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Abstract: Understanding plant photosynthesis, or Gross Primary Production (GPP), is a
crucial aspect of quantifying the terrestrial carbon cycle. Remote sensing approaches, in
particular multi-angular spectroscopy, have proven successful for studying relationships between
canopy-reflectance and plant-physiology processes, thus providing a mechanism to scale up.
However, many different instrumentation designs exist and few cross-comparisons have been
undertaken. This paper discusses the design evolution of the Automated Multiangular
SPectro-radiometer for Estimation of Canopy reflectance (AMSPEC) series of instruments.
Specifically, we assess the performance of the PP-Systems Unispec-DC and Ocean Optics
JAZ-COMBO spectro-radiometers installed on an updated, tower-based AMSPEC-III system.
We demonstrate the interoperability of these spectro-radiometers, and the results obtained suggest
that JAZ-COMBO can successfully be used to substitute more expensive measurement units for
detecting and investigating photosynthesis and canopy spectra. We demonstrate close correlations
between JAZ-COMBO and Unispec-DC measured canopy radiance (0.75 ď R2 ď 0.85) and solar
irradiance (0.95 ď R2 ď 0.96) over a three month time span. We also demonstrate close agreement
between the bi-directional distribution functions obtained from each instrument. We conclude
that cost effective alternatives may allow a network of AMSPEC-III systems to simultaneously
monitor various vegetation types in different ecosystems. This will allow to scale and improve
our understanding of the interactions between vegetation physiology and spectral characteristics,
calibrate broad-scale observations to stand-level measurements, and ultimately lead to improved
understanding of changing vegetation spectral features from satellite.

Keywords: gross primary production; photosynthesis; light use efficiency; remote sensing; PRI;
multi-angle spectroscopy; spectro-radiometer

1. Introduction

Measurement and quantification of photosynthesis and other plant physiological processes are
crucial to improve our understanding of ecosystem functioning. Tower-based approaches, such
as Eddy-Covariance (EC) measurements, are critical to determine the exchange of carbon dioxide
(CO2) between land surface and atmosphere, and to improve our understanding of cycling of water,
nutrients, and carbon [1]. However, EC can only provide spatially discrete observations typically over
a few hundred meter or few kilometer footprint, and upscaling these observations to larger areas is
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difficult. As a result, the prediction of carbon, water, and energy balances at landscape, regional and
global scale is highly uncertain [2–5].

As a complementary technique to EC measurements, near surface remote sensing is an effective
tool to link carbon fluxes and spectral features of vegetation across various spatial scales, from
proximal [6–9] to airborne [10] and satellite platforms [11,12]. High-spectral and spatial resolution
optical sensors can be utilized to determine physiological processes through the relationship between
plant physiological properties and biochemical composition of foliage (e.g., [13]), typically observed
through narrow spectral channels, in the 400–2500 nm range [14].

At the same time, optical remote sensing is also capable of synoptic coverage of the globe via
satellite observation, hence providing opportunities for spatially continuous scaling of ecosystem
fluxes (e.g., [15–20]). Network approaches, such as the SpecNet initiative [21], have demonstrated
their effectiveness in linking remote measurements to carbon fluxes. Nonetheless, determination of
highly dynamic and spatially variable physiological processes remains challenging, as a number of
external factors can affect the relationship between biophysical properties and measured reflectance,
including sun-view geometry, soil background reflectance, species and canopy characteristics and
pigment pool size (e.g., [22–27]). Spatial and spectral dynamics of some of these processes requires
high spatial and temporal resolution [28], and the observation of vegetation status under multiple
illumination and viewing conditions (e.g., [29,30]), which is not easily achieved with existing airborne
or spaceborne sensors [31]. Indeed, in order to detect pigment absorption features both high spectral
resolution (in the range of few nm) and high signal-to-noise is needed [7].

Networking multi-angular tower observations based on field spectro-radiometers can help
to provide a better understanding of ecosystem dynamics [7,8]. In particular, low cost
spectro-radiometers developed over recent years may help overcome the often significant cost in
purchasing these instruments and, thus, limiting the implementation of networks, which would
permit more systematic upscaling of tower measured reflectance and fluxes to space. However,
differences in data quality between these “off the shelf” radiometers compared to well established
models is not clear nor is the impact on physiological indices derived from the data. In this paper
we address this issue by undertaking a comparison between two portable spectro-radiometers, both
installed on a third generation Automated Multiangular SPectro-radiometer for Estimation of Canopy
reflectance system (AMSPEC-III). We discuss the system’s hardware and software components, as
well as the results of the comparison of measured spectra from a three-month field test.

