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Abstract: The specific requirements of UAV-photogrammetry necessitate particular 

solutions for system development, which have mostly been ignored or not assessed 

adequately in recent studies. Accordingly, this paper presents the methodological and 

experimental aspects of correctly implementing a UAV-photogrammetry system.  

The hardware of the system consists of an electric-powered helicopter, a high-resolution 

digital camera and an inertial navigation system. The software of the system includes the 

in-house programs specifically designed for camera calibration, platform calibration, 

system integration, on-board data acquisition, flight planning and on-the-job  

self-calibration. The detailed features of the system are discussed, and solutions are 

proposed in order to enhance the system and its photogrammetric outputs. The developed 

system is extensively tested for precise modeling of the challenging environment of an 

open-pit gravel mine. The accuracy of the results is evaluated under various mapping 

conditions, including direct georeferencing and indirect georeferencing with different 

numbers, distributions and types of ground control points. Additionally, the effects of 

imaging configuration and network stability on modeling accuracy are assessed.  

The experiments demonstrated that 1.55 m horizontal and 3.16 m vertical absolute modeling 
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accuracy could be achieved via direct geo-referencing, which was improved to 0.4 cm and 

1.7 cm after indirect geo-referencing. 

Keywords: UAV; modeling; photogrammetry; calibration; georeferencing; ground control 

point; mine 

 

1. Introduction 

1.1. Background 

Unmanned aerial imagery has recently been applied in various domains such as natural resource 

management, spatial ecology and civil engineering [1–3]. Most of these unmanned aerial vehicle (UAV) 

applications require geospatial information of the environment. Consequently, three-dimensional (3D) 

environmental modeling via UAV-photogrammetry systems (UAV-PS) has become a matter of growing 

interest among both researchers and industries. However, a surveying-grade UAV-PS has critical 

differences from traditional photogrammetry systems, which should be considered carefully in its 

development and application. The following paragraphs discuss the background of UAV-PSs and the 

efforts made to evaluate their capacities. 

Typically, development of a UAV-PS starts with selecting the platform as well as the imaging  

and navigation sensors compatible with it. Regarding the platform, the payload capacity, endurance, 

range, degree of autonomy must be considered. In some studies, pre-packaged UAVs are used,  

e.g., AscTec Falcon8 [4], Aeryon Scout [5], SenseFly eBee [6]. Such systems offer safety and ease of 

operation. However, they offer less flexibility regarding sensor selection and adjustment. 

Navigation sensors play two roles in a UAV-PS: auto-piloting the platform and determining the exterior 

orientation (EO) parameters of images. High-grade inertial navigation systems (INS) can be used in 

order to eliminate the requirement for establishing ground control points (GCPs) and to achieve enough 

spatial accuracy via direct georeferencing (DG) [7]. However, consumer-grade systems are preferred 

considering the costs and limitations of access to base stations for differential or real-time-kinematic 

(RTK) global-positioning-system (GPS) [8,9]. In such systems, different strategies might be taken for 

increasing the positioning accuracy—e.g., replacing poor-quality GPS elevation data with height 

measurements from a barometric altimeter [10]. Accuracy of DG depends on the performance of INS 

components and the accuracy of platform calibration. Moreover, the system-integration scheme is 

important since it controls the synchronization between imaging and navigation sensors. Depending on 

flight speed and accuracy of INS measurements, the delay between camera exposures and their  

geo-tags can cause serious positioning drifts [7,11]. 

When indirect georeferencing is performed, considerable care should be given to several factors 

such as the accuracy of multi-view image matching, on-the-job self-calibration and GCP positioning. 

Discussed briefly in few studies [10,12,13], the method used to locate GCPs on the images and the 

configuration of the GCPs are also important factors in determining the final accuracy of indirect 

georeferencing. Accordingly, the optimum configuration of GCPs required to achieve a certain level of 

accuracy is a significant concern in the field of UAV-PS. In most of UAV applications, only a minimum 



Sensors 2015, 15 27495 

 

 

number of GCPs in a special configuration and with a limited positioning accuracy can be established. 

In order to ensure that the results, based on these conditions, can satisfy the accuracy requirements of 

the application, it is important to have an a priori knowledge of the final accuracy. 

In terms of imaging sensors, a high-resolution digital visible camera is the key element for 

photogrammetric mapping. Despite the benefits of non-metric digital cameras such as low price, light 

weight and high resolution, the instability of their lens and sensor mounts is still a concern in unmanned 

aerial mapping. Therefore, intrinsic camera calibration must be performed to determine the interior 

orientation (IO) and distortion parameters of the camera. When metric accuracies are required, offline 

camera calibration is suggested [14]. However, offline calibration parameters change slightly during 

the flight due to platform vibrations and instability of camera components [15]. A solution to this problem 

is to calibrate the camera by adding its systematic errors as additional parameters to aerial block bundle 

adjustment (BBA), which is known as self-calibration. However, inaccuracy of image observations may 

influence the calibration parameters as they are all adjusted together with completely unknown 

parameters such as object-space coordinates of tie points and EO parameters [16]. Thus, motion blur 

and noise, which are inevitably present in unmanned aerial images, affect the accuracy of calibration. 

Besides, the numerical stability of self-calibration decreases highly depending on the aerial imaging 

configuration. Therefore, careful solutions are required to address the issues of on-the-job self-calibration 

for unmanned aerial imagery. 

1.2. Environmental Application 

Regarding the environmental application, the system of this study was applied for gravel-pit 

surveying and volumetric change measurement. This environment was selected because of two 

reasons. Firstly, open-pit mines provide a challenging environment for 3D modeling. That is, 

considerable scale variations are introduced to the images due to the low altitude of platform in 

comparison with the terrain relief [17]. Secondly, there are several mining and geological applications 

which require high-resolution accurate 3D information of open-pit mines, e.g., geotechnical risk 

assessment. Previous studies have shown that the topographic data must provide a ground resolution  

of 1–3 cm in order to predict hazardous events such as ground subsidence, slope instability and 

landslides [18]. Furthermore, mining companies have to quantify the amount of extracted mass and 

stocked material regularly. The map scale required for volumetric measurement in earthworks is 

usually between 1:4000 and 1:10,000 [19]. Considering the requirements of mining applications, 

including spatial and temporal resolution, speed of measurement and safety criteria, unmanned aerial 

systems can be better solutions for mine mapping in comparison with traditional terrestrial surveying 

techniques. This can be noticed by the significant increase in use of UAV-PSs in mining applications 

during the last few years [20–22]. 

1.3. Objectives and Assumptions 

This paper presents the details of development and implementation of a UAV-PS. In addition to 

general aspects of the development, the main focus of this study is to discuss the issues and to perform 

the experiments that are usually ignored or not thoroughly addressed for UAV-PSs. First, the paper 

concentrates on the procedures for camera and platform calibration as well as system integration.  
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Instead of discussing the regular aspects of calibration, the main focus is on the design of the test-field 

and automatic target detection assuming that these elements impact the efficiency of calibration 

significantly. Regarding the system integration, it is assumed that the developed software solution is able 

to integrate the navigation and imaging sensors accurately without needing any additional mechanism. 

Afterwards, the photogrammetric processing workflow is presented. Some aspects of image  

pre-processing are discussed and their impacts on the accuracy of modeling are investigated.  

