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Abstract: The services composition technology provides flexible methods for building 

service composition applications (SCAs) in wireless sensor networks (WSNs). The high 

reliability and high performance of SCAs help services composition technology promote 

the practical application of WSNs. The optimization methods for reliability and 

performance used for traditional software systems are mostly based on the instantiations of 

software components, which are inapplicable and inefficient in the ever-changing SCAs in 

WSNs. In this paper, we consider the SCAs with fault tolerance in WSNs. Based on a 

Universal Generating Function (UGF) we propose a reliability and performance model of 

SCAs in WSNs, which generalizes a redundancy optimization problem to a multi-state 

system. Based on this model, an efficient optimization algorithm for reliability and 

performance of SCAs in WSNs is developed based on a Genetic Algorithm (GA) to find 

the optimal structure of SCAs with fault-tolerance in WSNs. In order to examine the 

feasibility of our algorithm, we have evaluated the performance. Furthermore, the 

interrelationships between the reliability, performance and cost are investigated. In 

addition, a distinct approach to determine the most suitable parameters in the suggested 

algorithm is proposed. 
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1. Introduction 

Wireless Sensor Networks (WSNs) are validated as an integral part of the Internet of Things where 

they extend the Internet to the physical world [1,2]. Due to their low-power, low-cost and small form 

factor, WSNs are widely used in Enterprise-IT systems. In order to quickly and flexibly respond to 

market changes, it is important that the WSN-based Enterprise-IT systems should be able to better 

adapt the business processes and the underlying software infrastructure [3]. To achieve this goal, 

organizations have focused on modeling, analysis and adaptation of business processes since early 

2004 [4]. Yet, while Service-Oriented Architecture (SOA) is prospering in Enterprise-IT, WSNs 

have—despite contrary prognoses—largely not found their way into enterprises. 

Parallel to the development of SOA, WSNs are envisioned to become an integral part of the  

Future Internet where they extend the Internet to the physical world. In recent years, some approaches 

have presented for the seamless integration WSNs with existing, widely deployed SOA technologies 

such as XML, Web Services, and Business Process Execution Language (BPEL) to build SCAs in 

WSNs [5,6]. These research results lay the groundwork for a new class of applications where all kinds 

of devices ranging from simple sensor nodes (SNs) to large-scale application servers interact to drive 

business processes in ways not possible before. In this scenario, the datastream from WSNs will 

influence the control flow of business processes in real-time or even trigger some business processes. 

In these approaches, the entire WSN or every SN can be packaged as some WSN services subject to a 

Web services technical standard, which can be published, located, and invoked across the Web [7]. 

Thus, these WSN services can be combined into the workflows in SCAs to fulfill some specific tasks 

in a services composition way [8,9]. 

From the perspective of system structure, the SCAs in WSNs are a kind of abstract of the distributed 

software system based on WSNs and running on the Internet. Since WSNs and the Internet are open, 

dynamic and difficult to control, the SCAs in WSNs have many differences from traditional software 

systems, for example system structures, operation mechanisms, correctness guarantees, development 

methods and life cycle. The traditional software systems have some characteristics, such as finite 

autonomy, fixed encapsulation, monotonic interaction, tightly coupled structure, and offline evolution, 

because of their static, closed and controllable running environment. Different from the traditional 

software systems, the WSN services exist in each SN in the form of active software services. Runtime 

SCAs in WSNs have some new characteristics that differ from those of traditional software systems, 

for example flexible evolution, continuous reaction and multi-target self-adaption. 

These new characteristics are real challenges faced by researchers attempting to optimize the 

reliability and performance of SCAs in WSNs [10]. The architecture of WSN service systems with 

fault tolerance (FT) is considered in this paper, which is shown in Figure 1. As the data resource access 

and control center in the framework of WSN service systems, the WSN services broker (SB) is closely 

related to the reliability and performance of system [11,12]. The SB is deployed in the management 



Sensors 2015, 15 28195 

 

 

server to play some important roles. To be specific, the SB manages user’s service requirements, and 

dynamically controls the startup, access and sharing of data resources. When a service request is 

received, the SB maps it into a super-service which is a logical service in a business logic layer, not a 

physical WSN service in the physical layer. Then, the SB divides this super-service into some  

sub-services according to the business rules received from the domain experts. Each sub-service 

represents a certain business operation in the business flow. However, in a real application scenario 

there are usually no physical WSN services matching these sub-services in the WSN service system. 

Therefore, each sub-service must be fulfilled by a services composition composing a set of physical 

WSN services, named atom-services (ASs). By way of collaboration among these ASs, the user’s 

service request can be fulfilled. The above mapping procedure from a service request to a SCA in 

WSNs is illustrated in Figure 2. 

 

Figure 1. Architecture of a WSN service system. 

 

Figure 2. Mapping procedure from a service request to a SCA in WSNs by the SB. 
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During the execution of a SCA in a WSN, the execution route and the selection of ASs are 

dynamically determined by the SB according to the running state. In addition, the outside SNs can be 

dynamically added in a WSN at any time. According to the business flows specification of user’s 

service requests as well as some business rules, the ASs corresponding to some of these new SNs may 

be selected to combine into the SCA during runtime by using the late binding mechanism in services 

composition technology [13,14]. Therefore, the software model of a SCA in WSNs is a dynamic 

variable. We cannot clearly know what ASs are in a SCA, as well as their running states and 

performance indices, until the end of the software running. However, the optimization methods for 

reliability and performance are essential different between the SCAs in WSNs and traditional software, 

so the optimization methods used for the traditional software are inapplicable to the SCAs in WSNs. 

Besides the applicability of optimization methods, the computational complexity is another crucial 

problem. A great number of possible solutions will be evaluated in solving optimization problems for 

the reliability and performance of SCAs in WSNs due to the dynamic variability of software models. 

The traditional reliability assessment methods, such as Boolean Models, Markov Process and  

Monte-Carlo simulation technique, have some disadvantages. They are either only suitable for  

small-scale systems, or too time-consuming in simulation [15]. Different from the optimization 

methods for reliability and performance used for the traditional software, ones used for the SCAs in 

WSNs pay more attention to the flexible measure, deduce and adoption mechanism of reliability and 

performance based on summative evaluation on the operation information in an open running 

environment [16,17]. 

In addition to the above differences, the SCAs in WSNs are faced with the ever-changing user 

requests, so they must have the ability to apperceive any changes in the outside environment, and 

dynamically evolve to adapt to these changes. In order to provide better reliability and performance to 

users, the SCAs in WSNs must have more adaptability to collect various changes in real-time, to adjust 

themselves online in runtime [18,19]. 

At present, the research on the reliability and performance optimization for SCAs in WSNs is just 

beginning. In the face of urgent demands for SCAs with high-reliability and high-performance in 

WSNs in many fields, such as military affairs, precision agriculture, safety monitoring, and 

environmental monitoring, reliability and performance optimization has become the key to encourage 

the successful development, application and popularization of SCAs in WSNs [20,21]. 

Facing the above challenges, this paper researches the reliability and performance model of SCAs in 

WSNs. Based on this, an efficient optimization algorithm for reliability and performance of SCAs in 

WSNs is presented based on UGF and GA. The rest of this paper is organized as follows: firstly the 

reliability and performance model of SCAs in WSNs is presented in Section 2. Secondly, the formal 

definitions for the reliability and performance of SCAs in WSNs are proposed based on UGF in  

Section 3. On this basis, an efficient optimization algorithm for reliability and performance of SCAs in 

WSNs is presented based on UGF and GA in Section 4. Following this, in order to illustrate our 

approach, some numerical examples and analysis process are described in Section 5. Finally, the 

conclusions and future work are given in Section 6. 
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2. Reliability and Performance Model for SCAs in WSNs 

Since the service time can take different values, the SCAs in WSNs should be considered as a 

multi-state system (MSS) [22] with performance depending on combination of states of its elements. In 

other words, the SCAs in WSNs can have different performance levels corresponding to different 

combinations of available and failed SNs with different processing speeds and failure rates, as well as 

their communication channels with different data transmission speeds and failure rates. This paper  

uses MSS theory to model and analyze the SCAs in WSNs. The next section briefly introduces the 

MSS theory. 

Many real-world systems are composed of multi-state components, which have different performance 

levels and several failure modes with various effects on the system’s entire performance. Such systems 

are called MSS. The MSS was introduced in the middle of the 1970’s in [23]. The MSS can perform 

their tasks with various distinguished levels of efficiency usually referred to as performance rates.  