2. Materials and Methods

2.1. The AMSPEC-III System

The upgrades implemented in AMSPEC-III were based on previous experience over the past 5
years (cf. [7,8]). In order to reduce communication issues in the previous design, the AMSPEC-III
consists of a single module mounted atop of the tower and controlled by a relay switch to allow
remote power cycling of the system.

The tower module enables the direct comparison of two different portable spectro-radiometers: a
Unispec-DC (UDC; PP-Systems, Amesbury, MA, USA) and a JAZ-COMBO (JC), formed by two JAZ-S
and one JAZ-DPU (Ocean Optics, Dunedin, FL, USA), which technical specifications are described
in Table 1. The spectro-radiometers were coupled through optical fibers, with an upward-looking
sensor featuring a cosine diffuser (PP-Systems) to correct sky irradiance for varying solar altitudes.
A webcam (NetCam SC 5MP, StarDot, Buena Park, CA, USA) image is automatically acquired
simultaneously to spectra being co-registered in order to allow phenological assessment [32] and
canopy shading from digital photography. The system features a pan-tilt unit (PTU; PTU-D46-17.5 W,
Directed Perception, Burlingame, CA, USA), which allows the sensor head to record data at any
view zenith angle (θv) between 43˝ and 68˝ and at a view azimuth angle (φv) between ˘ 170˝ from
the initial position for scaling of the observations through modeling of the bidirectional reflectance
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distribution function (BRDF; [27]) and investigation of foliage clumping effects [33]. In addition, the
ability to programmatically define θv and φv permits users to automatically compare tower-based
measurements to satellite observations without further modeling of sensor geometries difference,
with footprint size on the ground depending on θv and height of installation.

Table 1. Technical specifications of the third generation Automated Multiangular SPectro-radiometer
for Estimation of Canopy reflectance system (AMSPEC-III).

Feature AMSPEC I [7] AMSPEC II [8] AMSPEC-III

Spectro-radiometer Unispec-DC JAZ-COMBO
Spectrum (nm) 350–1200 200–1100

Resolution (nm) 3.3 0.145
Repeatability (nm) 0.1 0.23 at 730 nm

Integration time (s) 0.004–3.28 0.001–65 (20 typical
maximum)

Averaging number of scans 1000 at 0.4 s (less for longer ITs) 100 scan/s
Operation temperature (˝C) 0–40 0–55

Scan time (s) 2–6 2–6

Communication between computer and spectro-radiometers and between computer and PTU
is ensured via serial connections and USB standard for UDC and JC, respectively; the webcam is
connected via local area network (LAN). The system can be linked to an external network or mobile
communication device to allow remote access to the data.

Table 2 contains the AMSPEC-III components and their approximate costs at the time of the
design of the research. The costs have not significantly changed at the time of writing this manuscript.
The total sensor cost is the result of the individual components and labor costs, not included in
Table 2. The majority of the costs is associated with the spectro-radiometers, with JC resulting in
approximately a third of the UDC cost although requiring a temperature-controlled housing due to
higher sensitivity to differences in temperature.

Table 2. AMSPEC-III components and approximate costs.

Item Provider Qty Cost (USD)

Unispec-DC PP-Systems, 110 Haverhill Rd, Suite
301, Amesbury, MA 01913, USA 1 22,750

JAZ-COMBO Ocean Optics, 830 Douglas Ave,
Dunedin, FL 34698, USA 1 6860

NetCam SC, 5 MP Stardot Tech., 6820 Orangethorpe Ave,
Buena Park, CA 90620, USA 1 1340

PTU-D46-17 Directed Perception, 890 C Cowan Rd,
Burlingame, CA 94010, USA 1 2340

Computer
(ARK-1122H-S6A1E)

Advantech, 380 Fairview Way,
Milpitas, CA 95035, USA 1 600

External hard drive
(840 PRO SSD, 128 GB)

Samsung Electronics Co., Ltd., 95,
Samsung 2-ro, Giheung-gu, Yongin-si,

Gyeonggi-do, Korea, 446-811
1 150

Box – 1 500
Mounts, misc – - 750

2.2. Field Site Description

The dual spectro-radiometer AMSPEC-III system was installed in April 2013 at the Southern
Old Black Spruce (SOBS) site; CO2 measurements were taken with EC as part of the Boreal Ecosystem
Research and Monitoring Sites (BERMS) initiative [34]. The site is located ~100 km NE of Prince
Albert, Saskatchewan (Canada) at 598 m above sea level (latitude 53.9872˝ N, longitude 105.1178˝ W)
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at the southern edge of the boreal forest, and it is dominated by black spruce (Picea mariana (Mill.))
up to 11 m high (average height 7.2 m; [35]), with occasional tamarack, 10–16 m high, and jack
pine, 13 m high. The canopy is approximately 135 years old and with leaf area index 5.6 [35].
SOBS was selected among other BERMS sites because showing the highest photosynthetic capacity
under optimal conditions [36]. The tower module was mounted on a scaffold tower at 25 m height,
approximately 18 m above the canopy. The final setup of the tower module at SOBS is shown
in Figure 1.
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Composite Editor. 
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in light sensitivity between the upward- and downward-looking channels (i.e. irradiance and 