Then, assuming that the accuracy of on-the-job self-calibration is affected by the imaging network, a 

BBA strategy is suggested to control this adverse effect. This assumption and efficiency of the BBA 

strategy are also verified. Furthermore, several experiments are designed to assess the effect of GCPs 

configuration on modeling accuracy. The main assumption that these experiments verify is that a 

minimum number of GCPs can provide an accuracy level equivalent to the one achievable with 

redundant number of GCPs under two conditions. First, they are distributed over the whole zone and 

their visibility in images is maximized. Second, the imaging configuration is proper. That is the 

imaging configuration ensures scale consistency of the network. 

The rest of the paper is structured as follows: first, the equipment is presented. Then, the procedure 

of system development, including camera calibration, platform calibration and system integration, are 

discussed in Section 3. Afterwards, Sections 4 and 5 describe the methodology of data acquisition and data 

processing. The experiments performed to evaluate the system are presented in Section 6, and the results 

are discussed in Section 7. At the end, the conclusions and final remarks are presented in Section 8. 

2. Equipment 

2.1. Platform 

The platform used in this project is a Responder helicopter built by ING Robotic Aviation Inc. 

(Ottawa, ON, Canada) (Figure 1a). Responder is a vertical take-off & landing UAV which is equipped 

with a lightweight, carbon-fiber gimbal. This platform has 12 kg payload capacity and cruise 

operational endurance of 40 min. With our whole independent package of sensors, computer and 

batteries weighing about 3 kg, the platform could safely fly for 25 min in a day with wind speed of  

19 km/h. The platform is equipped with an open-source autopilot—ArduPilot Autopilot Suite.  

It comes with a portable, compact ground control station to visualize, plan and control autonomous 

flights (Figure 1b). 

2.2. Navigation Sensor 

The navigation sensor is a GPS-aided INS, MIDGII from Microbotics Inc. (Hampton, VA, USA) 
(Figure 1c, stacked on the top of the camera). The unit measures pitch and roll with 0.4° and heading 

(yaw) with 1–2° of accuracy. Its positioning accuracy is 2–5 m depending on availability of wide area 

augmentation system (WAAS). The output rate of the unit can be extended up to 50 Hz. 
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Figure 1. Equipment (a) Aerial platform; (b) Ground control station; (c) INS attached to 

camera; (d) Computer board; (e) Computer board and power supply stacked together. 

2.3. Imaging Sensor 

The imaging sensor is a GE4900C visible camera (Prosilica, Exton, PA, USA) (Figure 1c). It has a 

36.0528 mm × 24.0352 mm sensor at pixel size of 7.4 μm. It is equipped with a 35 mm F-mount lens 

and supports minimum exposure time of 625 µs. The fact that the camera has a global shutter and 

charge-coupled-device (CCD) progressive sensor makes the imaging more robust against motion blur, 

interlacing artifact and read-out delay, which are all essential for UAV-PS [23]. Global shutter controls 

the incoming light all over the image surface simultaneously. Thus, at any time instance, all photo 

detectors are either equally closed or equally open. This is in contrast with rolling shutters where 

exposures move row by row from one side to another side of the image. In the CCD architecture, only 

one-pixel shift happens to move the charge from image to storage area. Therefore, the readout time and 

energy consumption decrease considerably. Progressive scanning is also strongly preferred for grabbing 

moving images, since the images are free of interlacing artifacts caused by the time lag of frame fields. 

2.4. Onboard Computer 

The computer applied in this study is an ultra-small, single-board system (CoreModule 920, 

ADLINK, San Jose, CA, USA), which is based on a 1.7 GHz Intel Core™ i7 processor (Figure 1d). 

The board is stacked together with a PC/104 power supply (Figure 1e). The power supply receives 

12.8-volt DC input from a 3200 mAh LiFePO4 battery pack. In return, it provides +5 V regulated DC 

voltage to the computer, +12 V to the camera and +5 V to a fan for cooling the processing unit.  

With this configuration, the embedded system is capable of acquiring, logging and storing images with 

a rate of 3 frames per second and navigation data with a rate of 50 Hz during approximately 70 min. 

3. System Development 

3.1. Camera Calibration 

In this study, offline camera calibration is performed using a test-field (Figure 2) via a conventional 

photogrammetric calibration method known as inner-constrained bundle adjustment with additional 
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parameters [24]. In this study, Brown’s additional parameters are applied to model the systematic errors 

of the camera [25]. Therefore, the camera IO parameters, radial and decentering lens distortions as well 

as in-plane scale and shear distortions of the sensor [26] are modeled via calibration. As digital camera 

calibration is a well-studied topic in photogrammetry, detailed theories are avoided here. Instead, other 

important aspects, including our methodology for test-field design and target detection, are discussed. 

 

Figure 2. Camera calibration test-field. 

3.1.1. Design of the Calibration Test-Field 

Two camera parameters determine the size and depth of a test-field: focus distance and field of view. 

For aerial imaging, camera focus distance is set to infinity so that different altitudes can be covered in 

the depth of field (DoF) of the camera. However, the focal length extends slightly during focusing 

(When the focus distance is changed, a small group of elements inside the lens, instead of the whole 

barrel, is moved to provide the focus. Thus, the focal length changes slightly.). This means that the 

focus distance should remain fixed all the time. Therefore, it should be ensured that the calibration 

test-field can provide focused photos at short distances while the focus distance is still set to infinity. 

Considering Equation (1), the far and near limits of DoF (Hf, Hn) depend on F-number (d), focal  

length (f), circle of confusion diameter (c) and focus distance (h). That is all the objects located between 

Hn and Hf  from the camera can be imaged sharply: 

2 21 ( ) ,        1 ( )f n

d d
H h h f c H h h f c

f f
= − − = + −  (1)

If the focus distance is set to infinity ( )h→∞ , then the F-number should be increased largely to 

provide focus at short ranges. By setting the F-number to its maximum value (dmax), the minimum 
focus distance can be determined 

min
( )nH . Thus, the distance of the test-field from the camera, namely 

the test-field depth, should be larger than 
minnH . Notice that by maximizing the F-number, the aperture 

opening (A) decreases (Equation (2)), and calibration images become very dark. To compensate this, 

the exposure time should be increased according to Equation (3). Let t1 be the minimum exposure time 

of the camera which is usually selected for aerial imaging to reduce motion blurring artifacts. 

Accordingly, A1 is the aperture opening which provides proper illumination for outdoor acquisition in 

combination with t1. If A2 is the aperture opening when maximizing the F-number, then t2 is the 

exposure time that should be set to avoid either underexposure or overexposure: 
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2 24A f d= π  (2)

1 1 2 2At A t=  (3)

Afterwards, the width and height of the test-field should be determined. It is essential to model the 

systematic errors based on the distortions observed uniformly across the whole image [24].  

Therefore, it should be ensured that the test-field is large enough to cover approximately the whole 
field of view (FoV) of the camera. The horizontal and vertical angles of FoV ( ,h vα α ) can be calculated 

from the sensor size (W, H) and the focal length (f) as in Equation (4). Therefore, the minimum size 
required for the test-field ( t tW H× ) can be determined via Equation (5) 

1 12 tan ( 2 )   ,  2 tan ( 2 )h vW f H f− −α = α =  (4)

min min
2 tan( 2)   ,  2 tan( 2)t n h t n vW H H H= α = α  (5)

3.1.2. Target Detection 

Figure 3 demonstrates the approach of this study for detecting the targets. Unless otherwise 

indicated, the procedures mentioned in the diagram are fully automatic. 

