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Abstract: A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by
using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the
performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS)
technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness
is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced
Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser
dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy.
Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and
absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate
parameters and a detection limit of 10´6 M is established.
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1. Introduction

Surface-enhanced Raman scattering (SERS) spectroscopy is a powerful trace detection technique
for chemical sensing. It has been shown that the technique can detect and identify single
molecules [1,2]. The SERS technique measures the vibrational frequencies of functional chemical
bonds in Raman-active molecules. In order to achieve surface enhanced Raman signals, the
shape and the arrangement of metal nanostructures on the SERS substrate play a significant role.
Surface enhancement of Raman scattering signals occurs when the excitation light frequency is
resonant with the local surface plasmon resonance frequency of the metal nanostructures on the
SERS substrates. For SERS-based sensors, most substrates are fabricated by photo-lithography or
e-beam lithography. Despite its increasing application and numerous recent SERS investigations
reporting an enhancement factor (EF) in the range of 1012–1015, the technique still suffers from lack of
reproducibility and high cost of fabrication of the SERS substrates. To overcome this, in recent years,
many studies have been conducted to develop alternate cost effective SERS substrates using wide
range of materials, surface morphology, and fabrication techniques. Some of the substrates and the
fabrication techniques include gold-coated nanorod arrays fabricated by depositing silicon nanorod
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arrays onto a silicon and a glass substrate [3], self-assembled gold and silver nanorod arrays [4],
nanostructured macroporous silicon substrates [5], arrays of gold nanoparticles and nanotriangles [6],
silver-plated porous silicon [7], and ZnO/Au composite nanoarrays [8].

In this work, we use gold coated nanoporous anodic aluminum oxide (NAAO) substrates
for SERS chemical sensors. The high density NAAO membranes fabricated using inexpensive
non-lithographic method [9,10] are biocompatible [11,12], mechanically robust [9] and can be
produced with uniform inter-pore distances [13] in pore sizes ranging between 5–400 nm [14], having
a thickness of 100 µm. Due to these benefits, the potential applications of NAAO membranes as
an optical, chemical and biosensing platform and devices is widely investigated [15–19]. In our
previous work [20], we used a single gold film-thickness of 62 nm on three substrates with pore-size
of 35, 80 and 150 nm. A later conference proceeding [21] described preliminary work with four
different gold-film thicknesses on a single substrate of 35 nm pore size. The work presented here
is substantially more comprehensive where nine different gold-film thicknesses are investigated on
substrates with six different pore sizes.

To investigate the effect of gold film thickness on the sensitivity of localized surface plasmon
(LSP) enhanced Raman scattering, SERS measurements are made using low concentrations of
Rhodamine 6G (Rh6G) dye solution in water and adsorbed on the surface of the gold coated NAAO
substrate. The primary motivation for this work is to characterize the novel substrates. Rh6G dye is
Raman active molecule widely used for SERS, including single molecule study [2]. Here, the SERS
enhancement is attributed to the interaction of LSP with the Rh6G dye deposited on the gold coated
NAAO SERS substrates. The plasmonic resonance effect mainly depends on the surface profile of
the nanostructure, including the size, shape, and the type of metal used for coating the NAAO
SERS substrates [20,22]. More recently, the application of SERS for detection of melamine in milk
using gold nanoparticles due to selective binding of melamine with nanoparticles was demonstrated.
Signal enhancement for detection of adulterants as low as 0.012 mM is demonstrated [23–25].
The rapidity, requirements of minimal to none sample preparation, non-destructivity and sensitivity
in detecting samples through transparent containers makes Raman spectroscopy an ideal technique
for investigation of food adulterations [25].