radiance, respectively). However, light sensitivity depends also on data acquisition wavelength. For 

Figure 1. In situ photograph of the third generation Automated Multiangular SPectro-radiometer
for Estimation of Canopy reflectance system (AMSPEC-III) taken at the Southern Old Black Spruce
(SOBS) site.

2.3. Data Processing

The AMSPEC-III system records solar irradiance and canopy radiance simultaneously to the
sensors viewing geometry, solar position, time of measurement and the webcam RGB image. The PTU
movement was set to 10˝ horizontal steps, completing a full rotation every 30 min. At each horizontal
location, four different vertical angles were measured, alternating between θv P {48˝; 58˝; 68˝; 78˝}
and θv P {43˝; 53˝; 63˝; 73˝} every 15 min (half full rotation). A measurement in the solar plane
was performed at the beginning of every 15 min cycle. A portion is not seen by the instrument due
to obstruction from the scaffold tower, and depends on the tower size and how the instrument is
installed on it. At SOBS, we excluded the measurements with φv comprised between 145˝ and 180˝,
and between 220˝ and 340˝ in order to exclude obstructed images. An example of a ~165˝ observation
cycle at SOBS is in Figure 2.
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Figure 2. Image composite at SOBS over a ~165˝ observation cycle. The photographs have been
stitched from 57 individual observations (340˝ ď φv ď 145˝) using Microsoftr Research Image
Composite Editor.

By design, the use of normalized difference indices should compensate some of the differences in
light sensitivity between the upward- and downward-looking channels (i.e. irradiance and radiance,
respectively). However, light sensitivity depends also on data acquisition wavelength. For this
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reason, a calibration before and during data acquisition was performed using a Labspherer diffuse
reflectance target [37]. After considering the sensor’s differences in sensitivity to light due to
the individual photodiodes and fiber optics used in the system, for dual-channel radiometers the
measured canopy reflectance (ρ) is defined as the ratio of canopy radiance and solar irradiance.
Differences in light sensitivity can be corrected through a cross-calibration approach by measuring
the reflectance of the standardized reference target [6]:

ρ “
L ¨ I1

I ¨ L1

where L is the measured radiance of the canopy sensor, I is the simultaneously measured irradiance,
L1 is the measured radiance of the control surface, and I1 is the irradiance at the time L1 was measured.

Neither UDC nor JC provides an internal shutter mechanism to automatically correct for
dark current (dc), defined as the electrical current that generated by thermal electrons in the
photocathode of optical instruments [38]. For this reason, the acquired data can only be corrected in a
post-processing step using manual measurements taken with both sensors completely covered from
light. Using previous AMSPEC versions, Hilker et al. [7,8] demonstrated a relationship between the
sensor’s temperature (as measured by the internal thermometer of the spectro-radiometer) and the dc
measured when blocking off the light from both sensors, thereby allowing an automated correction
of this drift in the measured sensor radiance.

For this study, we analyze simultaneous UDC and JC measurements at SOBS. In order to directly
compare the two systems, the JC channels were spectrally resampled to UDC using the arithmetic
mean of overlapping wavebands. We present radiance, irradiance and calculated reflectance over
one sample day (1 September 2013) in three spectral channels (i.e., 559 nm; 660.3 nm; 809.7 nm)
representative of green, red and NIR light, respectively. To avoid possible sky contaminations, all
measurements with θv > 63˝ were excluded from the dataset. We focus the results on the retrieval of
the Photochemical Reflectance Index (PRI; [23]), as well as demonstrate the directional effects using
three spectral channels: green (559 nm), red (660.3 nm) and NIR (809.7 nm).