In other words, the MSS can have a finite number of performance rates [24]. Since the SCAs in WSNs 

consist of different ASs, and have a cumulative effect on the entire system performance, it can be 

considered as a MSS. 

The reliability and performance analysis of the SCAs with fault tolerance in WSNs relates to 

systems for which one cannot formulate an “all or nothing” type of failure criterion [25]. The SCAs 

with fault tolerance in WSNs are able to perform their task with partial performance (intensity of the 

task accomplishment). Failures of some system elements, such as some ASs in SCAs or some SNs in 

WSNs, lead only to the degradation of the system performance [26,27]. In order to model and analyze 

the SCAs in WSNs, we use MSS theory to define their reliability and performance, which is described 

in the next section. 

2.1. Reliability and Performance Definitions for SCAs in WSNs 

The MSS behavior is characterized by its evolution in the space of states. Therefore, MSS reliability 

can be defined as its ability to remain in the acceptable state during the operation period. Since the 

system functioning is characterized by its output performance G(t) where t is time, the state 

acceptability depends on the value of this index. In some cases this dependency can be expressed by 

the acceptability function F(G(t)) that takes non-negative values if and only if the MSS functioning is 

acceptable. This takes place when the efficiency of the system functioning is completely determined by 

its internal state. 

Much more frequently, the system state acceptability depends on the relation between the MSS 

performance and the desired level of this performance (demand) that is determined outside of the 

system. In general, the demand W(t) is also a random process. It can take discrete values from the set  

w = {w1, …, wM}, which is a vector of user’s requirement rates wj, (j = 1, …, M). The desired relation 

between the system performance and the demand can also be expressed by the acceptability function 

F(G(t),W(t)). The acceptable system states correspond to F(G(t),W(t)) ≥ 0, and the unacceptable states 

correspond to F(G(t),W(t)) < 0. The last inequality defines the MSS failure criterion. In many practical 

cases, the MSS performance should exceed the demand. In such cases the acceptability function  

takes the form: 
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( ( ), ( )) ( ) ( )F G t W t G t W t= −  (1)

From the aspect of users, the reliability of SCAs in WSNs can be defined as the probability that its 

performance rates satisfy user’s requirements which is described as a vector pairs (w,q). Furthermore, 

q = {q1, q2, …, qM} is the vector of steady state probability qj = Pr{W = wj}, (j = 1, …, M) according to 

a certain user’s requirement rate, where W is a random variable that represents the performance rates of 

SCAs in WSNs. Based on the above definition, the reliability function of SCAs in WSNs under steady 

state can be defined as: 

( ) ( ) ( )( ){ }Pr 0 , 0 0fR t T t F G W= ≥ ≥
 (2)

where Tf is time to failure which is the time from the beginning of the system life up to the instant 

when the system enters the subset of unacceptable states the first time. Therefore, the reliability 

function R(t) is the probability that Tf is greater than or equal to the value t (t > 0), where in the initial 

state (at instant t = 0) MSS is in one of the acceptable states. Then, the reliability function R(t) under 

transient state can be defined as: 

( ) ( ) ( )( ){ }Pr , 0R t F G t W t= ≥
 (3)

where G(t) is the integral performance rates of SCAs in WSNs. In the interval [0, T], the reliability 

function RT of SCAs in WSNs can be defined as: 

( ) ( )( )( )
0

1
1 , 0

T

TR F G t W t dt
T

= ≥  (4)

Based on Equation (4), it can be seen that for the discrete random demand with PMF w = {w1, …, wM}, 

q = {q1, …, qM}, the reliability function of SCAs in WSNs under dynamically changing user’s 

requirements can be defined as: 

( ) ( )

( )( )
1

1 1

,

           1 , 0

M

m m
m

M K

m k k m
m k

R R w q

q p F g w

=

= =

=

= ≥



 

w q

 

(5)

According to Equation (5), the reliability and performance of SCAs in WSNs can be calculated 

based on the probability distribution of performance rates of component services, for example  

sub-services and ASs shown in Figure 2. In order to calculate the reliability and performance of SCAs 

in WSNs, we present the probability distribution representation of performance rates for any 

component service, which is described in the next section. 

2.2. Probability Distribution of Performance Rates for Any Component Service 

According to its performance rates, the component service j within a SCA in WSNs can be of  
kj kinds of various states, described by 1 2{ , , , }

jj j j jkg g g= g , where gji is the performance rate of 

component service j under the state i, i ∈  {1, 2, ..., kj}. Corresponding to the component service j,  

the performance rate Gj(t) in any time t ≥ 0 is a random variable that gets the value from gj: Gj(t) ∈  gj. 

The probability of performance rates of the component service j under various states in any time t can 
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be described as a set 1 2( ) { ( ), ( ), , ( )}
jj j j jkt p t g t g t= p , where pji(t) = Pr{Gj(t) = gji}. Because the component 

service j is in only one of kj kinds of various states in any time t, these states form a mutual exclusion 

events complete set. Therefore, Equation (6) is satisfied: 

( ) ( )
1

1, 0
jk

ji
i

p t t T
=

= ≤ ≤  (6)

In the end, the set of value pairs <gji, pji(t)> completely determines the probability distribution of 

performance rates corresponding to the component service j in any time t. Having the probability 

distribution of performance rates of all component services, the reliability and performance of the 

entire SCA can be calculated according to the composite structure by mapping the performance rates 

space of component services into that of the entire SCA. In order to achieve this mapping, the structure 

functions of performance rates are defined in the next section. 

2.3. Structure Function of Performance Rates for SCAs in WSNs 

The structure function of SCAs in WSNs can be defined as follows. Let Ln be the possible 

combinations of performance rates of all component services, and M = {g1, …, gk} be the possible 

values range of performance rates of SCAs in WSNs. Ln can be defined as: 

1 211 1 21 2 1{ , } { , } { , }
n

n
k k n nkg g g g g g= × × ×   L  (7)

For a SCA consisting of n ASs, the performance rates of the ASs unambiguously determine the 

performance rates of the SCA. These ASs have certain performance rates corresponding to their states 

in every moment. The states of this ASs determine that of the SCA. Assume that the SCA has  

K different states and that gi is the SCA performance rate in state i (i ∈  {0, ···, K−1}). The SCA 

performance rate is a random variable that takes values from the set {g1, ···, gK−1}. Then, the transform 

function ϕ(G1(t), …, Gn(t)): Ln→M, called as structure function, can map the performance rates space 

of component services into that of the entire SCA. Hence, the reliability model of SCAs in WSNs can 

be defined as gj, pj(t), 1 ≤ j ≤ n, ϕ(G1(t), …, Gn(t)). 

The structure function of SCAs in WSNs establishes a feasible way to calculate the reliability and 

performance of the entire SCA using those of component services. In order to efficiently calculate  

the reliability and performance by using a fast algebraic procedure, the UGF technique is introduced  

into our model. Based on UGF, the reliability and performance of SCAs in WSNs are defined in the  

next section. 

3. Reliability and Performance Definition Based on UGF 

In this paper, we choose the UGF technique to achieve high efficiency in calculating the reliability 

and performance of SCAs. The next section gives the reasons for selecting it. 

3.1. Advantage of UGF Technique 

In general, the methods of MSS reliability assessment are based on four different approaches [15]: 

(1) an extension of the Boolean models [28] to the multi-valued case; (2) the stochastic process 
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(mainly Markov [29] and semi-Markov) approach; (3) the Monte-Carlo simulation technique [30];  

(4) the UGF approach [31]. 

The approach based on the extension of Boolean models is historically the first method that was 

developed and applied for the MSS reliability evaluation. It is based on the natural expansion of the 

Boolean methods to the multi-state systems. 

The stochastic process methods that are widely used for the MSS reliability analysis are more 

universal. The methods can be applied only to relatively small MSSs because the number of system 

states increases dramatically with the increase in the number of system elements. 

Even though almost every real world MSS can be represented by the Monte-Carlo simulation for 

the reliability assessment, the main disadvantages of this approach are the time and expenses involved 

in the development and execution of the model. 

The computational burden is the crucial factor when one solves optimization problems where the 

reliability measures have to be evaluated for a great number of possible solutions along the search 

process. This makes the use of the first three methods have a problem in reliability optimization [32]. 