 

Figure 3. Diagram of the target detection method. 

In this study, the targets are designed as black and white rings with crosshairs passing through the 

circles’ centers. The reason for using circular targets is that once the image of a circle is deformed 

under any linear transformation, it appears as an ellipse. Then, the techniques of ellipse detection can 

be applied to position it accurately. The following paragraphs explain the ellipse fitting method developed 

to determine the accurate positions of the targets. 
Assuming that ( , )a ax y  is the approximate position of a target, a rectangular window is centered at 

(xa, ya). The window is transformed to binary format, and its connected black components are detected. 

Each closed component represents a candidate region. Let B denote the set of all the pixels belonging 

to the boundary of a candidate region. If the region is actually a target, then its boundary can be modeled 

as an ellipse with Equation (6): 
2 2 2( ) ( )   ; ( , )o ox x K y y R x y B− + − = ∀ ∈  (6)
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where (xo, yo) is the center, R  is the flattened radius and K  is the aspect ratio of the ellipse. A small 

percentage of the points belonging to B are reserved as checkpoints. Other points are served as 

observations to determine the ellipse parameters with least squares fitting technique. Once the ellipse is 

defined mathematically, the checkpoints are validated against the ellipse model. If the fitting error is 

less than a given threshold, then the candidate region is recognized as a target, and the ellipse center 

denotes the exact position of the target. 

3.2. Aerial Platform Calibration 

The goal of platform calibration is to make sure that EO parameters of images are represented in an 

earth-centered, earth-fixed (ECEF) reference system, in which the navigation positioning data are 

represented as well. To this end, the vector between the perspective center of the camera and the center 

of the INS body-fixed system—known as lever-arm offset—as well as the rotations of the camera 

coordinate system with respect to the INS system—known as bore-sight angles—should be determined. 

In this study, the lever-arm offset is ignored. This is due to the fact that the offset between the INS and 

the camera never exceeds a few centimeters, which is far below the precision of GPS measurements  

(a few meters). 

Attitude outputs from the INS are presented as Euler angles, also known as Cardan. The Cardan 
consists of three rotations: roll (ɸ), pitch (θ) and yaw (ψ). The rotation matrix n

bR —composed of Euler 

angles—rotates vectors from the INS body-fixed coordinates system (b) to the local geodetic system 
(n) as in Equation (7). Likewise, the rotation matrix e

nR —composed of geodetic latitude (φ) and 

longitude (λ)—rotates vectors from the local geodetic system to the ECEF system (e) as in Equation (8). 
Therefore, the rotation matrix e

bR  rotates vectors from the INS body-fixed coordinate system to the ECEF 

system as in Equation (9) [27]: 

( ) ( ) ( )n
b z y xR R R R= ψ θ φ  (7)

( ) ( / 2 )e
n z yR R R= π − λ π − ϕ  (8)

e e n
b n bR R R=  (9)

The required rotation matrix for image georeferencing is e
iR , which describes the rotations from the 

camera coordinate system (i) to the ECEF one. The rotation matrix e
iR  can be calculated using the 

rotation matrix e
bR  and the bore-sight matrix b

iR : 

e e b
i b iR R R=  (10)

To determine the bore-sight matrix b
iR , first, a network of targets is established in the ECEF coordinate 

system (Figure 4). Then, the targets are photographed using the camera which is firmly installed on the 

platform with the INS. Simultaneously, the INS data ( n
bR ) is logged. At the post-processing stage, the 

position ( e
iX


) and orientation ( e
iR ) of the camera center are calculated via photogrammetric resection. 

Using the geodetic coordinates of the camera center ( , )e e
i iϕ λ —derived from Cartesian coordinates  

e
iX


—the rotation matrix e
nR  is calculated. Then, the rotation matrix e

bR  from the INS body-fixed 

system to the ECEF system is determined via Equation (9). Finally, by substituting e
iR  and e

bR  to 

Equation (10), the unknown bore-sight matrix b
iR is determined. 
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Figure 4. Test-field for platform calibration. 

Notice that, in this study, the camera and the INS were stacked together, in a fixed status as in 

Figure 1c. Consequently, the platform could be calibrated before installing the sensors on the UAV. 

3.3. System Integration 

A UAV-PS consists of a platform, camera, navigation system and control system. The control 

system is responsible for various tasks including power control, setting the data-acquisition 

parameters, data logging, data storage and time synchronization. In this study, the hardware of the 

control system simply includes the computer and the power supply as described in Section 2.4. The 

software solution developed for this control system contains three main classes: INS, camera, and clock. 

The main functionality of the clock class is to get the time up to nanoseconds from the system-wide 

clock and assign it to any acquisition event in a real-time manner. The INS class is responsible for 

communication with the INS and recording the navigation messages. Each navigation message contains 

the information of position, rotation and GPS time. The system time at the moment of receiving each 

navigation message is also assigned to that message by the clock class. The GPS time of the messages 

is assigned to a shared variable as well, which has external linkage to the camera class. The camera class 

is responsible for communication with the camera and setting its attributes including triggering time 

interval, exposure and gain value, and frame size. Although several methods of acquisition are available 

for Prosilica cameras, software triggering mode is used to facilitate the synchronization process. That is 

the camera is triggered automatically based on defined intervals, e.g., every 500 ms. The end of camera 

exposure is set as an event, and a callback function is registered to this event. The functionality of this 

callback is to save the acquired frame and tag the navigation information to it. This information 

includes the GPS time and the navigation data received from the INS as well as the system time observed 

at the epoch of the exposure-end event. Finally, the software makes these classes operate together.  

It starts two threads in the calling process to execute the main functions of the classes simultaneously. 

Notice that the GPS time, tagged to each image, is determined by the INS class and the frequency of 

INS data is 50 Hz. Therefore, the GPS timestamp is theoretically less than 20 ms different from the 

exact time of the exposure. Assuming a flight speed of 20 km/h, the time-synchronization error of  

20 ms can cause 11 cm of shift between the true position and the tagged position of an image. When a 

navigation-grade GPS is used, such a shift is quite below the precision of GPS measurements and can 

be ignored [7]. However, if differential GPS measurements are used, then this error must be 
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systematically handled [11]. To do so, in a post-processing step, the difference between the system 

time and the GPS time that are tagged to each image is used to derive the exact navigation data 

corresponding to that image via a linear interpolation over the two INS messages, between which the 

image is acquired. 

4. Data Acquisition 

In this study, the data were acquired from a gravel pit at Sherbrooke, QC, Canada. The extent of  

the gravel-pit mine is shown in Figure 5. Two series of data over a period of two months were  

acquired—August and October 2014. Two main zones were considered for the experiments (Figure 5). 

The red zone represents one part of the gravel pit which was covered by stockpiles, and the green zone 

represents the zone covered by cliffs and rocks. 

 

Figure 5. The study area and mapping zones. 