2. Experimental Section

The NAAO substrates are commercially produced by non-lithographic technique [9]. All the
substrates are 10 ˆ 10 mm in dimension, 100 µm thick, and the pore diameters are 18, 35, 55, 80,
100 and 150 nm. For the 18, 35, and 55 nm sizes, the pore densities are 6 ˆ 1010, 1010, 6 ˆ 109 cm´2

respectively, and pore periods are 44, 94, and 143 nm respectively. The pore-density and pore-period
values for 80, 100 and 150 nm pore size substrates are 2 ˆ 109 cm´2 and 243 nm respectively [9].
It is well documented in literature that, under the same conditions of SERS measurements, silver
provides a better enhancement of Raman scattering signal than gold. However, gold is biologically
inert. It is chemically and environmentally a more stable plasmonic material than silver [26,27].
In order to make these substrates SERS active, the membranes are coated with gold film thicknesses
ranging from 30 nm to 120 nm with a sputtering system, Denton Discovery 18. Base pressure of
the chamber is 5 ˆ 10´6 Torr. Deposition rate is 0.389 nm per second with 5 ˆ 10´3 Torr argon
pressure and 200 Watt DC power. We have seen that the substrates coated with gold layer remain
unaffected for several months. While silver is known to provide a slight improvement in SERS
efficiency, gold-coated substrates were used in this work for the following reasons: (1) the surface
plasmon resonance for silver is generally at shorter wavelengths compared to gold [27–29] and so it
will be less suitable for the 785 nm laser used in this work; (2) silver films oxidize relatively easier
than gold and so has a more limited lifetime [26,27].

The chemical used to demonstrate SERS is low concentration solution of Rh6G dye
(Eastman Kodak) purchased in powder form. The typical concentration of the Rh6G dye used for
SERS study is 8 ˆ 10´5 M in water-based solution. This is the lowest concentration which was
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detected using the different nanopore substrates coated with gold film thicknesses ranging from
30 nm to 120 nm. A small droplet (20 µL) of diluted Rh6G dye solution was pipetted onto gold
coated NAAO SERS substrates and allowed to air-dry. Results for a signal integration time of 3 s are
reported here.

USB 2000 UV-VIS-ES spectrometer integrated with DH-2000 UV-VIS-NIR Deuterium-Halogen
lamp, (Ocean Optics, Dunedin, FL, USA) are used to study the reflectance and transmittance of
the NAAO substrates before and after gold coating. The SERS measurements are collected using
785 nm laser from Enwave Optronics Raman system. The details of the experimental setup for optical
characterization and SERS measurements are described elsewhere [20,21]. The SERS substrates with
the adsorbed chemical were placed at an optimum distance of 7 mm from the probe. The SERS signals
from Rh6G dye on the gold-coated NAAO are integrated over time periods ranging between 1 s to
2 min. However, the SERS measurements presented in this paper are recorded for integration time of 3 s.

3. Results and Discussion

This study provides a methodology to systematically modify the resonances of gold coated
nanoporous SERS substrates by changing the pore sizes and gold film thickness to enhance the
intensity of Raman signals. We investigated SERS on NAAO substrates with pore diameters of 18, 35,
55, 80, 100 and 150 nm coated with 30, 40, 50, 60, 70, 80, 90, 100, and 120 nm thick gold film. The gold
coated nanopores are much smaller in size than the laser wavelength. This is known to enhance the
momentum of the surface plasmons by scattering the light from the pores coated with plasmonic
metal films. This, in turn, provides local-field enhancement and the enhancement of the Raman
scattering signal from the Rh6G molecule absorbed on the surface of the SERS substrate [26,30].
The transmittance and reflectance of all substrates were measured before and after gold coating.
To optimize the substrates and characterize the sensing technique, Raman scattered light signal from
Rh6G dye deposited on gold-coated NAAO substrates from a dilute solution (8 ˆ 10´5 M) in water was measured.

