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Abstract: Ubiquitous smartphones have created a significant opportunity to form a low-cost 

wireless Citizen Sensor network and produce big data for monitoring structural integrity and 

safety under operational and extreme loads. Such data are particularly useful for rapid 

assessment of structural damage in a large urban setting after a major event such as an 

earthquake. This study explores the utilization of smartphone accelerometers for measuring 

structural vibration, from which structural health and post-event damage can be diagnosed. 

Widely available smartphones are tested under sinusoidal wave excitations with frequencies 

in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, 

observing input ground motion and response of a structural model, are carried out to evaluate 

the accuracy of smartphone accelerometers under operational, white-noise and earthquake 

excitations of different intensity. Finally, the smartphone accelerometers are tested on a 

dynamically loaded bridge. The extensive experiments show satisfactory agreements between 

the reference and smartphone sensor measurements in both time and frequency domains, 

demonstrating the capability of the smartphone sensors to measure structural responses ranging 

from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the 

results of this study, the authors are developing a citizen-engaging and data-analytics 

crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural 

health monitoring and post-event damage assessment applications.  
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1. Introduction 

With the rapid advances in computer and sensor technologies in the last two decades, structural health 

monitoring (SHM), mostly based on structural vibration, has become an important research field in civil 

engineering [1,2]. Implementation of SHM in civil engineering structures, however, has practical 

difficulties and financial burdens associated with instrumentation and monitoring. Conventional sensors 

have high hardware, installation, and maintenance costs, as well as remote monitoring and cabling issues. 

Although wireless sensors aim to solve some of these issues, additional issues are then introduced 

regarding power consumption, data acquisition and networking. These issues have hindered practical 

implementation of SHM methodologies on massive scales such as networks of highway bridges and 

urban areas with large stocks of buildings. To address these issues, many emerging sensor technologies 

are being developed, including those proposed by the authors’ team (e.g., [3,4]). 

On the other hand, the Internet, smartphones, and mobile networks have given rise to citizen 

participation for crowdsourcing applications and producing valuable data. A number of seismology and 

earthquake engineering projects have shown the benefits of such data. In Southern California, citizens 

reported experiences to a seismology network after the 1999 7.1-magnitude Hector Mine Earthquake, 

taking part in mapping the intensity of the earthquake in a project called ShakeMap [5]. “Did you feel it?” 

the online seismic intensity database, received more than 750,000 responses by 2007, and was able to 

generate intensity maps in an automated fashion [6,7]. “The Quake Catcher Network” introduced a rapidly 

deployable seismic network that aimed to increase the number of seismic stations extensively with 

minimal cost based on inexpensive MEMS sensors and volunteers [8–11]. “Community Seismic 

Network” is a seismic network which is supported by low-cost accelerometers connected to personal 

computers or sensors embedded in mobile devices, and uses data fusion techniques to distinguish 

earthquake-induced vibrations from false alarms [12–14]. “iShake” is the proposed framework for using 

smartphones as seismographs, and studies [15–17] investigated the reliability of ground motion data 

obtained from the smartphone sensors. “Community Seismic Network” and “The Quake Catcher 

Network” are utilized to simulate structural response based on the Timoshenko beam theory [18]. These 

studies show the potential of using smartphones to measure vibrations. 

Encouraged by the recent development and the enthusiasm of citizens to participate, the authors 

propose a smartphone-based Citizen Sensor network to collect structural integrity data at low cost. This 

network enables a crowdsourcing platform where smartphones act as mobile sensors and provide 

structural vibration data (pre-processed by the phones) and GPS location data to a cloud server. The 

long-term vibration measurement data and the subsequently identified structural vibration characteristics 

will establish a baseline database for the structure for the purposes of structural health monitoring and 

damage detection, as demonstrated in prior research (which is beyond the scope of this paper). Engaging 

the crowd will allow efficient monitoring of a large number of structures in an urban setting, which can 



Sensors 2015, 15 2982 

 

 

be particularly useful for rapid assessment of structural damage of buildings and urban infrastructure 

after a major event such as an earthquake. 

This paper represents the first step toward the envisioned Citizen Sensor network by investigating  

the feasibility of using smartphone accelerometers to monitor structural vibration under normal and 

extreme loads. A number of shaking table tests are conducted to compare smartphone sensor performance 

with high-quality accelerometers for measuring vibration of different frequencies. Furthermore, input 

ground motion and response of a column model, subjected to operational loads, white noise and earthquake 

excitations throughout shaking table tests, are monitored using smartphone and high-quality accelerometers. 