On the contrary, the UGF allows one to find the entire MSS performance distribution based on the 

performance distribution of its elements by using a fast algebraic procedure. The analysts can use the 

same recursive procedures for MSS with a different physical nature of performance and different types 

of element interaction [33]. Therefore, it is fast enough for dynamically changing SCAs in WSNs. 

The UGF generalizes the well-known ordinary generating function. Its basic ideas were introduced 

by Ushakov [34]. It has proved very convenient for numerical realization [35]. In addition,  

it requires relatively small computational resources for evaluating MSS reliability and performance 

indices. The advantages of UGF were analyzed in detail in [36], as well as its computational 

complexity. The efficiency of UGF was discussed in [37]. It has proved more accurate and efficient. 

Therefore, it can be used in complexes reliability and performance optimization problems. Because the 

relationships between the system state probability and the system output performance rates can be 

expressed definitely by UGF, and the UGF of system can be obtained by calculating those of 

components simply, UGF has proved to be an efficient reliability and performance assessment 

approach that is suitable to various MSS. 

The problem of system reliability and performance analysis usually includes evaluation of the 

probability mass function (PMF) of some random values characterizing the system’s behavior. These 

values can be very complex functions of a large number of random variables. The explicit derivation of 

such functions is an extremely complicated task. Fortunately, the UGF method for many types of 

system allows one to obtain the system u-function recursively. This property of the UGF method is 

based on the associative property of many functions used in reliability engineering. The recursive 

approach presumes obtaining u-functions of subsystems containing several basic elements, and then 

treating the subsystem as a single element with the u-function obtained when computing the u-function 

of a higher level subsystem. Combining the recursive approach with the simplification technique 

reduces the number of terms in the intermediate u-functions, and provides a drastic reduction of the 

computational burden. 

For the above reasons, we selected UGF technique to develop an efficient reliability and 

performance evaluation method for SCAs in WSNs. In order to express the u-functions of reliability 

and performance of SCAs in WSNs, their UGF definitions are proposed in the next section. 
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3.2. Reliability and Performance Definitions of SCAs in WSNs Based on UGF 

Based on the reliability and performance model presented in Section 2, the u-function of reliability 

of SCAs in WSNs can be defined according to [24]. The general form of definition as follows: 

The reliability of the entire SCA (or a component service within a SCA) in WSNs is a random 

variable X. According to the UGF technique, the probability distribution of performance can be 

obtained using a formal operator z that resembles the procedure of the product of polynomials. 

Therefore, its u-function can be defined as: 

( )
1

k

K
X

k
k

u z p z
=

= ⋅
 

(8)

where the discrete variable X has K possible values, pk is the reliability when X is in the performance 

state Xk. Based on this definition, the u-function of the reliability of the entire SCA (or one of its 

component services) in transient state can be expressed as: 

( ) ( )
1

, k

K
G

k
k

U t z p t z
=

= ⋅  (9)

Because U(z) relates the performance rates Gk with its state probabilities pk, it describes the 

probability distribution of reliability of SCAs (or a component service) in WSNs. Following this, in order 

to express other indices related to reliability, such as availability, output performance and unfinished 

performance, we define three performance operators based on the above u-function of reliability. 

(1) Availability operator δA: The availability operator δA is defined as the sum of all probabilities of 

system states satisfying the condition F(Gk, Wm) ≥ 0. It can be formulated as: 

( )( )

( )( )
1

1

, , = , ,

1 , 0

k

K
G

A m A k m
k

K

k k m
k

U z F W p z F W

p F G W

δ δ
=

=

 ⋅ 
 

= ⋅ ≥




 

(10)

(2) Output performance operator δG: The output performance operator δG is defined as the sum total 

of the products of each performance rate Gk and its corresponding state probability pk. It can be 

formulated as: ( )
1

δ (z)
K

G k kk
U p G

=
= ⋅ . 

(3) Unfinished performance operator δU: The unfinished performance operator δU is defined as the 

sum total of the products of un-acceptability (i.e., unfinished performance max{−F(Gk, Wm), 0}) and its 

corresponding state probability pk. It can be formulated as: 

( )( )

( ){ }
1

1

δ , , δ , ,

max , ,0

k

K
G

U m U k m
k

K

k k m
k

U z F W p z F W

p F G W

=

=

 = ⋅ 
 

= ⋅ −




 (11)

Based on the above performance operators, the three indices related reliability for SCAs (or a 

component service) in WSNs can be defined as follows: 

(1) Availability: The availability is a prediction about the ability of a SCA to perform its  

designated function with required performance. It is defined as the sum total of the products of  
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the steady state probability qm and its corresponding probability satisfying the condition F(Gk, Wm) ≥ 0, 

i.e., δA(U(z), F, Wm). It can be formulated as: 

( ) ( )( ) ( )( )
1 1 1

, δ , , 1 , 0
M M K

A A m A m m k k m
m m k

E E W q q U z F W q p F G W
= = =

 = = ⋅ = ⋅ ≥ 
 

    (12)

(2) Output performance expectation: The output performance expectation is a prediction about the 

quality of a future task-related behavior by a SCA in WSNs. It is defined the sum total of the products 

of each performance rate and its corresponding state probability. It can be calculated by the output 

performance operator δG: 

( )G
1

δ (z)
K

G k k
k

E U p G
=

= = ⋅  (13)

(3) Unfinished performance requirement: The unfinished performance requirement is a prediction 

about the risk of a SCA to perform its designated function without required performance. It is defined 

as the sum total of the products of the steady state probability qm and its corresponding probability 

unsatisfying the condition F(Gk, Wm) ≥ 0, i.e., δU(U(z), F, Wm). It can be formulated as: 

( ) ( )( )
1

, δ , ,
M

U m U m
m

E W q q U z F W
=

= ⋅  (14)

3.3. Composite Operators of Reliability and Performance Indices Based on UGF 

For a component based system, the overall reliability and performance are determined by all of its 

components. The UGF technique provides a fast route to obtain the overall reliability and performance 

from that of the various components. In order to achieve this goal, some composite operators are 

defined according to the system structure function f (X1, …, Xn) presented in Section 2.3. In other 

words, the properties of the composite operator strictly depend on the properties of the system 

structure function. Since the procedure of the multiplication of the probabilities in composite operators 

is commutative and associative, the entire operator can also possess these properties if the function 

possesses them. 

Based on the reliability and performance definition expressed by UGF for component services in 

Section 3.2, the u-function composite operators Ω can be designed for various reliability and 

performance indices in diverse patterns of services composition. By the Ω calculation, the overall 

system reliability and performance can be worked out based on those of all components. 

Since the procedure of the multiplication of the probabilities in composite operators is commutative 

and associative, two rules must be satisfied in the design of u-function composite operators Ω  

as follows: 

(1) Commutativity rule: The commutativity rule can be formulated as follows: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

1 1

, , , , ,

   , , , , ,

 

 
k k n

k k n

U z U z U z U z

U z U z U z U z

+

+

Ω

= Ω
 

(15)

(2) Associativity rule: The associativity rule can be formulated as follows: 
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+
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= Ω Ω Ω
 

(16)

According to the above design rules, the generic form of composite operators Ω can be expressed as: 

( ),, k lk l f G GG G
k l k l

k l k l

p z p z p p z
∀ ∀ ∀ ∀

 Ω ⋅ ⋅ = ⋅ ⋅ 
 
  

 
(17)

where f (Gk, Gl) can be defined according to the reliability and performance indices and composition 

structures of the SCAs in WSNs. Based on the UGF technique mentioned above, we propose an efficient 

reliability and performance optimization algorithm for WSN service systems in the next section. 

4. Reliability and Performance Optimization Algorithm for WSN Service Systems 

4.1. Architecture of WSN Service Systems with FT 

In order to assure the correctness of observed data, and improve the reliability of SCAs in WSNs, 

some redundant SNs are deployed in WSN service systems with FT. These redundant SNs compose 

some sensor clusters according to the observed objects, which is depicted in Figure 1. In other words, 

the SNs within the same cluster are responsible for the same observed object. From the perspective of 

the correctness of observed data, the redundant SNs should send the same observed data for the same 

observed object at the same observation time. 