Figure 1 shows SERS spectra of Rh6G dye adsorbed on the surface of 18 nm NAAO substrate,
which is coated with 50, 60, 70 and 80 nm thick gold films. The integration time for these
measurements is 3 s. As can be seen, Rh6G Raman spectrum from NAAO substrate coated with
70 nm thick gold film was relatively the most intense. With a 50 nm thick gold film, the characteristic
Raman band for Rh6G dye at 1646 cm´1 is barely detected. As the thickness of the deposited gold film
is increased to 70 nm, the Raman bands, including the weak signal at 766 (not shown) and 1646 cm´1

appear to be increasingly intense. As the film thickness is increased beyond 70 nm, the intensity
of the Raman peaks starts to diminish. This indicates that for a NAAO substrate with 18 nm pore
diameter, the gold film thickness for optimal resonant enhancement of Raman molecular signatures
is about 70 nm.
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integration time of 3 s. 

Figure 1. SERS spectra of 8 ˆ 10´5 M solution of Rh6G dye adsorbed on the surface of 18 nm NAAO
substrate coated with 50, 60, 70 and 80 nm gold films measured with a single scan averaging and an
integration time of 3 s.
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Figure 2a shows SERS spectra of Rh6G dye adsorbed on the surface of 35 nm NAAO substrate
coated with 30, 40, 50, 60, 70, 80, 90, 100 and 120 nm gold films measured with an integration time
of 3 s. For this substrate, the strongest SERS signals were obtained for a gold coating of 80 nm.
As can be seen in this figure, the intensity of SERS signals falls significantly as the thickness of gold
film is increased to 90 nm or decreased to 60 nm. For 70 and 80 nm gold films, the Raman bands
at 606, 767, 1180, 1306, 1360, 1506, and 1630 cm´1 are clearly visible. For other film thicknesses,
only the prominent Raman bands at 1361 and 1506 cm´1 are seen (Figure 2b). As the gold film
thickness approaches 60 nm, the Raman peaks at 606, 767, 1180 and 1600 cm´1 start to appear and get
enhanced until the film thickness equals 80 nm and starts fading after that. In order to see the relative
enhancement of the weak Rh6G Raman signatures from the 35 nm size porous substrate coated with
30, 40, 50, 60, 90, 100 and 120 nm gold thickness, the spectra for 70 nm and 80 nm thick gold coated
SERS substrates (shown in Figure 2a) are removed and the rest are shown in Figure 2b. Here, we
can clearly see that the SERS signal from the 60, 90 and 100 nm thick gold coated substrate show a
relatively better enhancement than the 30, 40, 50 and 120 nm thick gold coated 35 nm size porous
substrates. Comparison of peak SERS intensity for 1361 cm´1 band of Rh6G dye adsorbed on the
surface of 30, 40, 50, 60, 70, 80, 90, 100 and 120 nm thick gold films deposited on 35 nm NAAO SERS
substrate at 3 s integration time is shown in Figure 3. As can be seen in the figure, for the 35 nm
hole sizes, the resonance gold film thickness required to design a relatively high performance SERS
substrate is about 80 nm. Large thickness of gold-film has the potential to cover the nanopore and
reduce SERS enhancement. Thus, it is interesting that the optimum gold-film thickness (80 nm) is
much larger than the pore-size (35 nm). This can be explained by the fact that nanopores in these
substrates are hollow nano-cylinders and the actual gold-film thickness on the vertical walls of these
nanopores is much less than the measured thickness on horizontal surface of the substrate.