Finally the smartphone sensor was used to measure ambient and forced vibrations of a bridge. 

It is noted that the coupling between the smartphone and the structure can affect the vibration 

measurement [19]. In this study, the smartphones are fixed on the structures using double-sided tapes to 

ensure that no local vibration would affect the quality of the structural vibration measurement. In reality, 

smartphone users would need to place their phones on rigid holders that are permanently fixed on building 

floors or columns/walls while taking the vibration measurement. The measurement could be automatically 

triggered by an event (such as an earthquake) when the phones are placed in such holders. 

2. Smartphone Sensor Properties 

The most widely used brands and generations of smartphones, referred to as Smartphone 1, 

Smartphone 2 and Smartphone 3, are tested in this study. They were carefully selected in order to 

consider the factors that might have an influence on the smartphone sensors’ measurement performance. 

These factors could be related to hardware such as the accelerometer and processor embedded in the 

phone, as well as the material and geometrical properties of the phone case. A detailed study on the 

effects of such physical properties on smartphone seismometer data quality was conducted by applying 

different coupling conditions and can be found in [15,17]. Software including the measurement 

application and the phone’s operating system might also affect the measurement performance. 

Over the last few years, smartphone technology has made significant advances. The phone central 

processing unit (CPU) and random-access memory (RAM) capabilities have increased significantly 

while the phone size and weight have decreased [20]. Furthermore, Smartphone 1 and Smartphone 2, 

two generations of the same smartphone, are embedded with different microelectro-mechanical systems 

(MEMS) accelerometers, the LIS331DLH [21] and LIS331DL [22], respectively. The accelerometer 

properties are listed in Table 1, in comparison with high-quality piezoelectric sensors used in this study 

as reference sensors [23]. In addition, another widely available new generation smartphone, Smartphone 3, 

was also tested [24]. 

Several available smartphone applications were tested and the “Seismometer” application was chosen 

for the vibration measurements in this study. Due to the limitations of the application, the sampling rate 

is set to 100 Hz for both smartphone sensors, leading to a Nyquist frequency of 50 Hz. 
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Table 1. Reference and smartphone sensor properties.  

Property Reference Smartphone 1 Smartphone 2 Smartphone 3 

Sensor maker 
PCB 

Piezotronics 
ST Micro-electronics ST Micro-electronics Bosch Sensortec 

Sensor model 393B04 LIS331DL LIS331DLH SMB380 

Phone maker, model & Operating 

System (OS)/Data Acquisition  

(DAQ) model 

NI SCXI-1531 iPhone 3GS, iOS iPhone 5, iOS 
Samsung Galaxy 

S4, Android 

Type Piezoelectric MEMS MEMS MEMS 

Sensitivity ± 2 g 1000 mV/g 18 mg/digit 1 mg/digit 3.9 mg/digit 

Measurement range 5 g 2 g 2 g 2 g 

Output data rate/Frequency range 0.05–750 100, 400 0.5–1000  3000 

Noise density (݉݃√ݖܪ) 0.00004 N/A 0.218 0.5 

3. Small-Scale Shaking Table Tests 

Although sensor datasheets provide extensive information regarding smartphone accelerometers, 

accelerometers’ performance can be influenced by a number of external effects such as phone hardware, 

embedded filters, and phone geometry. In other words, bare accelerometer performance might be 

different than an accelerometer embedded in a smartphone. Therefore, in order to investigate the 

smartphone sensors’ capabilities of measuring vibration of different frequencies and amplitudes, small-scale 

shaking table tests are carried out. As shown in Figure 1, smartphone sensors are fixed on an electromagnetic 

shaking table, together with two of the high-quality piezoelectric reference accelerometers. 

  

Figure 1. Sinusoidal wave shaking table test setup.  

