressed by [8,10]: 

[ ]OAOPHuA VVVAV ++= 12

1
 (6)

[ ]OAOPHuB VVVAV −−= 12

1
 (7)

where, Au1 and VOA are the gain and offset of the instrumentation amplifier. 

Considering the quiescent output voltage VQ and ignoring the offset of the operational amplifier A3, 

we can obtain output voltage of adder circuit [8,10]: 
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with Au2 the gain of adder and VOP(r) the residual offset voltage. If the VOP(r) is ignored, the Equation (8) is 

simplified as: 

HtotaluQHuuQout VAVVAAVV ⋅+=⋅⋅+= )(21  (9)

Here, the total gain Au(total) of the signal conditioner is designed to about 46 dB. The gains of the 

instrumentation amplifier and the adder are 26 dB and 20 dB, respectively. Since the instrumentation 

amplifier also amplifies offset voltage, the gain of the instrumentation amplification cannot be too large.  

It has been shown that the simple demodulator with S/H and adding function can eliminate the offset 

of the Hall device and amplifier, and modulate the Hall signal into low frequency. 
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Figure 7. Demodulation circuit with sample/hold and adding functions. 

3.3. Circuit Simulation 

Based on the 0.8 μm HV CMOS technology, the circuit simulations of the integrated Hall sensor 

microsystem were performed. In order to obtain better temperature independence of the magnetic 

sensitivity, the Hall plate is biased in the constant current mode. A behavioral modeling of cross-like 

Hall plate is used for circuit simulation [19]. Here, the current related sensitivity of the Hall plate is 270 V/AT 

at 250 μA biasing current. Under the 5 V supply voltage, when the input clock frequency is 100 kHz and 

the magnetic field frequency is 5 kHz, the simulated transient output waveform of the spinning current 

modulator is shown in Figure 8. It is clearly observed that there is a 100 kHz modulated Hall signal 

appearing on a 2.477 V quiescent output voltage. In order to verify the ability of offset elimination of 

the Hall sensor microsystem, a 23 mV offset from Hall plate is superimposed on the 2.5 V quiescent 

output voltage. Actually, the spinning current modulator achieves a 2.5 V stable quiescent output voltage. 

Additionally, we observed that in the switch on/off transient, there generates transient spikes, which is 

due to the non-ideality of MOSFET switches. 

 

Figure 8. Transient output waveform of spinning current modulator of horizontal Hall sensor. 
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Figure 9 shows the final Hall output waveform after the low pass filtering. We found that the output 

waveform is smooth, and the harmonic component is very small. The output Hall voltage is linearly 

proportional to the magnetic flux density, which can accurately reflect the changes of the magnetic field. 

 

Figure 9. Transient output waveform of low-pass filter of the linear Hall sensor microsystem. 

4. Monolithic Hall Sensor Implementation 

A linear Hall sensor using dynamic offset cancellation technique was implemented in a monolithic 

chip by means of 0.8 μm HV CMOS technology. The Hall sensor chip, measuring 1 mm × 1 mm, is 

illustrated in Figure 10. The magnetic field used for the chip performance testing is produced by a 

ferromagnetic coil. When the coil is applied to the excitation current, a nearly uniform magnetic field is 

generated at the opening of the magnet. When we adjusted the excitation current of the ferromagnetic 

coil, the applied magnetic field is ranged from 0 to 200 mT. The Hall sensor is placed in this magnetic 

field for the Hall characteristic measurement. 

 

Figure 10. Micrograph of CMOS monolithic integrated Hall magnetic sensor. 



Sensors 2015, 15 27369 

 

 

First of all, we tested the magnetic sensitivity and offset voltage of the integrated cross-like Hall plate. 
Figure 11a,b show the SI and SV of the optimized Hall plates (W = L = 20 μm) versus bias current and 

voltage, respectively. It is seen that the SI and SV are increased with the biasing increasing, which is due 

to the junction field effect. When operating at the 1 mA biasing current, the measured SI is up to  

250 V/AT. At 3 V biasing voltage, the SV reaches 0.034 V/VT. The optimized Hall plate obtains the high 

SI and SV simultaneously. Figure 12 shows the offset voltage of the optimized Hall plate. We can observe 

that the offset is apparently increased with the bias voltage increasing. At the 3 V bias voltage, the offset 

is as low as 2 mV. 