In the architecture of WSN service systems with FT, the SNs within the same sensor cluster are 

controlled by the same cluster-sink. These cluster-sinks are responsible for receiving and checking the 

observed data from SNs within their clusters. In order to further reduce the energy consumption,  

n-version programming (NVP) is introduced into the check mechanism of cluster-sinks in the 

suggested architecture of WSN service systems with FT.  

From Figure 1, one can see that the topology of WSN service systems with FT is a star structure.  

At every moment, outside SNs (ASs) can be dynamically added to a cluster according to the  

actual needs without requiring configuration changes. Therefore, the star structure can help WSAs 

meet the scalability demands adequately. The management server lies in the center of the star topology, 

which controls the startup, initialization, distribution and recovery of the sinks, cluster-sinks and  

SNs dynamically. 

In this architecture, the sink is responsible for receiving the observed data from the cluster-sinks, 

and sending it to the management server through a gateway. From the perspective of data processing, the 

SNs can be considered as resources, because they provide the observed data of target objects to the 

WSN service system. 

The SB is the entrance of a WSN service system for the service requests from users. It is responsible 

for the mapping from the service requests to the SCAs in WSNs. Figure 2 illustrates this mapping 

process by the SB, which forms a tree structure with three levels respectively representing the SCAs 

with different abstract granularities. The top level represents the super-service corresponding to the 

service request from users; the middle level represents the sub-services composition generated by way 

of the mapping according to the business rules; the bottom level represents the ASs composition 

comprising the physical SN services in WSNs. 
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The services composition application (SCA) in WSNs consists of a set of ASs that should be executed 

by resources of different types (i.e., the SNs of different types). Therefore, when receiving a service 

request from a user the SB will allocate suitable resources, i.e., SNs, for the initiatory atom-service 

(AS) according to the observed object and the type of SNs, and execute this AS. Other ASs require 

outputs from preordered AS/ASs as inputs for their execution. The order of ASs’ execution is 

determined by the execution logics of the SCA in WSNs. When the results are returned from an AS or 

some ASs, the SB transforms them into the next ASs as their inputs according to the execution logics, 

and allocates suitable resources to execute them. When all of the ASs within a SCA in a WSN are 

fulfilled and the final result is returned, the service request is completely executed. In the end, the final 

result will be returned to the user by the SB. 
In order to simplify the complexity of the problem, we assume here each resource, i.e., SN, can 

process only a single AS at the same time when it is available. On the other hand, the same AS can be 

assigned to several resources of the same type, i.e., several SNs within the same sensor cluster, for 

parallel execution when there are multiple SNs responsible for the same observed object. Considering 

the reliability and efficiency, the SB usually allocates multiple SNs for each AS to execute it in parallel. 

For example, the ASs 1
atoms , 2

atoms , ..., 8
atoms  are respectively assigned to the SNs ω1 = {r1, r2, r3},  

ω2 = {r4, r5}, ω3 = {r6, r7}, ω4 = {r8, r9}, ω5 = {r10, r11, r12}, ω6 = {r13, r14, r15}, ω7 = {r16, r17, r18}, and 

ω8 = {r19, r20}, which is illustrated in Figure 3. In order to improve the reliability of WSN service 

systems, a FT model is introduced in the suggested architecture. When the first correct result 

corresponding to an AS is returned from one of the allocated SNs, the SB will make a mark for the 

finished AS, and cancel the execution of other SNs allocated to this AS. The detailed FT model and FT 

mechanism are proposed in the next section. 

 

Figure 3. Resource allocation for ASs by the SB. 
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4.2. FT Model in WSNs Service System 

For the convenient description in the latter, this section gives some notations listed in Table 1. 

Table 1. Notations. 

Notation Definition 

c cluster 

nc, Bc the number of functionally equivalent SNs in cluster c. 

i, j, y No. of sensor node in a cluster. 

rci estimated reliability of i-th sensor node in cluster c. 

τci constant observation time of i-th sensor node in cluster c. 

kc The cluster-sink sends one observed data to sink, if at least kc out of nc outputs agree. 

hc The total number of hardware units in cluster c. 

ac The availability of each hardware unit in cluster c. 

Hc The number of hardware units available in cluster c. 

Lc The number of SNs that can be executed simultaneously in cluster c. 

Tc The time used for the entire cluster-sink execution. 

T The random task execution time used for the entire SCA. 

w A maximal allowed system execution time used for the entire SCA. 

F(T,w) The system’s acceptability function 

R(w) The system’s reliability function 
ε( )w  The conditional expected system execution time 

Qc(x) The probabilities function of the number of SNs that can be simultaneously executed. 

tci(lc) The termination time for the SN i when there are lc SNs that can run simultaneously in cluster c. 
m1, m2, ..., 

cnm  The order of SNs corresponding to of their termination time. 

icms  The random binary variable representing the success of SN mi in cluster c. 

( )
icmu z  The PMF of the success of SN mi in cluster c. 

+
⊗  Composition operator over u-functions 

( , )cj cU z l  The PMF of the number of correct outputs in cluster c after the execution of a group of first j SNs. 

πjk The probability that the group of first j SNs produces k correct outputs. 

( , ( ))c cu z l x  The u-function representing the conditional PMF pcj(lc(x)), ( ( ))
jcm ct l x  

( )cU z  The u-function representing the PMF of the random value Tc. 

( )U z  The u-function ( )U z  representing the PMF of T. 

ˆ ( , )U z x  The u-function representing the conditional PMF of the system execution time T 

x*c The permutation of Bc different integer numbers ranging from 1 to Bc. 

yc The binary vector determining the subset of SNs selected for cluster c, yc = {yc1, …, 
ccBy }. 

ωcb The cost of SN b used in cluster c 

Ω The entire system cost 

Ω* The MAX allowable system cost 

It is assumed that nc functionally equivalent SNs are available for each cluster c in a WSN service 

system with FT. Each sensor node (SN) i has an estimated reliability rci and constant observation time 

τci (the time for sending and transferring data is neglected). Failures of SNs in each cluster are 
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statistically independent, as well as the total failures of the different clusters, because each SN runs 

independently on different hardware units. 

The check mechanism presumes that the different SNs in the same cluster send their observed data 

to the cluster-sink at first. Then, the cluster-sink compares received observation data with each other. 

The cluster-sink sends one observed data to sink, if at least kc out of nc outputs agree. Otherwise, the 

cluster-sink discards these received observation data and requires the SNs for next observation. 

The SNs in each cluster c run on parallel hardware units. The total number of hardware units is hc. 

The hardware units are independent and identical. The availability of each hardware unit is ac. The 

number Hc of hardware units available at the moment determines the amount of available 

computational resources and, therefore, the number Lc of SNs that can be executed simultaneously.  

In other words, Lc depends on Hc. No hardware unit can change its state during execution. 

The SNs in each cluster c start their execution in accordance with a predetermined order list.  

The Lc first SNs from the list start their execution simultaneously (at time zero). If the number of 

terminated SNs is less than kc, after termination of each SN a new SN from the list starts its execution 

immediately. If the number of terminated SNs is not less than kc, after termination of each SN the 

cluster-sink compares their outputs. If kc outputs are identical, the cluster-sink terminates all SNs that 

are still executed; otherwise a new SN from the list is executed immediately. 

If after termination of nc SNs the number of identical outputs is less than kc, the cluster-sink and the 

entire WSNs services system fail. 

In the case that cluster-sink sends the observed data to the sink successfully, the time Tc used for the 

entire cluster-sink execution is equal to the termination time of the SN that has produced the kc-th 

correct output (in most cases, the time needed by the cluster-sink to make the decision can be 

neglected). It can be seen that the cluster-sink execution time is a random variable depending on the 

reliability and the time used for the SNs’ execution and on the availability of the hardware units.  

We assume that if the cluster-sink fails to send the observed data to sink then its execution time is 

equal to infinity. 

The sum of the random execution time of each cluster-sink gives the random task execution time T 

for the entire SCA in WSNs. In order to estimate both the system’s reliability and its performance, 

different measures can be used, depending on the application. 