4.1. Data-Acquisition Planning 

In order to perform flight planning, there exist several software packages. However, in this study, a 

simple software solution is developed to satisfy the specific needs of the project for both flight and 

fieldwork planning. The interface of the software is shown in Figure 6. The main inputs of the software 

are the platform and sensor characteristics as well as the desired overlap and ground resolution for 

imagery. In order to calculate the position of the sun, the flight time is needed too. Knowing the 

position of the sun helps to minimize shadow effects; the larger the solar elevation angle, the shorter 

the shadows. The software allows users to either load or graphically choose the predicted positions of 

GCPs—red triangles in the display panel of Figure 6. It is, then, possible to determine the flight 

zone—blue polygon and the flight home—yellow lozenge. The software designs and logs the flight 

plan afterwards. One of the significant applications of this software is to design the approximate spatial 

distribution of GCPs considering two conditions. First, GCPs should be installed at stable locations 

distributed over the whole imaging zone. Second, their visibility in the images should be maximized. 
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Figure 6. Interface of the flight-planning software. 

4.2. Fieldwork 

The first task of the fieldwork was to initialize the GPS base receiver for collecting RTK measurements. 

The absolute coordinates of the base point were determined with 2–5 mm accuracy. The next step was 

to install the targets at locations predicted during the flight planning stage (see Section 4.1). Then, their 

positions were measured using the R8 GNSS System (Trimble, Sunnyvale, CA, USA)—a  

high-precision, dual-frequency RTK system. Following the same concept as camera calibration  

(Section 3.1.2), GCPs were marked as circular targets (Figure 7a). Once the GCPs were established, the 

flights for image acquisition started. Table 1 presents the flight conditions. Labels are given to the 

acquired datasets for further use in this paper. 

Table 1. Information of the data-acquisition sessions. 

Characteristic 

Flight Date 

August 2014 August 2014 October 2014 

Dataset A Dataset B Dataset C 

Weather temperature (°C) 22 26 10 
Wind speed (Km/h) 8 19 8 

Zone structure Stockpiles Cliffs Cliffs 
Approximate flight altitude (m) 80 90 90 

Upon termination of image acquisitions, the terrestrial surveying for gathering check data started. 

The check data included sparse 3D point clouds measured by Trimble VX laser scanner over the whole 

mapping area and a dense point cloud measured by a FARO Focus laser scanner (FARO, Lake Mary, 
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FL, USA) over a small pile. Figure 7b,c show the configuration of the control points, the stations 

where VX scanner was installed as well as the zone where the dense 3D point cloud was measured by 

FARO scanner (blue polygon). In order to facilitate the accurate registration of individual FARO scans, 

several targets with checkerboard pattern and reference spheres were installed at different levels of the  

pile (Figure 7d). 

 

Figure 7. Surveying plans (a) Markers for GCPs; (b) Configuration of GCPs and laser-scanner 

stations for dataset A; (c) Configuration of GCPs and laser-scanner stations for dataset C; 

(d) Configuration of targets for FARO scanner over one pile. 

5. Data Processing Workflow 

The main steps of data processing in aerial photogrammetry are illustrated in Figure 8. The ordinary 

methods to perform these steps are not discussed here. Instead, the methodology of this study to improve 

some of these procedures is presented. 

 

Figure 8. Photogrammetric workflow to produce topographic data from images. 



Sensors 2015, 15 27505 

 

 

5.1. Image Pre-Processing 

5.1.1. Intensity Enhancement 

As in the system of this study, in most of UAV-PSs, small-format cameras are used because of weight 

limitations. One of the main problems caused by such cameras is their small ground coverage.  

This characteristic makes the sequence of images vulnerable to photometric variations, even though 

the flight time is usually quite short [28]. Noticeable radiometric changes among adjacent images make 

both sparse matching and pixel-based dense-matching more difficult [29,30]. An example of such 

situation is given in Figure 9. These images are from a test dataset not listed in Table 1. They were 

taken with a Prosilica GT1920C camera with sensor size of 8.7894 mm × 6.6102 mm and focal length 

of 16 mm. As shown in Figure 9a, some images are considerably darker than their neighboring images 

since a patch of dark clouds had passed through the zone. Some of the images additionally suffer from 

lack of texture diversity (Figure 9c). As a result, matching such images becomes difficult.  

Therefore, their relative orientation parameters cannot be determined, and the ortho-mosaic cannot be 

generated either (Figure 9e). 

 

Figure 9. Intensity enhancement (a) A sequence of illuminated and dark images; (b) Images 

of Figure 9a after correction; (c) Two adjacent dark images with low texture diversity;  

(d) Images of Figure 9c after correction; (e) Failure in ortho-mosaic generation; (f) Correct 

mosaic after intensity enhancement. 

When thematic applications are required, sophisticated techniques using spectral observations 

should be used for radiometric correction of images. Otherwise, simple image enhancement methods 

can be used to reduce the relative photometric variations. In this study, a combination of white balancing 

and histogram matching is proposed. Starting by the image with proper illumination as the reference 

image, its dark neighboring image is first white-balanced. Then, the intensity histograms of both images 

are calculated. If the correlation of the cumulative distribution functions of the histograms is more than 0.5, 
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then no further enhancement is needed. Note that a cumulative histogram represents the intensity rank 

of each pixel with respect to other pixels regardless of general radiometric changes [31]. If the correlation 

of two distributions is less than 0.5, then histogram matching is performed to adjust the intensity 

values in the dark image. With this method, each image is relatively corrected only with respect to the 

images immediately adjacent to it. Therefore, the trace of dark images is still visible globally.  

However, this intensity enhancement makes the matching performable, and a correct ortho-mosaic can be 

generated (Figure 9f). 

5.1.2. Shadow Removal 

Another radiometric effect on aerial images is caused by shadows. In thematic applications such as 

atmospheric correction and classification, shadow regions lead to inevitable errors [32]. Shadows can 

also cause spatial errors in 3D modeling. This usually happens when the sun direction changes slightly 

during the flight and the shadow edges move as a consequence [33]. In our experiments, this problem 

was observed in dataset B (Table 1). In order to investigate the effects of shadows on the quality of 3D 

modeling, a simple technique is proposed to detect and remove the shadow regions from single images. 

The summary of this technique is presented in Figure 10. In Section 7.3, the effects of shadow removal 

on both the photometric appearance and the accuracy of the 3D point clouds are analyzed. 

 

Figure 10. Workflow for automatic shadow detection and removal. 

5.1.3. GCP Detection 

Once the image intensities are enhanced, ground control points can be detected. Automatic 

detection of GCPs in images is important from two aspects. Firstly, detecting GCPs manually in large 

sets of UAV images is a cumbersome task. Secondly, the accuracy of target detection directly affects 

the accuracy of georeferencing and calibration. Therefore, more attention has recently been paid to this 

process [10,35]. The method applied to position GCPs is presented in Figure 11. It is mainly based on 

localization of GCPs using direct EO parameters, color-thresholding and ellipse detection as described 

in Section 3.1.2. Although this process is automatic, the results should manually be verified to remove 

incorrect detections. 
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Figure 11. Workflow for automatic detection of GCPs. 

5.2. Photogrammetric Processing 

Photogrammetric processes are applied to aerial images in order to generate various types of topographic 

products such as 3D point cloud, geo-referenced mosaic and digital surface model (DSM). In this 

study, the main photogrammetric processes are performed using Pix4D software [36]. This software has 

recently been popular among researchers and commercial users for UAV-photogrammetry [33].  