 
(a) (b) 

Figure 11. Tested magnetic sensitivity of cross-like Hall plate versus bias voltage or current. 

(a) SI; (b) SV. 

 

Figure 12. Tested offset voltage of cross-like Hall plate versus bias voltage. 

Next, we tested the performances of the monolithic Hall sensor microsystem at the 5 V supply voltage. 

The input clock frequency is 100 kHz and the Hall plate is biased at 250 μA. Figure 13 shows the 

relationship of Hall output voltage versus magnetic flux density. When the magnetic flux density exceeds 

±5 mT, the output Hall voltage linearly increases with the magnetic flux density. When the magnetic 
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field is larger than ±175 mT, the output Hall voltage is saturated. This is because the output voltage is 

close to the supply voltage. In the magnetic flux density range from ±5 mT to ±175 mT, the linearity of 

the output Hall voltage is higher than 99%, which shows that the integrated Hall sensor has strong ability 

to linearly amplify a weak Hall signal and eliminate large offset.  

 

Figure 13. Hall output voltage of the integrated Hall sensor versus magnetic flux density. 

Figure 14 shows the Hall sensor transient output voltage for a 1 kHz 170 mT sinusoidal magnetic flux 

density. The output waveform is proportional to the change of magnetic field, and the nonlinear 

distortion is very small. 

 

Figure 14. Transient output waveform of the integrated Hall sensor for a 1 kHz 170 mT 

sinusoidal magnetic flux density. 

Table 1 summarizes the tested performances of the monolithic integrated Hall sensor microsystem 

and makes comparisons with other two reported Hall sensor chips. At the 5 V supply, the static power 
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consumption is 20 mW, the maximum Hall output voltage reaches ±2.1 V, and the output equivalent 

residual offset is 0.48 mT. Reference [10] presented a 5-V monolithic linear Hall sensor using a 2 μm 

conventional Bipolar CMOS (BiCMOS) technology. It can be seen that our work achieves almost the 

same performances with the work reported in the literature [10] using the low cost CMOS process. 

Although the linearity of Hall output voltage in our work is slightly less than that in the literature [10], 

our work achieves the larger magnetic field measurement range. Moreover, our work obtains smaller static 

power consumption and residual offset voltage. Reference [2] also presented a linear Hall sensor for current 

measurement fabricated in 0.8 μm CMOS process. It is noticed that the magnetic field measurement range 

is only ±50 mT in the literature [2], which is obviously smaller than our results. In our work, the linearity 

is still larger than 99% across the maximum ±175 mT magnetic field measurement range. 

Table 1. Performance summary and comparison of CMOS monolithic integrated Hall sensors. 

Parameters Reference[10] Reference[2] This Work 

Technology 2 μm BiCMOS 0.8 μm CMOS 0.8 μm HV CMOS 
Supply voltage 5 V 5 V 5 V 

Static power consumption 35 mW N/A 20 mW 
Quiescent working point 2.5 V N/A 2.5 V 

Measurement range ±100 mT ±50 mT ±175 mT 
Equivalent residual offset 0.5 mT N/A 0.48 mT 

linearity 99.9% >99% >99% 

5. Conclusions 

A monolithic integrated Hall sensor is implemented using a 0.8 μm high voltage CMOS process. The 

chip integrated with a highly sensitive cross-like Hall plate realizes the effective elimination of offset 

voltage and linear amplification of a weak Hall signal by means of an improved switched Hall plate and 

a simple signal conditioner. The device measuring results show that the offset voltage of the optimized 

Hall plate is 2 mV at the 3 V biasing voltage. The SI and SV achieve 250 V/AT at 1 mA biasing current 

and 0.034 V/VT at the 3 V biasing voltage, respectively. At the 5 V supply, the Hall sensor microsystem 

testing results show that the linearity of Hall output voltage is larger than 99% in the magnetic flux 

density range from ±5 mT to ±175 mT. The total static power consumption is 20 mW, and the output 

equivalent residual offset is 0.48 mT. 
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