In a WSNs service system, the execution time of each task is of critical importance. Given the fixed 

mission time is T, the system’s acceptability function is defined as F(T,w) = 1(T < w), where w is a 

maximal allowed system execution time. The system’s reliability R(w) = E(F(T,w)) in this case is the 

probability that the correct output is produced in time less than w. therefore, the conditional expected 

system execution time can be defined as: 

( 1( ))
( )

( )

E T T w
w

R w
ε × <=  (18)

where ε( )w  is considered to be a measure of the system’s performance, which determines the SCA’s 

expected execution time given that the system does not fail. 
In a WSN service system, the system’s average productivity (the number of executed tasks) over a 

fixed mission time is of interest, the system’s acceptability function is defined as F(T) = 1(T < ∞), the 

system’s reliability is defined as the probability that it produces correct outputs regardless of the total 
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execution time (this index can be referred to as R(∞)), and the conditional expected system execution 

time ( )ε ∞  is considered to be a measure of the system’s performance. 

Considering the above FT mechanism, the following sections discuss the approach for calculating 

the reliability and performance of a WSN service system. 

4.2.1. Determining the Number of SNs that Can Be Simultaneously Executed 

The reliability and performance of a WSN service system are influenced by the number of SNs that 

can be executed simultaneously. This section discusses how to determine the PMF of the number of 

SNs that can be simultaneously executed. 

The number x of available hardware units in cluster c can vary from 0 to hc. Given that all of the 

units are identical and have availability ac, one can easily obtain the probabilities of the number of SNs 

that can be simultaneously executed, i.e., Qc(x) = Pr{Hc = x} for 0 ≤ x ≤ hc: 

( ) Pr{ } (1 ) cc h xx
c c c c

h
Q x H x a a

x
− 

= = = − 
   

(19)

The number x of available hardware units determines the number lc(x) of SNs that can be executed 

simultaneously. Therefore: 

Pr{ ( )} ( )c c cL l x Q x= =  (20)

Thus, the pairs < Qc(x), lc(x)> for 0 ≤ x ≤ hc determine the PMF of the discrete random value Lc. 

Having the PMF of the number of SNs that can be simultaneously executed, if the termination time of 

each SN can be calculated, the PMF of execution time for each SN can be determined. The next 

section presents the algorithm used for calculating the termination time of each sensor node. 

4.2.2. Determining the Termination Time of SN 

In each cluster c, a sequence where each SN starts its execution is defined by the numbers of SNs. 

This means that each SN i starts its execution not earlier than SNs 1, …, i−1 and not later than SNs  

i + 1, …, nc. If the number of SNs that can run simultaneously is lc then we can assume that the SNs 

run on lc independent processors. Let αm be the time when processor m terminates the execution of a  

SN and is ready to run the next SN from the list of not executed SNs. Having the execution time of 

each SN τci (1 ≤ i ≤ nc), one can obtain the termination time tci(lc) for each SN i using the following 

simple algorithm. 

Algorithm 1. Calculating the termination time tci(lc) for each SN. 

1. Assign α1 = ··· = αc = 0 (all of the units are ready to run the SNs at time 0). 
2. For i = 1, ···, nc repeat: 
2.1. Find any m (1 ≤ m ≤ lc): αm = min{α1, ···, 

cl
α } (m is the number of the earliest processor that is 

ready to run a new SN from the list). 
2.2. Obtain tci(lc) = αm + τci and assign αm = tci(lc) 

The time tci(lc) (1 ≤ i ≤ nc) corresponds to the intervals between the beginning of cluster execution 

and the moment when the SNs produce their outputs. Observe that the SNs that start execution earlier 



Sensors 2015, 15 28208 

 

 

can terminate later: j < y does not guarantee that tci(lc) ≤ tcy(lc). In order to obtain the sequence, in 

which the SNs produce their outputs, the termination time should be sorted in increasing order 

1 2
( ) ( ) ( )

nc
cm c cm c cm ct l t l t l≤ ≤ ≤  which gives the order of SNs m1, m2, …, 

cnm  corresponding to of their 

termination time. 
The ordered list m1, m2, …, 

cnm  determines the sequence of SN outputs in which they arrive at the 

cluster-sink. Now one can consider the cluster c as a system in which the nc SNs are executed consecutively 
according to the order 1 2, , ,

cnm m m  and produce their outputs at time 
1
( )cm ct l , 

2
( )cm ct l , …, ( )

nc
cm ct l . 

Based on the PMF of Lc, which can be obtained by Equations (19) and (20), and the PMF of ( )
jcm ct l , 

which can be derived by the algorithm in this section, the PMF of execution time for each SN can be 

determined. This provides a way to calculate the reliability and performance for each cluster and the 

entire system, which is presented in the next section. 

4.2.3. Determining the Reliability and Performance of Each Cluster and the Entire System 

Let 
icmr  be the reliability of the SN that produces i-th output in cluster c. In other words, 

icmr  is equal 

to the probability that this output is correct. Consider the probability that k out of n first SNs of cluster 

c succeed. Thus, this probability can be obtained as: 

1 2

1 2 1 11 2

1 2

1 1 11

(1 )
1 1 1

ii i k

i

k ki i ik

n n k n k n
cmcm cm

k cm
i i i i ii cm cm cm

rr r
R r

r r r
−

− + − +

= = + = +=

  
 = −  − − −    
  ∏ 

 
(21)

The cluster c produces the correct output directly after the end of the execution of j SNs (j ≥ kc) if 

the mj-th SN succeeds and exactly kc − 1 out of the first executed j − 1 SNs succeed. Thus, the 

probability of such event pcj(lc) is: 

11 2

1 2 1 21 2 1

1 21 1

1 1 1 11

( ) (1 )
1 1 1

c c
iki i c

j i

k ki i ic c kc

n k n kj j cmcm cm

cj c cm cm
i i i i ii cm cm cm

rr r
p l r r

r r r
−

− −

− + − +− −

= = + − = +=

    = −  − − −    
  ∏ 

 
(22)

Observe that pcj(lc) is the conditional probability that the cluster execution time is ( )
jcm ct l  given lc 

SNs can be executed simultaneously, which can be formulated as follows: 

( ) Pr{ ( ) | }
jcj c c cm c c cp l T t l L l= = =

 (23)

Having the PMF of Lc we can now obtain for 1 ≤ x ≤ hc: 

Pr{ ( ( ))}

Pr{ ( ( )) | ( )}Pr{ ( )}

( ( )) ( )

j

j

c cm c

c ck c c c c c

cj c c

T t l x

T t l x L l x L l x

p l x Q x

=

= = = =

=
 

(24)

Thus, the pairs ( ( )), ( ( )) ( )
jcm c cj c ct l x p l x Q x< > , obtained for 1 ≤ x ≤ hc and kc ≤ j ≤ nc, determine the 

PMF of SN execution time Tc. 
Since the events of successful cluster execution termination for different j and x are mutually 

exclusive, we can express the probability of cluster c success as: 

1

( ) Pr{ } ( ) ( ( ))
c c

c

h n

c c c cj c
x j k

R T Q x p l x
= =

 
∞ = < ∞ =  

 
  (25)
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Since failure of any cluster constitutes the failure of the entire system, the system’s reliability can be 

expressed as: 

1

( ) ( )
C

c
c

R R
=

∞ = ∞∏
 

(26)

From the PMF of execution time Tc for each cluster c, one can obtain the PMF of the execution time 

of the entire system, which is equal to the sum of the execution time of clusters: 

1

C

c
c

T T
=

=
 

(27)

Having the PMF of the execution time of the entire system, we can evaluate the reliability and 

performance of a SCA in a WSN based on UGF. On this basis, we can embed this evaluation 

algorithm in a GA framework for optimizing the system reliability and performance. The optimization 

of the reliability and performance for SCAs in WSNs based on the UGF technique and GA framework 

is proposed in the next section. 

4.3. Optimizing the Reliability and Performance for SCAs in WSNs 

4.3.1. Evaluating the Execution Time Distribution of Clusters 

In order to obtain the execution time distribution for a cluster c for a given lc in the form pcj(lc), 
( )

jcm ct l  (kc ≤ j ≤ nc), one can determine the realizations ( )
jcm ct l  of the execution time Tc(lc) using the 

Algorithm 1 presented in Section 4.2.2 and the corresponding probabilities pcj(lc) using Equation (26). 

However, the probabilities pcj(lc) can be obtained in a much simpler way using Algorithm 2 based on 

the UGF technique which allows one to find the performance distribution of the entire system based on 

ones of its elements by using a fast algebraic procedure. 