SERS spectra of Rh6G dye adsorbed on the surface of 55 nm NAAO substrate coated with 30, 40,
50, 60, 70, 80, 90, 100 and 120 nm gold films measured at 3 s integration time is shown in Figure 4.
For this substrate, the optimum gold-film thickness is 60 nm. As compared with the SERS
measurements made with the 55 nm SERS substrates, the characteristic Raman bands measured
from 35 nm pore SERS substrates are narrower and more prominent. Likewise, Figure 5 shows
SERS spectra of Rh6G dye adsorbed on the surface of 80 nm NAAO substrate coated with 30, 40,
50, 60, 70, 80, 90, 100, and 120 nm gold films and measured at 3 s integration time. The Raman
measurements from the 80 nm pore size substrates resulted in intense Raman bands (Figure 5a) for
relatively thicker gold films (90, 100 and 120 nm), as compared with the measurements made with the
SERS substrates with pore-sizes of 35 nm and 55 nm, coated with the 90–120 nm gold thickness. Here,
to compare the relative enhancement of the weak Rh6G Raman signatures from the 80 nm size porous
substrate coated with 30, 40, 50, 60 and 80 nm gold thickness, the spectra for 90, 100 and 120 nm thick
gold coated SERS substrates shown in Figure 5a are removed and the rest are shown in Figure 5b.
We can clearly see that the SERS signal from the 80 nm gold coated 80 nm pore size substrate
shows a relatively better enhancement of the Raman bands followed by 60, 50, 40, 30 nm coated
SERS. Peak SERS intensity for 1361 cm´1 band of Rh6G on 30, 40, 50, 60, 80, 90, 100 and 120 nm
gold films deposited on 80 nm NAAO SERS substrate at 3 s integration time is shown in Figure 6.
As explained earlier, the actual gold film-thickness on the vertical walls of the hollow nano-cylinders
is much less than the measured values and this explains the low SERS enhancement for thicknesses
up to 80 nm. The horizontal error-bar shows an uncertainty of 5% in the film thickness as quoted
for the sputtering device used. The SERS measurements collected from the 90, 100 and 120 nm
thick gold coated 80 nm pore size SERS substrates shows a slight shift of 1361 cm´1 band which is
within the line-width. We believe this apparent shift is a result of the variation of relative intensity of
two adjacent bands. Such an effect has been observed by others also [31]. SERS spectra of Rh6G dye
on the surface of 150 nm NAAO substrate coated with 50, 60, 70 and 80 nm gold films measured at
3 s integration time is shown in Figure 7. Interestingly, in this case, the overall enhancement of SERS
is insignificant and no considerable variation of Raman signal from the substrate deposited with
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50 to 80 nm gold films is observed. This is because of the fact that the local field enhancement and
the relative SERS signal enhancement largely depend on the geometric parameters of the substrate,
including nanopore size and thickness of the metallic film. The increase in the inter-particle distance
can lead to a decrease of electromagnetic field enhancement near the surface of the gold coated
nanopore SERS substrate [20,30]. Due to this, for the SERS measurements collected from the larger
pore size SERS substrates (Figure 7), the signal-to-noise ratio of the spectra and the relative SERS
signal enhancement are low as compared with the SERS measurements collected from smaller pore
size substrates [30] shown in Figures 2 and 4.
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Figure 2. SERS spectra of 8 × 10−5 M solution of Rh6G dye adsorbed on the surface of 35 nm NAAO 
substrate coated with 30, 40, 50, 60, 70, 80, 90, 100 and120 nm gold films measured with 3 s 
integration time (a); Figure (b) shows the relative enhancement of the weak Raman signals after 
removing the spectra for the 70 and 80 nm gold coated 35 nm pore size substrate measured with 3 s 
integration time. 

Figure 2. SERS spectra of 8 ˆ 10´5 M solution of Rh6G dye adsorbed on the surface of 35 nm NAAO
substrate coated with 30, 40, 50, 60, 70, 80, 90, 100 and120 nm gold films measured with 3 s integration
time (a); Figure (b) shows the relative enhancement of the weak Raman signals after removing the
spectra for the 70 and 80 nm gold coated 35 nm pore size substrate measured with 3 s integration time.
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Figure 3. Peak SERS intensities measured at about 1361 cm−1 measured from 8 × 10−5 M solution of 
Rh6G dye adsorbed on the surface of 30, 40, 50, 60, 70, 80, 90, 100 and 120 nm gold films deposited 
on 35 nm nanoporous SERS substrate with 3 s integration time. 