Several experiments were designed using this software in order to evaluate the performance of the 

developed UAV-PS (Section 6.2). 

Furthermore, a BBA strategy is suggested for on-the-job self-calibration. This strategy is able to 

control the adverse effects of noisy aerial observations as well as correlation of IO and EO parameters 

on the accuracy of self-calibration. The main solution of this strategy is to transform the intrinsic camera 

calibration parameters from unknowns to pseudo-observations. That is, they should be considered as  

semi-unknowns with known weights. The experimental way to determine these weights is presented in 

Section 6.1, and the results are discussed in Section 7.6. In the following paragraphs, the principals of 

self-calibration with pseudo-observations are presented. Since BBA and least-squares adjustment  

are well-studied topics, the details are avoided here. Readers are referred to [16,37,38] for more  

theoretical information. 

The mathematical model of bundle adjustment with additional parameters can be presented as in 

Equation (11), where the observation equations (F) are based on co-linearity condition. These equations 

are functions of measurements (L), unknowns (Y) and pseudo-observations (X). The measurements are 

image coordinates of tie points. The unknowns include ground coordinates of tie points and EO 

parameters of images. The pseudo-observations include intrinsic calibration parameters—both IO 

parameters and distortion terms: 

( , , ) 0F X Y L =  (11)

The linear form of Equation (11) is obtained using a Taylor series first-order approximation: 

0W A K B L+ δ + δ =  (12)

where K is a concatenated vector by X and Y, W is the miss-closure matrix, and A and B are the 

matrices of first-order partial derivatives of F with respect to K and L, respectively. Assuming that LP  

is the weight matrix of the measurements, XP  is the weight matrix of the pseudo-observations, and D 

is the matrix of datum constraints, then the least-squares solution for Kδ  can be obtained as in the 

following equation: 
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1 1 1 1( ( ) ) ( )T T T T T T
K X LP A BP B A D D D DD DD D− − − −Σ = + + −  

1 1ˆ ( ( ) )T T
K LK A BP B W− −δ = −Σ  

(13)

The vector of residuals, Lδ , is also estimated as follows: 

1 1 1ˆ ˆ( ) ( )T T
L LL P B BP B A K W− − −δ = − δ +  (14)

These partial solutions, K̂δ  and L̂δ , are successively added to the initial estimations of the 

unknowns and values of the measurements and pseudo-observations until reaching convergence. The 

role of the weight matrix PX in Equation (13) is to control the changing range of pseudo-observations. 

6. Experiments 

In this section, the experiments which were performed to assess different aspects of the developed 

system are presented. The results obtained from these experiments are, then, discussed in Section 7. 

6.1. Laboratory Experiments 

6.1.1. Calibration 

The camera was calibrated several times during a period of few months before starting the data 

acquisition. The final parameters were obtained as the average of the parameters from these tests.  

The stability of each calibration parameter was also determined as its variance at these tests. In the 

BBA strategy of Section 5.2, these variances were used as the weights of pseudo-observations. 

In order to verify the accuracy of offline calibration parameters obtained from these test, 10 check 

images were captured. In these images, the targets were detected using the method of Section 3.1.2. 

Some of them were reserved as checkpoints, and others were served as control points. Using the control 

points and the calibration parameters, the EO parameters of the images were determined via space 

resection. Then, the 3D object-space coordinates of the checkpoints were back-projected to the images. 

The difference between the back-projected position of a checkpoint and its actual position on an image 

is called the residual. The residuals show how accurate the calibration parameters are modeled.  

The results obtained from this test are presented in Section 7.1. 

In order to analyze the efficiency of automatic target detection, compared with manual target 

detection, similar calibration and assessment tests were performed using the targets that were detected 

manually. Positions of the manual targets were different from those of the automatic targets with an 

average of 1.3 pixels and maximum of 2.4 pixels. The results obtained from this experiment are also 

presented in Section 7.1. 

6.1.2. Time Synchronization 

In order to verify how precisely the camera exposures could be tagged via INS messages, a simple 

experiment was performed. For each image, the INS log file was searched, and the INS message whose 

GPS time was exactly equal to the GPS timestamp of the image was detected. If the system time 

tagged to that INS message were adequately close to the system time tagged to the image, then it could 
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be concluded that the GPS timestamp tagged to the image was accurate too. The results of this test, 

performed on more than 2500 images, are discussed in Section 7.2. 

6.2. Photogrammetric Tests 

Initially, the images were processed using Pix4D. The 3D triangulated mesh objects for dataset A, 

dataset B after shadow removal and dataset C are presented in Figure 12. To evaluate the accuracy of 

dense reconstruction, cloud-cloud comparison was performed between the image point clouds and 

terrestrial laser-scanner point clouds. To this end, the CloudCompare open source software was  

applied [39]. For each point in the laser cloud, the closest point in the image cloud was found, and the 

distance between them was calculated. Then, the distances were analyzed to measure the spatial 

accuracy of image point clouds. The results of these analyses are presented in Section 7.3. Once the 

accuracy of individual point clouds was assessed, they were used to produce other topographic data 

such as slope maps. Using the DSMs of two different dates, volumetric changes within the site were 

measured as well. The results are discussed in Section 7.7. 

 

Figure 12. Triangulated mesh for (a) Dataset A; (b) Dataset B after shadow removal;  

(c) Dataset C. 

The second series of the experiments were performed to determine how the number and spatial 

distribution of GCPs affect the accuracy of 3D modeling. Traditionally, it is known that having more 

than enough GCPs with good geometrical configuration improves the accuracy of the results [37]. 

However, in most of UAV-mapping applications, only a minimum number of GCPs can be established. 

Therefore, it is important to have an a priori knowledge of how the final accuracy of 3D modeling 

would be affected by the GCPs. To this end, several experimental tests were designed. These tests are 

described through Table 2. In each test, the initial photogrammetric processing was performed using 

Pix4D, which included tie point generation, block bundle adjustment and self-calibration. Then, the 

accuracy of the results was evaluated against checkpoints. The checkpoints in these experiments 

(Figure 13) were either the GCPs not used as control points and/or some of the individual laser-scanner 

points that were transformed to checkpoints. To do this, the ground coordinates of each laser point were 

back-projected to the images via the accurate indirect EO parameters. Then, SURF feature descriptors 

were calculated over the projected pixels in all the images [40]. If such pixels represented salient features, 

and if the distances between their descriptors were smaller than a threshold, then that laser point was 

considered as a checkpoint. In addition, all the checkpoints were manually verified to avoid errors. 
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Table 2. Description of experimental tests for verifying the effect of number/distribution  

of GCPs. 

Test Label Figure Descriptions 

GCPTest 1 

 

Number of GCPs 22 

Distribution Covering the whole imaging zone 

GCPTest 2 

 

Number of GCPs 3 
Visibility * 9, 12 and 21 images 

Distribution Evenly distributed over the imaging zone 

GCPTest 3 

 

Number of GCPs 3 
Visibility 4–6 images 

Distribution Well distributed over the imaging zone 

GCPTest 4 

 

Number of GCPs 3 
Visibility 19, 20 and 22 images 

Distribution Positioned near the ends of flight strips 

GCPTest 5 

 

Number of GCPs 3 
Visibility 5, 12 and 21 images 

Distribution 
Established at the flight home due to 

inaccessibility to the rest of the imaging zone 

GCPTest 6 

 

Number of GCPs 3 
Visibility 15, 17 and 22 images 

Distribution 
Established along a hypothetical road due to 

inaccessibility to other areas 

* Number of images, in which every GCP is visible. 