Algorithm 2. Evaluating the probability distribution pcj(lc) of execution time of clusters. 
1. For the given lc, determine the order of sensor node termination m1, m2, …, 

cnm  using Algorithm  

2. Determine the u-function of each sensor node of cluster c according to Equation (24). 
3. Define Uc0(z, lc) = 1. For k < kc − nc + j: 
3.1. Obtain Ucj(z, lc) using Equation (26) and, after collecting like terms, represent it in the form  

of Equation (27). 
3.2. Remove Ucj(z, lc) from all the terms πjkzk For which j = 1, 2, ···, nc. 
3.3. If j ≥ kc, assign: pcj(lc) = π

cjk  and remove term π c

c

k
jk z  from Ucj(z, lc). 

Let the random binary variable 
icms  be an indicator of the success of SN mi in cluster c, such that 

icms = 1 if the SN produces the correct output; and 
icms = 0 if it produces the wrong output. The PMF of 

icms  can be represented by the following u-function: 

1 0( ) (1 )
i i icm cm cmu z r z r z= + −

 (28)

It can be easily seen that using the operator 
+
⊗  we can obtain the u-function: 

( )( , ) ( ), , ( )
i jcj c cm cmU z l u z u z

+
= ⊗  (29)
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that represents the PMF of the number of correct outputs in cluster c after the execution of a group of 
first j SNs (the order of elements m1, m2, …, 

cnm  and, therefore, Ucj(z, lc) depend on lc). Indeed, the 

resulting polynomial relates the probabilities of combinations of correct and wrong outputs (the product 

of the corresponding probabilities) with the number of correct outputs in these combinations (the sum 

of success indicators). Observe that after collecting the like terms (corresponding to obtaining the 

overall probability of a different combination with the same number of correct outputs) Ucj(z, lc)  

takes the form: 

0

( , )
j

k
cj c jk

k

U z l z
=

=π
 

(30)

where πjk is the probability that the group of first j SNs produces k correct outputs. 

Note that Ucj(z, lc) can be obtained by using the recurrent expression: 

1 0
1( , ) ( , ) (1 )

j jcj c cj c cm cmU z l U z l r z r z− +
 = ⊗ + −   (31)

According to its definition, pcj(lc) is the probability that the group of first j SNs produces kc correct 

outputs and the group of first j − 1 SNs produces kc − 1 correct outputs, given that lc SNs can be executed 
simultaneously. The coefficient 

cjkπ  in polynomial Ucj(z, lc) is equal to the conditional probability that 

the group of first j SNs produces kc correct outputs given that lc SNs can be executed simultaneously. 
In order to let the coefficient 

cjkπ  in polynomial Ucj(z, lc) be equal to pcj(lc), the term with the 

exponent equal to kc should be removed from Ucj−1(z, lc) before applying Equation (31) (excluding the 

combination in which j − 1 first SNs produce kc correct outputs while the mj-th SN fails). 
If after the execution of j first SNs the number of correct outputs produced is k and k + nc − j < kc 

then the required number of correct outputs kc cannot be obtained even if all the nc − j subsequent SNs 

produce correct outputs. Therefore, the terms πjkzk with k < kc − nc + j can be removed from Ucj(z, lc). 

The above considerations lie at the base of Algorithm 2 for determining all of the probabilities pcj(lc) 

(kc ≤ j ≤ nc). Having the execution time distribution of each cluster, we can further evaluate that of the 

entire system, which is proposed in the next section. 

4.3.2. Evaluating the Execution Time Distribution of the Entire System 

Having the pairs ( ( )), ( ( ))
jcj c cm cp l x t l x< >  for each possible realization lc(x) of Lc (1 ≤ x ≤ hc)  

and probabilities Pr{Lc = lc(x)} = Qc(x), one can obtain the PMF of random execution time Tc for  
each cluster by applying Equation (24). If the conditional PMF pcj(lc(x)), ( ( ))

jcm ct l x  are represented  

by the u-function: 

( ( ))
( , ( )) ( ( ))

c
cm cj

c

n
t l x

c c cj c
j k

u z l x p l x z
=

= 
 

(32)

then the u-function representing the PMF of the random value Tc takes the form: 

1

( ) ( ) ( , ( ))
ch

c c c c
x

U z Q x u z l x
=

= 
 

(33)

Since the random system execution time T is equal to the sum of the execution time of all of the  

C clusters, one can obtain the u-function ( )U z  representing the PMF of T as: 
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11

( ) ( ), , ( ) ( ( ) ( , ( )))
chC

C c c c
xc

U z U z U z Q x u z l x
+ ==

= ⊗ = ∏   
 

(34)

4.3.3. Evaluating the Different Clusters Consecutively Executed on the Same Hardware 

Now consider the case where all of the clusters are consecutively executed on the same hardware 

consisting of h parallel identical modules with the availability a. The number of available parallel 

hardware modules H is random with PMF Q(x) = Pr{H = x}, 1 ≤ x ≤ h, defined in the same way as in 

Equation (27). 

When H = x, the number of SNs that can be executed simultaneously in each cluster c is lc(x). The 

u-functions representing the PMF of the corresponding cluster execution time Tc are ( , ( ))c cu z l x  defined 

by Equation (32). The u-function ˆ ( , )U z x  representing the conditional PMF of the system execution 

time T (given the number of available hardware modules is x) can be obtained for any x (1 ≤ x ≤ h) as: 

( )1 1
1

ˆ ( , ) ( , ( )), , ( , ( )) ( , ( ))
C

C C c c
c

U z x u z l x u z l x u z l x
+ =

= ⊗ = ∏  
 

(35)

Having the PMF of the random value H, we obtain the u-function ( )U z  representing the PMF  

of T as: 

1

ˆ( ) ( ) ( , )
H

x

U z Q x U z x
=

= (36)

4.3.4. Optimizing the Structure of SCAs in WSNs 

When a SCA with FT in WSNs is designed, one has to select SNs for each cluster and find the 

sequence of their execution in order to achieve the greatest system reliability subject to cost 

constraints. The SNs are selected from a list of the available products. Each SN can be characterized 

by its reliability, execution time, and cost. The total cost of the system is defined according to the  

cost of its SNs. For each SN, its cost may be a purchase cost (if the SN or its data observation is 

provided by a commercial service). It also may be a comprehensive cost based on the SN’s size, 

complexity, and performance. 
Assume that Bc functionally equivalent SNs are available for each cluster c and that the number  

kc of the SNs that should agree in each cluster is predetermined. The choice of the SNs and the 

sequence of their execution in each cluster determine the system’s entire reliability and performance. 

The permutation x*c of Bc different integer numbers ranging from 1 to Bc determines the order of  

the SN that can be used in cluster c. Let ycb = 1 if the SN b is selected to be included in cluster c and  
ycb = 0 otherwise. The binary vector yc = {yc1, …, 

ccBy } determines the subset of SNs selected for 

cluster c. Having the vectors x*c and yc one can determine the execution order xc of the SNs selected 

by removing from x*c any number b for which ycb = 0. The total number of SNs in cluster c (equal to 

the length of vector yc after removing the unchosen SNs) is determined as: 

1

cB

c cb
b

n y
=

=
 

(37)
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The system structure optimization problem can now be formulated as find vectors xc for 1 ≤ c ≤ C 

that maximize R(w) subject to the cost constraint: 

1

*
c

C

cb
c b= ∈

Ω = ≤ Ωω
x  

(38)

where ωcb is the cost of SN b used in cluster c, Ω is the entire system cost and Ω* is the MAX 

allowable system cost. Note that the length of vectors xc can vary depending on the number of SNs  

that are selected. 

In order to encode the variable-length vectors xc in the GA using the constant length integer  

strings one can use (Bc + 1) − length strings containing permutations of numbers 1, …, Bc, Bc + 1.  

The numbers that appear before Bc + 1 determine the vector xc. For example, for Bc = 5 the 

permutations (2,3,6,5,1,4) and (3,1,5,4,2,6) correspond to xc = (2,3) and xc = (3,1,5,4,2), respectively. 

Any possible vector xc can be represented by the corresponding integer substring containing the 

permutation of Bc + 1 numbers. By combining C substrings corresponding to different clusters one 

obtains the integer string a, that encodes the entire system structure. 