 

Figure 4. SERS spectra of 8 × 10−5 M solution of Rh6G dye adsorbed on the surfaces of 55 nm 
nanoporous substrate coated with 30, 40, 50, 60, 70, 80, 90, 100 and 120 nm gold films, measured 
with 3 s integration time. 

Figure 3. Peak SERS intensities measured at about 1361 cm´1 measured from 8 ˆ 10´5 M solution of
Rh6G dye adsorbed on the surface of 30, 40, 50, 60, 70, 80, 90, 100 and 120 nm gold films deposited on
35 nm nanoporous SERS substrate with 3 s integration time.

Sensors 2015, 15, page–page 

6 

 

Figure 3. Peak SERS intensities measured at about 1361 cm−1 measured from 8 × 10−5 M solution of 
Rh6G dye adsorbed on the surface of 30, 40, 50, 60, 70, 80, 90, 100 and 120 nm gold films deposited 
on 35 nm nanoporous SERS substrate with 3 s integration time. 

 

Figure 4. SERS spectra of 8 × 10−5 M solution of Rh6G dye adsorbed on the surfaces of 55 nm 
nanoporous substrate coated with 30, 40, 50, 60, 70, 80, 90, 100 and 120 nm gold films, measured 
with 3 s integration time. 

Figure 4. SERS spectra of 8 ˆ 10´5 M solution of Rh6G dye adsorbed on the surfaces of 55 nm
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Figure 5. SERS spectra of 8 × 10−5 M solution of Rh6G dye adsorbed on the surface of 80 nm NAAO 
nanoporous substrate coated with 30, 40, 50, 60, 70, 80, 90, 100, 120 nm gold films measured with 3 s 
integration time (a); Figure (b) shows the relative enhancement of the weak Raman signals after 
removing the spectra for the 90, 100, and 120 nm gold coated 80 nm pore size substrate measured 
with 3 s integration time. 

Figure 5. SERS spectra of 8 ˆ 10´5 M solution of Rh6G dye adsorbed on the surface of 80 nm NAAO
nanoporous substrate coated with 30, 40, 50, 60, 70, 80, 90, 100, 120 nm gold films measured with
3 s integration time (a); Figure (b) shows the relative enhancement of the weak Raman signals after
removing the spectra for the 90, 100, and 120 nm gold coated 80 nm pore size substrate measured with
3 s integration time.
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Figure 6. Peak SERS intensities measured at about 1361 cm−1 measured from 8 × 10−5 M solution of 
Rh6G dye adsorbed on the surface of 30, 40, 50, 60, 80, 90, 100 and 120 nm gold films deposited on 
80 nm NAAO nanoporous substrate with 3 s integration time. 

 

Figure 7. SERS spectra of 8 × 10−5 M solution of Rh6G dye adsorbed on the surface of 150 nm 
nanoporous substrate coated with 50, 60, 70 and 80 nm gold films measured with 3 s  
integration time. 

To compare the effect of thicker gold film on the SERS signal, 120 nm thick gold films are 
sputter coated on 35, 55, 80, 100 and 150 nm NAAO substrates. The SERS spectra of Rh6G dye 
adsorbed on these substrates is measured at 3 s integration time and shown in Figure 8. Here, we 
can see that the 100 and 80 nm pore size NAAO substrates resulted in a relatively significant Raman 
enhancement followed by 150, 55 and 35 nm pore size substrates respectively. The SERS 
enhancement measured from the smaller pore sizes (35, and 55 nm) and the largest pore size 
substrates (150 nm) is relatively insignificant as compared with the 120 nm thick gold coated 80 and 
100 nm NAAO substrates. However, as can be seen in Figures 8 and 9, for the 120 nm gold 
deposited films, the SERS enhancement of the largest pore size (150 nm) are prominent as 
compared with 35 nm pore substrate. This effect can be explained by the fact that the 120 nm gold 

Figure 6. Peak SERS intensities measured at about 1361 cm´1 measured from 8 ˆ 10´5 M solution of
Rh6G dye adsorbed on the surface of 30, 40, 50, 60, 80, 90, 100 and 120 nm gold films deposited on
80 nm NAAO nanoporous substrate with 3 s integration time.
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Figure 7. SERS spectra of 8 ˆ 10´5 M solution of Rh6G dye adsorbed on the surface of 150 nm
nanoporous substrate coated with 50, 60, 70 and 80 nm gold films measured with 3 s integration time.