  

Figure 13. Flight trajectory and distribution of checkpoints in dataset A. 
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Moreover, we were interested in assessing the results of these tests not only with GCPs that were 

measured by RTK GPS, but also with GCPs whose positions were measured by other techniques. 

Since the GCPs were originally measured only by accurate RTK GPS, it was decided to simulate the 

measurements for other techniques. To this end, three reference points were established outdoor, and 

their exact coordinates with RTK GPS system were measured. Then, other GPS devices were used to 

re-measure their coordinates. Using the observations made by each device, the positioning errors of 

GCPs were simulated. First, a Garmin GLO-GPS was used, and more than 10,000 observations were 

recorded over the reference points. This device is WAAS-enabled and receives position information 

from both GPS and GLONASS satellites. The root mean square (RMS) positioning error for this 

device was 2.40 m horizontally and 6.04 m vertically. Similarly, a series of 2000 observations were 

made with a SXBlueII GPS. This device is also WAAS-enabled and performs additional code-phase 

measurements and multi-path error reduction. The RMS positioning error with this device was 0.65 m 

horizontally and 0.69 m vertically. The results obtained in different tests using these types of GCPs are 

presented in Section 7.4. 

To analyze the effect of imaging configuration in absence/presence of GCPs on the accuracy of 3D 

modeling, a sequence of nine images was considered (Figure 14a). Ground control points A, B and C 

were visible in images 1–4, while point D was visible in images 5–6. The following situations were, 

then, designed and tested. 

i. OverlapTest 1: Each image was overlapped with at least three connected images. For example, 

image 5 had common tie points with both images 3 and 4. Such a connection is illustrated via 

the connectivity matrix in Figure 14b. 

ii. OvelapTest 2: The situation was the same as OverlapTest 1. However, image 5 did not have 

any common tie points with both images 3 and 4; i.e., it was only overlapped with image 4.  

The connectivity matrix of Figure 14c shows this situation. 

The objective of these tests was to find out whether the lack of overlap in OverlapTest 2 could 

cause problems in BBA, and how important the role of GCPs was to solve those problems. The results 

obtained from each test and the issues involved with each situation are assessed in Section 7.5. 

 

Figure 14. (a) Experiment to assess the effect of imaging configuration; (b) Connectivity 

matrix in OverlapTest 1; (c) Connectivity matrix in OvelapTest 2. 

The final series of photogrammetric experiments were performed to analyze the effect of on-the-job 

self-calibration on the accuracy of IO and EO parameters. Also, the proposed self-calibration strategy 
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of Section 5.2 was evaluated, and the results were compared with those of traditional self-calibration. 

To this end, the following situations were considered, and correlation analysis was performed at each 

situation in order to determine the dependency of IO parameters to EO parameters. 

i. CalibTest 1: Offline camera calibration was performed using a well-configured imaging 

network (Figure 15a). 

ii. CalibTest 2: On-the-job calibration was performed using typical aerial images, which were all 

acquired from almost the same altitude (Figure 15b). 

iii. CalibTest 3: On-the-job calibration was performed using aerial images, which were acquired 

from varying altitudes (Figure 15c). 

 

Figure 15. Self-calibration experiments (a) CalibTest 1; (b) CalibTest 2; (c) CalibTest 3. 

7. Results and Discussion 

7.1. Calibration Results 

Figure 16a shows the residual vectors for the checkpoints after camera calibration. The mean and 

standard deviation (StD) of the residuals on the checkpoints at x- and y-directions are 0.32 ± 0.18 pixel 

and 0.20 ± 0.16 pixel, respectively. Figure 16b presents the residual vectors based on the manual target 

detection. Notice that the targets on check images were detected automatically and, only, the targets 

used for calibration were measured manually. As a result, the automatic target detection improves the 

accuracy of calibration 81.25% in comparison with the noisy observations based on manual detection 

even though the noise level does not exceed 2.4 pixels. 

 

Figure 16. Calibration results (a) Residuals on checkpoints based on automatic target 

detection; (b) Residuals on checkpoints based on manual target detection. 
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7.2. Precision of Time-Synchronization 

Figure 17 demonstrates an example of the results obtained from the time-synchronization test.  

The x-axis shows the image number. The y-axis shows TΔ , which is the absolute difference between 

the system time tagged to each image and the system time tagged to its corresponding INS message.  

It is, indeed, the difference between the real exposure-end time of an image and the GPS timestamp 

tagged to it. As it can be noticed, these differences are random; however, they do rarely exceed 20 ms. 

This is due to the fact the INS frequency is 50 Hz (1 message per 20 ms). The main reason why this 
difference ( )TΔ  is random is that the camera exposures do not start on very exactly fixed 

intervals⎯e.g., every 500 ms. Instead, there is a few milliseconds of random delay/advance from the 

defined interval⎯e.g., 502 ms. In average, it can be concluded that the GPS timestamp tagged to any 

image is approximately 11 ± 7 ms delayed/advanced from the exact time of the exposure. 

 

Figure 17. Results of the time-synchronization test. 

7.3. Accuracy of 3D Point Clouds 

As mentioned in Section 6.2, image point clouds were compared with terrestrial laser-scanner point 

clouds. Figure 18a,b illustrate the histograms of horizontal and vertical distances between the point 

cloud of dataset A and that of the laser scanner (see Table 3 as well). The vertical accuracy of this 

point cloud is 1.03 cm, and its horizontal accuracy is 1.58 cm. 

 

Figure 18. Histograms of distances between the point clouds from dataset A and laser 

scanner (a) Horizontal distances; (b) Vertical distances. 
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Table 3. Summary of distances between the image-based point clouds and laser-scanner ones. 

Dataset 
Horizontal Distance (cm) Vertical Distance (cm) 

Mean RMS StD Mean RMS StD 

A 1.38 1.58 0.77 0.80 1.03 0.66 
B before shadow removal 1.79 2.03 0.96 1.41 1.72 0.99 
B after shadow removal 1.62 1.82 0.83 1.32 1.62 0.95 

C 1.88 2.07 0.84 1.63 2.02 1.18 

As another test, the dense point cloud measured by FARO laser scanner was transformed to a raster 

DSM. Then, the absolute difference of the image-based DSM from the laser DSM was calculated. 

Figure 19 presents the vertical difference between the image-based DSM and laser DSM. In more than 

78% of the zone, this vertical difference is less than 1 cm. 

 

Figure 19. Absolute difference between the DSM from FARO laser scanner and that of 

dataset A. 

For dataset B, as mentioned in Section 5.1.2, shadow regions were removed from the images. 

Figure 20a,b show the geo-referenced mosaics of the site before and after shadow removal, respectively. 

As it can be seen, the results are visually improved. The shadow-free mosaic can be used in thematic 

applications where shadow effects cause errors. 