The encoding method is used in which the single permutation defines the sequences of  

the SNs selected in each of the C clusters. The solution encoding string is a permutation of 

1
( 1)

C

cc
n B

=
= +  integer numbers ranging from 1 to n. Each number j belonging to the interval 

1

1 1
( 1) 1 ( 1)

m m

c cc c
B j B

−

= =
+ + ≤ ≤ +   corresponds to SN 

1

1
( 1)

m

cc
j B

−

=
− +  of cluster m. The relative order in 

which the numbers corresponding to the SNs of the same cluster appear in the string determines the 

structure of this cluster. 

In order to examine the feasibility of our algorithm for SCAs with FT in WSNs, some experiments 

have been performed, which are presented in the next section. 

5. Experiments and Analysis 

Consider a SCA with FT in a WSN, which consists of five clusters running on fully available 

hardware. The parameters of the SNs that can be used in these clusters are described in Table 2.  

From this table, one can see that there are six SNs in cluster 1, five SNs in cluster 2, eight SNs  

in cluster 3, four SNs in cluster 4, and five SNs in cluster 5. This table contains the values of Lc and kc 

for each cluster and the execution time τ, cost c, and reliability r for each sensor node. 

Table 2. Parameters of clusters and sensor nodes. 

No. of Cluster Lc kc Indices
No. of Sensor Nodes in Each Cluster 

1 2 3 4 5 6 7 8 

1 3 4 
τ 17 12 9 32 10 55 - - 
c 5 7 10 9 8 4 - - 
r 0.82 0.80 0.97 0.92 0.94 0.88 - - 

2 3 3 
τ 27 38 22 41 47 - - - 
c 10 9 12 4 7 - - - 
r 0.81 0.89 0.95 0.88 0.94 - - - 
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Table 2. Cont. 

No. of Cluster Lc kc Indices
No. of Sensor Nodes in Each Cluster 

1 2 3 4 5 6 7 8 

3 5 6 

τ 17 22 36 25 15 39 29 43 
         
c 9 2 14 7 10 8 15 13 
r 0.91 0.80 0.96 0.88 0.93 0.95 0.97 0.97

4 3 3 
τ 7 5 10 22 - - - - 
c 5 8 9 10 - - - - 
r 0.75 0.85 0.93 0.97 - - - - 

5 2 4 
τ 25 15 13 27 48 - - - 
c 4 8 12 7 10 - - - 
r 0.87 0.85 0.96 0.90 0.98 - - - 

5.1. Experimental Environment 

In order to investigate the efficiency and performance of the suggested algorithm, we have developed 

a parallel GA program based on MATLAB® Distributed Computing Server (MDCS) (The MathWorks, 

Inc., Natick, MA, USA) and Parallel Computing Toolbox (PCT) (The MathWorks, Inc., Natick, MA, 

USA). A cloud computing platform based on IBM PureFlex® cluster with six blade servers was used 

for this in-depth experimental analysis. In this cloud computing platform, eighteen virtual machines 

have been built for searching optimal solution in parallel in our GA program, which is shown as Figure 4. 

 

Figure 4. Cloud computing platform for the suggested algorithm execution in parallel. 

We built 16 parallel process nodes (named worker in PCT), 1 MDCS node, and 1 master node on  

18 virtual machines. The 16 worker nodes undertake the parallel computing of the UGF of each SN, 

each cluster and the entire SCA, such as Algorithm 1 and Algorithm 2. The MDCS node is responsible 

for assigning computing tasks to each worker node and receiving their calculation results. The master 

node implements the establishment of the input data and the process control of the parallel computing. 
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Based on the above experiment platform, we compared and analyzed the dependencies among the 

optimal reliability, the given expected execution time, and the MAX allowable system cost, as well as 

the robustness of the suggested algorithm, which are described in the following sections. 

5.2. Experimental Analysis 

In order to investigate the change of reliability R(w*) of a SCA in WSNs along with the given 

expected execution time w* under some given cost constraints Ω*, a set of experiments was designed. 

In suggested GA algorithm, the population size is set to 500 chromosomes. The max generation is set 

to 100. The size of the optimal chromosome pool is dynamically increased from 0.5% to 5% of 

population size with the increase in the number of generations. The crossover probability is set to 0.7. 

The variation probability is set to 0.3. The penalty factor of reliability is set to 100. The number of 

repeated experiments is set to 30. A set of experiments were performed, which observe the searching 

process for the reliability function R(w*) along with along with the execution time w under the  

two given expected execution time (i.e., w* = 250 and w* = 300) and the given cost constraints  

(i.e., Ω* = 160, Ω* = 140, Ω* = 120 and Ω* = 100), respectively. 
Given two expected execution time (w* = 250 and w* = 300), two sets of solutions were obtained 

using the suggested algorithm, which are described in Table 2. For each value of w*, four different 

solutions (i.e., the optimal execution sequences of SNs), were obtained for the four given cost 

constraints (Ω* = 160, Ω* = 140, Ω* = 120 and Ω* = 100). The tables contain the minimal possible 

system execution time Tmin, maximal possible system execution time Tmax, the system cost Ω and 

reliability R(w*) for each solution, the expected conditional execution time ε( )∞ , and the 

corresponding execution sequences of the selected SNs. 

Under each constant constraint on the MAX allowable system cost Ω*, the change trend of the total 

system cost Ω and the optimal reliability R(w*) was investigated along with the execution time w. 

Comparing the total system cost Ω and the reliability R(w*) of the optimal solutions corresponding to 

w* = 250 and w* = 300 in Table 2, it can be seen that the total system cost Ω and the reliability R(w*) 

of the optimal solution corresponding to w* = 300 is always equal or greater than ones corresponding 

to w* = 250 in the case of the same value of Ω*.  

Furthermore, under the given expected execution time w*, the change trend of the optimal 

reliability R(w*) was investigated along with the MAX allowable system cost Ω*. The optimal R(w*) 

has been found for Ω* changes from 100 to 160 with a constant incremental change of 20. Comparing 

the total system cost Ω and the reliability R(w*) of the optimal solutions corresponding to four 

different MAX allowable system costs in Table 3, it can be seen that the total system cost Ω and the 

reliability R(w*) of the optimal solution corresponding to larger Ω* is always equal or greater than 

ones corresponding to smaller Ω* in the case of the same value of w. From Table 2, it can also be seen 

that the system reliability gradually become greater along with the growth of the value of Ω*. 

Furthermore, the relationship between reliability and cost is investigated. The cost-reliability curves 

with alterations in the cost Ω from 80 to 240 under the two given expected execution time w* = 250 

and w* = 300 by user are presented in Figure 5. Each point on these curves corresponds to the best 

solution obtained by the suggested algorithm. It can be seen that the greater the reliability level 

achieved, the greater the cost of further reliability improvement. In other words, for a greater reliability 
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level, more SNs are need. From the designer’s perspective, he or she can intuitively find out the points 

which meet the requirements of reliability in Figure 5. Therefore, the corresponding cost can be found. 

On this basis, the decision on the reasonable quantity of SNs can be made. By this method, the 

structure of a WSN service application system can be further optimized under the condition satisfying 

the reliability requirements. 

Table 3. Parameters of solutions obtained for w* = 250 and w* = 300. 

w* Ω* Execution Sequence of SNs x* Tmin Tmax Ω ( )ε ∞  R(250) 

250 

160 6435|352|316875|423|5317 181 289 160 197.25 0.901 

140 2316|345|426175|213|2451 173 274 127 215.68 0.847 

120 4612|415|432156|241|2341 218 257 118 239.73 0.764 

100 6152|452|852164|213|2541 199 238 97 248.41 0.692 

300 

160 6435|352|316875|423|3751 289 317 158 222.27 0.931 

140 3162|354|542761|231|2451 257 277 132 239.44 0.861 

120 1642|145|164325|241|4123 263 243 114 247.68 0.819 

100 2615|425|154268|213|5241 205 231 100 256.43 0.753 

 

Figure 5. The cost-reliability curves with alterations in the cost from 80 to 240 under the 

two expected execution times w* = 250 and w* = 300 given by user. 

In addition, under each constant constraint on the MAX allowable system cost Ω*, the change trend 

of the reliability function R(w*) was investigated along with the execution time w. The curves of the 

values of reliability function R(w*) for the execution time w change from 160 to 310 under four 

constraints on the MAX allowable system costs and two given expected execution time w* = 250 and 

w* = 300 by user are shown in Figures 6 and 7, respectively. It can been seen that the values of 

reliability function R(w*) improve gradually along with the growth of w. 