To compare the effect of thicker gold film on the SERS signal, 120 nm thick gold films are
sputter coated on 35, 55, 80, 100 and 150 nm NAAO substrates. The SERS spectra of Rh6G dye
adsorbed on these substrates is measured at 3 s integration time and shown in Figure 8. Here, we
can see that the 100 and 80 nm pore size NAAO substrates resulted in a relatively significant Raman
enhancement followed by 150, 55 and 35 nm pore size substrates respectively. The SERS enhancement
measured from the smaller pore sizes (35, and 55 nm) and the largest pore size substrates (150 nm)
is relatively insignificant as compared with the 120 nm thick gold coated 80 and 100 nm NAAO
substrates. However, as can be seen in Figures 8 and 9 for the 120 nm gold deposited films, the
SERS enhancement of the largest pore size (150 nm) are prominent as compared with 35 nm pore
substrate. This effect can be explained by the fact that the 120 nm gold film deposited on the 35 nm
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pore size SERS substrates can fill the pores making the surface relatively smooth, which reduces the
SERS efficiency. Comparison of SERS intensities for 1361 cm´1 Raman band of Rh6G on the surface of
120 nm gold films deposited on 35, 55, 80, 100, and 150 nm NAAO SERS substrate at 3 s integration
time is shown in Figure 9. The results showing relative performance of substrates coated with
50–80 nm thick gold films measured by the intensity of 1361 cm´1 band are shown in Table 1 and
Figure 10. As seen in Figure 10, the peak intensity of 1361 cm´1 is the smallest for 150 nm pore-size
substrate (Figure 7). While the noise amplitude is about the same for this substrate, the signal-to-noise
ratio is poor as expected.
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Figure 10. Peak SERS intensities measured at 1361 cm−1 measured from 8 × 10−5 M solution of Rh6G 
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Figures 9 and 10 show the size-variation of nanopores as can also be seen in the AFM micrographs 
of Figure 12. The broad absorption spectra (Figure 11), shows the role of LSP effect in response to 
gold coated nanoporous SERS substrate [26]. The LSP spectrum of gold-coated substrates has a very 
broad maximum with little variation between 550 nm and 785 nm. Others have used 785 nm laser on 
substrates with much narrower resonance between 500–600 nm [22,26]. Our choice was also decided 
by the availability of this light source. 
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Figure 12. AFM micrographs of 80 nm pore size NAAO substrate before (a); and after depositing  
70 nm thick gold film using the sputtering technique (b). 