 

Figure 20. Image mosaics of dataset B (a) Before shadow removal; (b) After shadow removal. 
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The point clouds obtained before and after shadow removal were also evaluated using the laser-scanner 

data. The results are presented in Table 3 and Figure 21. According to the results, the vertical accuracy 

is improved from 1.72 cm to 1.62 cm with shadow removal. Therefore, no noticeable improvement can be 

observed via this test. This is principally due to the fact that the terrestrial laser-scanner points over the 

shadow region were not dense enough. However, when the DSMs before and after shadow removal 

were compared, the differences could be observed more clearly. As shown in Figure 22, large vertical 

differences, as large as 8 cm, can be observed in edges of the cliffs. These are the zones where more 

than one shadow was casted on the objects⎯the shadow from two higher rows of the rocks. It is 

believed that this type of shadow causes errors in the dense matching and 3D reconstruction process. 

 

Figure 21. Histograms of distances between the point clouds from dataset B and laser 

scanner (a) Horizontal distances before shadow removal; (b) Vertical distances before 

shadow removal; (c) Horizontal distances after shadow removal; (d) Vertical distances 

after shadow removal. 

 

Figure 22. Absolute difference between the DSMs of dataset B before and after shadow removal. 
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Finally, the point cloud of dataset C was evaluated against the terrestrial laser point cloud.  

The results are presented in Table 3 and Figure 23. Generally, the accuracy of the point cloud from 

dataset A is higher than both dataset B and dataset C. This could be explained by the structure of the 

stockpiles in dataset A, where less occlusion happens in aerial images. For datasets B and C, the 

vertical and layered structure of the cliffs causes more errors. 

 

Figure 23. Histograms of distances between the point clouds from dataset C and laser 

scanner (a) Horizontal distances; (b) Vertical distances. 

7.4. Effects of Ground Control Points 

Firstly, the results obtained via direct georeferencing are discussed. In fact, DG may be interpreted 

in two senses. In the first sense, direct EO parameters of images from the navigation data are directly 

used for 3D modeling without any photogrammetric refinement applied to them. In this case, offline 

intrinsic camera calibration parameters should be used as no on-the-job self-calibration is performed. 

This strategy is mostly used for rapid mosaicking and ortho-photo generation. The results from this test 

for dataset A are shown as DG type 1 in Table 4. In the second sense, direct navigation data are used as 

inputs into initial photogrammetric processing and the EO parameters are slightly refined within a  

free-network adjustment. Then, these refined EO parameters are used for 3D modeling. The results 

from this test are shown as DG type 2 in Table 4. Notice that in this table and the following ones, the 

mean error represents the average of absolute errors—not the signed ones. As it can be seen, the 

horizontal and vertical accuracy is improved 31% and 73%, respectively, after applying the initial 

processing. The main reason for this improvement is that all the relative-orientation errors between 

images are corrected within the initial processing. This can be observed from the fact that standard 

deviations of errors decrease considerably after initial processing. 

Table 4. Accuracy of direct georeferencing on checkpoints. 

Experiment 
X-Direction Error (m) Y-Direction Error (m) Vertical Error (m) 

Mean RMS StD Mean RMS StD Mean RMS StD 

DG type 1 1.146 1.406 0.837 2.478 3.088 1.892 10.440 11.670 5.359 
DG type 2 1.938 1.943 0.137 1.162 1.166 0.090 3.159 3.169 0.268 

The results obtained from the experimental tests with GCPs (Table 2, Section 6.2) are presented in 

Table 5. For each checkpoint, the EO and calibration parameters of images—after indirect geo-referencing 

at each experimental test—were used to determine its ground coordinates via intersection. Then, the 
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error on the checkpoint was measured as the difference between its ground-truth 3D coordinates and 

the calculated coordinates. 

In order to provide a better understanding of the way each configuration or device affects the results, 

the relative changes of accuracy are represented in Table 6. These change rates are calculated as the 

percentage of RMS improvement with regard to the lowest accuracy. Therefore, the improvement rate 

of 0.0% shows the reference value used for change-percentage measurement. 

Table 5. Horizontal accuracy on checkpoints based on different GCP experiments. 

Error Experiment 
Trimble R8 SXBlue Garmin GLO 

Mean RMS StD Mean RMS StD Mean RMS StD 

Horizontal Error (cm) 

GCPTest 1 0.2 0.4 0.3 61.9 61.9 3.0 180.0 180.7 12.4 
GCPTest 2 0.3 0.4 0.6 68.0 69.0 1.7 158.2 160.8 19.6 
GCPTest 3 0.8 0.9 1.2 73.9 74.1 4.6 216.4 216.6 9.0 
GCPTest 4 0.3 0.4 0.7 63.8 62.9 2.3 160.2 165.3 30.2 
GCPTest 5 0.6 0.8 0.9 74.7 76.3 14.8 227.0 228.0 20.5 
GCPTest 6 0.3 0.5 0.6 72.6 72.8 5.1 189.3 193.5 31.4 

Vertical Error (cm) 

GCPTest 1 1.2 1.7 1.2 13.8 15.5 7.0 412.9 413.0 10.5 
GCPTest 2 1.6 2.0 1.2 41.1 49.7 28.3 355.5 355.8 12.4 
GCPTest 3 4.1 4.3 1.4 73.6 73.6 2.8 434.9 436.0 32.5 
GCPTest 4 1.4 2.0 1.4 43.2 48.5 22.1 432.1 433.5 35.2 
GCPTest 5 2.4 3.0 1.8 121.6 147.1 83.6 431.2 446.1 115.6
GCPTest 6 1.4 1.9 1.4 80.2 97.4 55.7 432.1 433.5 35.2 

Table 6. Improvement rate of accuracy on checkpoints based on different GCP experiments. 

Device 

Horizontal-Accuracy Percentage Change Vertical-Accuracy Percentage Change 

Experiment Experiment 

1 * 2 3 4 5 6 1 2 3 4 5 6 

R8 RTK 99.8 99.8 99.6 99.8 99.6 99.8 99.6 99.6 99.0 99.6 99.3 99.6 
SXBlue 72.9 69.7 67.5 72.4 66.5 68.1 96.5 88.9 83.5 89.1 67.0 78.2 

Garmin GLO 20.7 29.5 5.0 27.5 0.0 15.1 7.4 20.2 2.3 2.8 0.0 2.8 

* Reads as GCPTest 1. 

As the results show, in order to reach the highest accuracy, it is recommended to provide a large 

number of well-distributed GCPs (as in GCPTest 1). However, if this is not possible, then the best 

solution is to install the GCPs at different sides of the imaging zone, where they can also be visible in 

as many images as possible (as in GCPTest 2). To ensure this condition, the best practice is to install 

them near the ends of the flight strips so that they are visible in several images from two adjacent strips 

(as in GCPTest 4). Typically, it is preferred to install GCPs at places with height variation.  

However, the results from GCPTest 6, where the control points are almost at the same elevation, are 

much more accurate than those of GCPTest 3, where GCPs have high height variation but low 

visibility. Finally, the least accurate results are obtained from GCPTest 5, where the GCPs are 

positioned at the flight home. Therefore, this solution should be avoided unless there is no other 

possibility. Besides, in this situation, it should be ensured that the GCPs can be commonly visible in at 
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least three images. In order to plan any of these situations, the flight-planning software (Section 4.1) 

can be used. 