3. Results

A comparison of the measured green, red and NIR radiance and irradiance is in Figure 3, with
respective scatterplots are in Figure 4.
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Time is GMT (hh:mm).
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Figure 5 shows an example of UDC and JC spectra acquired on 1 September, 2013 over the
observation cycle in Figure 2. The variability in reflectance is largely due to the sun-observer
geometry (cf. [7,8]) as the sensor observes the same location around the flux tower every 30 min.
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One of the main applications of previous AMSPEC installations was the determination of
photosynthetic light use efficiency (LUE), which describes how efficiently a plant converts the
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absorbed solar radiation into biomass [39,40]. Figure 6 shows the comparison between half hourly
EC-measured LUE and the PRI observed by UDC and JC at SOBS on 1 September, 2013.
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Figure 7 illustrates the bi-directional reflectance distribution measured using off-nadir
observations from both spectrometers, using a semi-empirical kernel approach [41,42]. Kernel based
BRDF models are one of the most commonly used methods to describe BRDF effects. These functions
represent angular reflectance distribution as linear combination of basic BRDF shapes describing
volumetric and geometric scattering effects [42]. Their simple character allows acquisition of
model parameters from mathematical inversion of relatively few reflectance observations, thereby
facilitating applications over a wide range of spatial scales. Examples of BRDF models for UDC and
JC recorded on 1 September, 2013 at SOBS are shown in Figure 7.
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4. Discussion and Conclusions

Upscaling of spatially discrete observations to landscape and global scales is crucial to
developing better insights into the carbon cycle. However, due to the different nature of tower-based
EC and satellite systems, this task remains challenging. The high spatial, spectral and temporal
resolution of the tower-based AMSPEC systems (cf. [7,8]) allows to observe vegetation canopy under
different view and sun angles for a comprehensive analysis of spectral reflectance at the stand level
(e.g., [43,44]), of fundamental importance for the interpretation of satellite observations.

Initial findings show a good correspondence between UDC and JC irradiance and radiance,
with R2 comprised between 0.75 and 0.85 (Figures 3 and 4), with JC reflectance spectra noisier
than UDC (Figure 5) due to the different spectral resolution (cf. Table 1; [45]). This suggests that
JC can successfully be used to substitute more expensive measurement units such as the UDC,
although extreme regions of the spectral range of each instrument may not be reliable (e.g., Figure 5).
Figure 6 does not show a strong regression fit between half hourly EC-measured LUE and PRI
measured by neither UDC and JC; however, the linear regression between PRI measured with the
two spectro-radiometers shows a very good correspondence (R2 = 0.89). By design, AMSPEC-III
allows to characterize the BRDF, an essential requirement to scale measurements across different
view and sun angles (e.g., Figure 2) when detecting physiologically induced changes in spectra.
The similarity of the BRDF models (Figure 7) highlight the potential of JC to derive year-round
estimates multi-directional PRI measurements from AMSPEC III instrumentation (e.g., Figure 7).
In addition, the webcam implemented in the AMSPEC-III system will help to further analyze the
impact of phenological changes on vegetation canopy spectral reflectance and the correspondent
stand-level photosynthesis.

Based the results presented in this work, we believe that AMSPEC-III equipped with JC
is a powerful tool for investigating these stand-level relationships and detecting photosynthesis
and canopy spectra. Despite JC is more sensitive to differences in temperature and requires a
temperature-controlled housing and therefore increases also the energy requirements for the system,
the majority of the AMSPEC-III system costs is associated with the UDC spectro-radiometer (Table 2).
However, the performance obtained by JC and presented in this study justify the choice of JC over
UDC for network of sensors for monitoring of vegetation physiology.

Interoperability of different tower based instrumentation is an important prerequisite of tower
based spectral networks [21], especially when composed of instrumentation provided by multiple
investigators and funding sources. Our study has demonstrated the interoperability of the UDC
spectro-radiometer and the more cost effective JC used in an AMSPEC-III system. On the other hand,
simpler low cost instruments are available as well. For example, QuadPod is capable to quantify
NDVI and PRI [46] at a fraction of the cost of AMSPEC. However, these highly specialized sensors
are dedicated to the measurement of specific indices and cannot be implemented in a multi-angular
setup. In addition, the collection of spectra over multiple bands will allow to analyze various
vegetation indices.

Cost effective solutions, such as the JC instrumentation used in this study, could make important
contributions to tower based remote sensing networks and therefore to scaling forest ecosystem
productivity from stand to satellite and global scales. For instance, combined effort of several
AMSPEC-III systems acquiring spectra from multiple flux tower sites simultaneously, including
spectral observations of various vegetation types in different ecosystems, will allow to considerably
improve our understanding of the interactions between vegetation physiology and spectral
characteristics, helping to calibrate broad-scale observations to stand-level measurements, and
ultimately lead to improved understanding of changing vegetation spectral features from satellite.
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