It is also observed that for each nanopore size, there is a clear variation in the intensity of 
Raman spectra with change in the thickness of gold film. SERS enhancement and limit of detection 
of the substrates largely depend on the pore size, the optimum gold thickness for that particular 
pore size [32,33], and the surface roughness and morphology of the SERS substrates [33,34]. It is 
well understood that efficiency of gold-coated SERS substrates depends not only on the substrate 
roughness but also on the thickness of the coated gold-film [33,34]. Li et al. [33] studied the effects of 
gold film morphology on surface plasmon and SERS using periodic nanostructured 
P3HT:PMMA/Au {poly(3-hexyl thiophene) and poly (methyl methacrylate)} on silicon substrates 
with a wide range of hole size and lattice constants. It is shown that, as the thickness of the 
nanopores increases and the pore size decreases, there will be a coupling effect between the 
neighboring pores leading to enhancement of resonance localized electric field. The study 
concluded that SERS enhancement is largely dominated by the structures of the pore array than the 
roughness of the SERS substrate. In another work [34], the effects of the thickness of a plasmonic 
metal films and the surface roughness on SERS substrate fabricated on glass polydimethylsiloxane 
(PDMS) templates was studied, and it was shown that the role of the thickness of the metallic film 
in SERS enhancement is more significant than the surface roughness. Since NAAO substrates, with 
such a wide range of pore sizes and gold film thickness have only been investigated by us, we 
believe it is appropriate to characterize SERS efficiency based on the film-thickness and pore size. 
While, on one hand, one needs a certain minimum thickness of gold-film for SERS to work, by 
over-coating the AAO substrates one will fill the pores and reduce the SERS effect as well as the 
limit. As is borne out by our results, there is an optimum thickness for maximum SERS efficiency. 
For most of the pore-sizes investigated here, the optimum film-thickness is in the range of 70–80 nm 
(Table 1). 

It is well known [35] that (unlike regular Raman) while SERS is widely used to sense chemicals 
at very small concentrations, it has limited utility for quantitative analysis. This is especially so for a 
non-periodic substrate like the one investigated here. It is known that a slight change in surface 
morphology, as in non-periodic substrates, can result in dramatic changes in signal enhancement 
and reproducibility for a quantitative measurement is questionable. The objective of this work is to 
optimize substrate parameters like pore-size and gold-film thickness for maximum relative 
signal-enhancement. In general, for all NAAO pores size SERS substrates, the SERS intensity 
increases as the film thickness increases from 30 nm until it reaches the optimum thickness 
corresponding to a specific pore size and increasing the film thickness above the optimum value 
results in a gradual decrease in the intensity of Raman signal. 

Figure 12. AFM micrographs of 80 nm pore size NAAO substrate before (a); and after depositing
70 nm thick gold film using the sputtering technique (b).

It is also observed that for each nanopore size, there is a clear variation in the intensity of
Raman spectra with change in the thickness of gold film. SERS enhancement and limit of detection
of the substrates largely depend on the pore size, the optimum gold thickness for that particular
pore size [32,33], and the surface roughness and morphology of the SERS substrates [33,34]. It is
well understood that efficiency of gold-coated SERS substrates depends not only on the substrate
roughness but also on the thickness of the coated gold-film [33,34]. Li et al. [33] studied the
effects of gold film morphology on surface plasmon and SERS using periodic nanostructured
P3HT:PMMA/Au {poly(3-hexyl thiophene) and poly (methyl methacrylate)} on silicon substrates
with a wide range of hole size and lattice constants. It is shown that, as the thickness of the nanopores
increases and the pore size decreases, there will be a coupling effect between the neighboring
pores leading to enhancement of resonance localized electric field. The study concluded that SERS
enhancement is largely dominated by the structures of the pore array than the roughness of the
SERS substrate. In another work [34], the effects of the thickness of a plasmonic metal films and
the surface roughness on SERS substrate fabricated on glass polydimethylsiloxane (PDMS) templates
was studied, and it was shown that the role of the thickness of the metallic film in SERS enhancement
is more significant than the surface roughness. Since NAAO substrates, with such a wide range of
pore sizes and gold film thickness have only been investigated by us, we believe it is appropriate to
characterize SERS efficiency based on the film-thickness and pore size. While, on one hand, one needs
a certain minimum thickness of gold-film for SERS to work, by over-coating the AAO substrates one
will fill the pores and reduce the SERS effect as well as the limit. As is borne out by our results, there
is an optimum thickness for maximum SERS efficiency. For most of the pore-sizes investigated here,
the optimum film-thickness is in the range of 70–80 nm (Table 1).