7.5. Effects of Imaging Configuration 

The above-mentioned experiments prove that careful application of minimum GCPs can also yield a 

high level of modeling accuracy. However, such accuracy level is only achievable if images provide a 

stable imaging and network configuration. The importance of this fact is analyzed based on the overlap 

tests described in Section 6.2. 

When performing BBA, the coordinate datum requires seven defined elements to compensate its 

rank deficiencies, namely scale, position and rotation. These defined elements can be provided with 

either minimum constraints in controlled networks or inner constraints in free networks. When enough 

overlap exists among images, both free and controlled network adjustments can be performed correctly 

without facing any additional rank deficiencies. Figure 24a shows the orientations of cameras and 

ground coordinates of tie points calculated correctly in a free network based on OverlapTest 1. 

 

Figure 24. Effect of imaging configuration (a) Inner-constrained adjustment based on 

OverlapTest 1; (b) Inner-constrained adjustment based on OverlapTest 2; (c) Controlled 

adjustment based on OverlapTest 2 using four GCPs. 

However, only one image not having enough overlap with its adjacent ones can disturb this ideal 

configuration. As in OverlapTest 2, image 5 does not have any common tie point with image 3. Therefore, 

there is no tie point to make a connection between one part of the network including images 1–4  

and the other part of the network including images 5–9. Notice that this disconnection happens even 

though image 5 and image 4 have common tie points. As a result, the coordinate datum faces eight rank 

deficiencies—one additional scale deficiency. In order to resolve this, one more constraint is required. 

If no ground-truth measurement is available, then the solution is to assign an arbitrary scale factor to 

one of the unknowns. Figure 24b illustrates the results by assigning a scale factor based on the DG data 

to one of the tie points between images 4 and 5. In this situation, although the BBA can be solved, a 

wrong scale change is introduced between the two parts of the network. As a result, this solution must 

be avoided unless the DG data are very accurate. The practical solution to this problem is to add the 

ground observations of control points to the adjustment. In this example, control point D provides the 

additional scale constraint required to solve the 8th rank deficiency of the datum (Figure 24c).  
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It can be concluded, that configurations of both the terrestrial data (GCPs or any other types of ground 

measurements) and the aerial images decide the final accuracy of 3D modeling. 

7.6. On-the-job Self-Calibration Results 

As the results in Section 7.1 show, noisy image observations affect the results of self-calibration to 

a great extent even if the noise level is very low. Similarly, on-the-job self-calibration of aerial images 

is affected by the noise in images, which is usually inevitable in UAV imagery. Another factor that 

affects the accuracy of on-the-job self-calibration is the particular configuration of aerial network.  

That is the images are acquired from a relatively fixed altitude. In fact, this network configuration reduces 

the numerical stability of calibration in terms of the increase in the correlation between the unknown 

parameters. Especially, IO parameters⎯the principal point offset and focal length ( , , )p px y f ⎯become 

strongly correlated with EO parameters⎯the position of the camera center ( , , )x y zC C C . As a result, 

intrinsic calibration parameters become physically meaningless since they become dependent parameters 

that change relatively with the changes of EO parameters. 

This effect can be practically controlled in close-range photogrammetry by providing various 

orientations and object depth levels as in CalTest 1. Figure 25a presents the correlation analysis of the 

self-calibration based on these images. As it is noticed, this condition results in very low correlation 

between IO and EO parameters. However, the same analysis for on-the-job self-calibration based on 

aerial images of CalTest 2 presents very high correlation between IO and EO parameters, specifically 

between focal length and imaging depth (Figure 25b). 

 

Figure 25. Correlation analysis in self-calibration based on (a) CalTest 1; (b) CalTest 2; 

(c) CalTest 3; (d) CalTest 2 by applying the proposed BBA strategy. 
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One of the advantages of UAVs is that they can fly obliquely and at very low altitudes. Therefore, it 

is possible to provide more orientation variations as in CalTest 3. As a result, the average correlation 

between focal length and imaging depth can be reduced 38% by this new configuration (Figure 25c). 

However, such maneuvers are not possible in all the UAV mapping applications. Therefore, the solution 

proposed in Section 5.2 can be applied to improve the self-calibration. This strategy reduces the correlation 

between the unknowns without the need to change the network configuration (Figure 25d). For instance, 

the average correlation between focal length and imaging depth is reduced 60%. 

7.7. Application-Dependant Results 

Figure 26a presents the major cut/fill regions based on dataset B and dataset C that were gathered 

with an interval of two months. As expected, most places at this zone were excavated. In Figure 26b, 

the volumetric change per cell is measured for every cell of the DSM. The volumetric change is measured 

as the difference of elevation in the before-DSM from the after-DSM which is multiplied by the cell 

area (1.69 cm2). Therefore, positive values represent excavation or cut, and negative values represent 

fill. The vertical accuracies of dataset B (before) and dataset C (after) are 1.32 cm and 1.63 cm, 

respectively. Therefore, the volumetric change measurement at each cell is performed with accuracy  

of 3.54 cm3. Figure 27 presents the slope map based on dataset A. As it can be seen, very detailed 

slope information is extractable from such a map, which can be used in various geological applications. 

 

Figure 26. (a) Cut/fill regions; (b) Volumetric change measurement. 
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Figure 27. Classified slope map based on dataset A. 

8. Conclusions 

Various aspects of the development and implementation of a UAV-PS were discussed in this study. 

These included the camera offline calibration, platform calibration, system integration, flight and fieldwork 

planning, data acquisition, photogrammetric processing and application in open-pit mine mapping. 

Based on the experiments, it was concluded that the accuracy of 3D modeling with the system, either 

in terms of the accuracy of indirect georeferencing or the spatial accuracy of the point clouds, was better 

than 2 cm. 

In addition to general photogrammetric experiments, several tests were performed to analyze the 

specific issues of UAV-based 3D modeling, and solutions were proposed to address them. It is hoped 

that the lessons learnt from these experiments give a more clear insight of the capacities of UAV-PSs 

for the upcoming studies and applications. In brief, the impact of automatic target detection on the 

accuracy of camera calibration was investigated. It was shown that an improvement of 81% in the 

accuracy of calibration could be achieved with our target detection technique in comparison with 

manual target detection. Regarding the system integration, it was validated that the developed software 

package was capable of synchronizing the navigation and imaging sensors with an approximate delay 

of 11 ms without requiring any additional mechanism. Moreover, the impacts of high photometric 

variations among images and shadowed regions on the accuracy of 3D modeling were verified. Besides, 

the use of a BBA strategy was suggested to improve the accuracy of on-the-job self-calibration by 

reducing the correlation of intrinsic camera calibration parameters to other BBA elements such as EO 

parameters. It was shown that, using this strategy, the correlation of IO and EO parameters could be 

reduced by 60% in an unsuitable imaging network. This strategy can be used in applications where the 

accurate, on-the-flight intrinsic calibration parameters are required independently. Furthermore, 
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several experiments were performed to assess the effect of GCPs configuration on modeling accuracy. 

It was shown that a minimum number of GCPs could provide a high accuracy level if they were 

distributed evenly over the whole zone and their visibilities in images were maximized. However, under 

such conditions, the scale consistency of the imaging network needed to be ensured by providing high 

overlap among images. 
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