In order to investigate the relationship of the constraints on the MAX allowable system cost Ω* and 

the expected execution time w* in the combining effects on the system reliability of feasible solutions, 

the above experimental results are shown in the form of 3D image in Figures 8 and 9, respectively. 

From these figures, one can see that the constraint on the MAX allowable system cost Ω* and the 

expected execution time w* influence the system reliability of feasible solutions, while the constraint 

on the MAX allowable system cost Ω* plays a more important role in the increase of the system 

reliability of feasible solutions than the expected execution time w*. 
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Figure 6. Change of the values of reliability function R(w*) along with the execution time 

w under the given expected execution time w* = 250. 

 

Figure 7. Change of the values of reliability function R(w*) along with the execution time 

w under the given expected execution time w* = 300. 
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Figure 8. The values of reliability function R(w*) with alterations in the execution time w 

from 160 to 310 and in the given cost constraint Ω* from 100 to 160 under the given 

expected execution time w* = 250. 

 

Figure 9. The values of reliability function R(w*) with alterations in the execution time w 

from 160 to 310 and in the given cost constraint Ω* from 100 to 160 under the given 

expected execution time w* = 300. 

The above experimental analysis indicates that the selection of suitable Ω* and w* is helpful to 

improve the reliability of SCAs in WSNs and to cut down their cost. In the next section we present a 

distinct approach to selecting the most suitable Ω* and w* for the designers of SCAs in WSNs. 

In order to investigate the scalability of the proposed algorithms, we completed a series of 

experiments on the above cloud computing platform along with the number of clusters in a SCA 

system growing from 10 to 50 with a step growth of 5. Each cluster randomly contains 8 to 10 SNs.  

The Lc of each cluster is set to a random number ranging from 4 to 8. The Kc of each cluster is set to a 

random number from 6 to 8. The execution time τ of each SN is set to a random number from 10 to 50.  

The cost c of each SN is set to a random number from 3 to 10. The reliability r of each SN is set to a 

random number from 0.80 to 0.99. The parameters of GA program are set in the same as the 
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experiment above. By inserting a pair of timers in the GA program, the exact algorithm execution time 

(not including data preparation time and task allocation time) is obtained. For each a number of 

clusters, we ran the GA program 20 times, and calculated the mean algorithm execution time for each a 

number of clusters. Figure 10 shows the changes of mean algorithm execution time along with the 

number of clusters increased from 10 to 50. 

 

Figure 10. Algorithm execution time along with the number of clusters growing from 10 to 50. 

From Figure 10 one can see that the algorithm execution time gradually rises as the number of 

clusters is increased. In the two separate stages that the number of clusters increased from 10 to 30 and 

from 35 to 50, the algorithm execution time grows slowly (for ease of description, these two stages are 

referred to as the first Slow Growth Stage and the second Slow Growth Stage). However, in the stages 

that the number of clusters increased from 30 to 35, the algorithm execution time grows fast (for ease of 

description, this stage is referred to as the Fast Growth Stage). Through investigating the parallel task 

allocation by MDCS node, we found that in the first Slow Growth Stage the computing tasks of each 

worker node were not blocked in the task queue. It indicates that the computational load of each 

worker node is appropriate. All computing tasks assigned to every worker node can be fulfilled 

sequentially without waiting. However, in the Fast Growth Stage congestion began to appear in the 

task queues of worker nodes as the number of clusters increased sequentially. The computing tasks of 

worker nodes must wait for the completion of those tasks in front of them, which results a fast growth 

of the algorithm execution time. After this, with the continued increase in the number of clusters the 

execution of the algorithm has entered a new stage—the second Slow Growth Stage due to the load 

balancing generated by 16 worker nodes. Based on the above analysis, we can see from the two Slow 

Growth Stages that the proposed algorithm showed good scalability. 

5.3. A Distinct Approach to Selecting the Most Suitable Ω* and w* 

In order to help designers of SCAs in WSNs to select the most suitable Ω* and w*, the curves of the 

values of reliability function R(w*) under two constant cost constraints w* = 250 and w* = 300 for the 

expected execution time w* change from 160 to 310 are shown in Figure 11. 
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Figure 11. The values of reliability function R(w*) with changes in the execution time w 

from 160 to 310 under the given cost constraint on Ω* with changes from 100 to 160 and 

on the two given expected execution times (w* = 250 and w* = 300). 

On the basis of the experimental analysis in the previous section, we present a distinct solution 

method for the designers of SCAs in WSNs to select the most suitable Ω* and w* based on Figure 9. 

For a reliability requirement from a user perspective, we can draw a horizontal auxiliary line according 

to the given value of reliability requirement R*. The intersection between the horizontal auxiliary line 

and the reliability curves forms multiple shadowed areas. The points falling into the shadow areas 

represent the feasible solutions subject to R(w*) ≥ R*. From Figure 9, one can see that not all curves of 

reliability function R(w*) intersect the horizontal auxiliary line. This indicates that only part of 

solutions meet the given reliability requirement in this example. Specifically, there are five sets of  

Ω* and w* suitable for the given reliability requirement, i.e., (w* = 250 and Ω* = 160), (w* = 250 and 

Ω* = 140), (w* = 300 and Ω* = 160), (w* = 300 and Ω* = 140) and, (w* = 300 and Ω* = 120). 

Obviously, the set of Ω* and w* (w* = 300 and Ω* = 120) is the most suitable for the users who are 

more concerned about cost. On the contrary, the set of Ω* and w* (w* = 250 and Ω* = 140) is the  

most suitable for the users who are more concerned about system performance. In addition, one can 

see that the reliability corresponding to the set of Ω* and w* (w* = 300 and Ω* = 160) is higher than 

other when w > 240. Therefore, it is the most suitable for the users who are more concerned about 

system reliability. 

Using the approach suggested above designers can easily find which sets of Ω* and w* can meet the 

reliability requirements of users. Furthermore, designers can easily find the most suitable set of Ω* and 

w* for different types of users. 

In order to better display the efficiency of the suggested algorithm, the selection for the most 

suitable Ω* and w* is shown in the form of a 3D image in Figures 12 and 13, respectively. Unlike  

Figure 11, the reliability requirement R* is not a horizontal auxiliary line but rather an auxiliary plane. 

The auxiliary plane intersects the surface of the system reliability in Figures 8 and 9, respectively. The 

most suitable Ω* and w* are located on the secant formed by the auxiliary plane and the surface of the 
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system reliability. After carefully balancing the cost and the execution time, the designers can find 

which sets of Ω* and w* can meet the reliability requirements of users. 

 

Figure 12. The selection for the most suitable Ω* and w* with alterations in the execution 

time w from 160 to 310 and in the given cost constraint Ω* from 100 to 160 under the 

given expected execution time w* = 250. 

 

Figure 13. The selection for the most suitable Ω* and w* with alterations in the execution 

time w from 160 to 310 and in the given cost constraint Ω* from 100 to 160 under the 

given expected execution time w* = 300. 

Generally, based on the most suitable set of Ω* and w* that are found by the suggested approach, 

the optimal structure of SCAs with fault-tolerant in WSNs, i.e., the SNs in each cluster as well as their 

execution sequence, can be found using the suggested algorithms, which can provide as high as 

possible system reliability and performance under a given cost constraint proposed by users. 

The suggested algorithms and approach presented in this paper can be easily realized by software. 

Furthermore, it has high enough efficiency because a fast algebraic procedure is used for finding the 

performance distribution of the entire WSN service system based on those of SNs on which the WSN 

service is running, therefore, it can also be used in online optimization situations. 
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6. Conclusions 

Traditional reliability and performance optimization methods, such as the Markov model and state 

space analysis, have some defects such as being too time-consuming, facility for causing state space 

explosions and unsatisfactory assumptions of component execution independence, therefore they are 

inapplicable to the ever-changing SCAs in WSNs. In this paper, a novel reliability and performance 

optimization model based on MSS for WSN services systems is proposed, which eliminates the 

limitation for component execution independence, and fits better the actual execution of SCAs in 

WSNs. Based on UGF and GA, an efficient optimization algorithm for the reliability and performance 

of SCAs with fault tolerance in WSNs is presented, which eliminates the risk of state space explosion, 

and provides the system with as high reliability and performance as possible under a given cost 

constraint proposed by users. The suggested algorithms and approach presented in this paper can be 

used in the optimization for the reliability and performance of SCAs in WSNs both at the design and 

the execution phase. 
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