It is well known [35] that (unlike regular Raman) while SERS is widely used to sense chemicals
at very small concentrations, it has limited utility for quantitative analysis. This is especially
so for a non-periodic substrate like the one investigated here. It is known that a slight change
in surface morphology, as in non-periodic substrates, can result in dramatic changes in signal
enhancement and reproducibility for a quantitative measurement is questionable. The objective of
this work is to optimize substrate parameters like pore-size and gold-film thickness for maximum
relative signal-enhancement. In general, for all NAAO pores size SERS substrates, the SERS
intensity increases as the film thickness increases from 30 nm until it reaches the optimum thickness
corresponding to a specific pore size and increasing the film thickness above the optimum value
results in a gradual decrease in the intensity of Raman signal.
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Several SERS measurements were made at different locations of the Rh6G spotted area on the
SERS substrates. The intensity of the Raman signal depends on the spot where the measurement
is collected. The measurements collected from the SERS “hot-spot” results in large enhancement
of Raman signal as compared with the other spots. Due to the intensity variation of the SERS
measurement resulting from the irregular “hot-spot” locations throughout the SERS substrate [30],
it is impossible to perform linearity analysis for quantitative chemical sensing. Based on multiple
measurements on a given substrate we have added error-bars on Figures 3, 6, 9 and 10. From the
signal-to-noise ratio of measured spectra a limit of detection of 10´6 M can be established. For the
35, 80 and 150 nm pore size substrates coated with about 62 nm gold films, the calculated value
of the EFs are about 105, 8.8 ˆ 104 and 8.2 ˆ 104 respectively [20] and the detection limit for
35 nm pore coated with about 62 nm thick gold film is about 10´6 M Rh6G [20]. EF is used as
a general measure of performance of SERS substrate estimated through approximations of several
measurement parameters [36]. Hence, a direct comparison of the SERS EFs of the substrates used in
this study with literature values obtained with different SERS substrates, fabrication techniques and
other parameters is not suggested [36]. While other substrates with much higher EFs are known, we
believe the NAAO substrates reported here can have applications where inexpensive substrates with
relatively lower EFs are required.

4. Conclusions

Effect of gold film thickness and nanopore size on SERS signal is investigated by using low cost
aluminum oxide nanoporous substrates of 18, 35, 55, 80, 100 and 150 nm porous sizes. The optimum
film thickness for the resonance condition depends on the nanoporous size of the NAAO substrates.
In general, the 18, 35, and 55 nm size SERS substrates with 50 to 80 nm thick gold film resulted in
narrow and large enhancement of most of the characteristics Rh6G Raman bands at 606, 767, 1180,
1306, 1360, 1506, and 1630 cm´1. The nanopores deposited with thin gold film (30 and 40 nm) and
relatively thick films (90, 100, and 120 nm) all resulted in a relatively insignificant enhancement in
Raman signal. For the 80 nm pore size substrates, the Raman measurements collected from the
substrates deposited with relatively thicker gold films (90 to 120 nm) resulted in intense Raman bands
as compared with the measurements collected from the substrates deposited with gold film thickness
ranging from 30 to 80 nm. However, the overall enhancement of Raman signals from the substrates
coated with gold film thicknesses in the range of 50 to 80 nm is insignificant. As mentioned in the
earlier section, these results can be explained, as due to the vertical wall geometry of the hollow
nano-cylinders, whereby the actual thickness of gold-film is much less than the measured thickness
on horizontal surface of the substrate. The results clearly demonstrate the utility of these inexpensive
gold-coated nanoporous aluminum substrates for applications involving SERS. Due to the random
position and non-periodic nature of these nanopores (Figure 12), the experimental results are not
easy to reproduce by theoretical modelling. Our effort for modelling using a commercial Lumerical
finite-difference time-domain (FDTD) Solution technique to understand the effect of pore size and
gold film thickness on absorption due to surface plasmon produced spectra did not agree with the
results in Figure 11. Due to unreliability of the modelling technique, these results are not shown.
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