The shaking table is excited with sinusoidal motions of different frequencies including 0.5, 0.8, 1, 2, 

5, 10 and 20 Hz. Due to the limitations of the shaking table, low-frequency content sinusoidal wave 

amplitudes are relatively small compared with high-frequency content sinusoidal waves. As a result, the 

maximum acceleration amplitudes range from 0.05 g to 0.2 g. 
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Figure 2 illustrates the acceleration time histories measured by the reference and smartphone 

accelerometers under sinusoidal excitations of different frequencies. The measured peak amplitudes by 

the smartphone sensors agree well with those by the reference sensors, although the smartphone sensors 

tend to slightly overestimate the amplitude (which is in correlation with Arias Intensity results presented 

in [17]). It is noted that the reference and the smartphone sensor data are acquired by different data 

acquisition systems and thus not perfectly synchronized. There are slight differences among the clocks 

in the smartphones and in the reference sensor data acquisition system, resulting in the slight phase 

differences in the measured acceleration time histories. 

 

Figure 2. Time history of reference and smartphone sensors under different frequencies.  

Table 2 summarizes the frequency and the amplitude errors between the reference and the smartphone 

sensors. It is observed that the new generation smartphone (Smartphone 2) is significantly more accurate 

than the old generation smartphone (Smartphone 1). For instance, for the 1 Hz excitation, the error 

between peak horizontal accelerations decreases from 17.5% (Smartphone 1) to 3.10% (Smartphone 2). 

Similarly, new smartphone sensors are capable of obtaining the dominant frequency of the signal with 

an error up to 0.96% whereas old generation smartphone errors are significantly large, ranging between 

4% and 5%. Although accuracy in frequency slightly changes with different tests, the accuracy in 

amplitude decreases as peak horizontal acceleration decreases. In conclusion, the error results in Table 2 

show that the new generation smartphone (Smartphone 2) is reasonably accurate for measuring vibration 

in the frequency range relevant to most of the civil engineering structures. 



Sensors 2015, 15 2985 

 

 

Table 2. Peak horizontal acceleration error between smartphone and reference accelerometers. 

Frequency (Hz) 0.5 0.8 1 2 5 10 20 

Error (%)
Smartphone 1 4.57 4.58 5.04 5.03 4.73 4.96 4.01 
Smartphone 2 0.92 0.95 0.92 0.92 0.95 0.92 0.96 

Amplitude (g) 0.04 0.08 0.11 0.17 0.18 0.25 0.29 

Error (%)
Smartphone 1 43.9 25.6 17.5 8.19 15.3 17.3 25.7 
Smartphone 2 17.4 8.51 3.10 4.97 1.14 0.45 3.82 

4. Large-Scale Seismic Shaking Table Tests of a Structural Model 

In order to examine the capabilities of smartphone sensors for measuring different types of vibration 

at different amplitudes, large-scale seismic shaking table tests are performed on a masonry column 

model, as shown in Figure 3, involving operational, white noise and earthquake excitation inputs. Further 

details about the experiment can be found in [25,26]. The smartphone and reference accelerometers are 

installed on the top of the model, while another smartphone is installed on the top of the shaking table 

near the foot of the model. The visual inspections before and after the tests show no crack or other types 

of damage, and thus the structure is assumed to be a linear time invariant system throughout the tests. In 

previous studies, the same assumption is used by the authors in [27,28], and the crack-damage relationship 

can be observed from the shaking table test data as shown in [29,30]. The vibration measurements are used 

to identify modal characteristics of the structure. In order to determine modal frequencies, power spectral 

densities are used. Prior to computation of power spectral densities, operational, white-noise, and 

earthquake excitation test time histories are subjected to zero-padding to smoothen the spectral curves. 

Therefore, actual spectral resolutions, 0.0100, 0.0142, and 0.0142 Hz, respectively, are converted into 

0.0015 Hz as a result of zero-padding the original time signals. 
 

  

Figure 3. Masonry column model and shaking table. 
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4.1. Operational Vibration Tests 

First, the seismic shaking table is locked and the responses of the column model to environmental 

vibrations and to hammer impact loading on top are measured. Figure 4 shows the acceleration time 

history responses measured at the top of the column by the reference and smartphone sensors under the 

hammer impact loading and under the operational vibrations respectively. The plots corresponding  

to reference and smartphone sensors are plotted separately because that the measurements are not 

synchronized, yet the time histories show the similarities between the two measurements. Likewise, error 

is not quantified as a function of time since samples obtained from reference and smartphone sensors 

refer to different time instants. Cross-correlation or GPS synchronization can be addressed to deal with 

this problem, which can be addressed in the future. The peak response to the impact load is 

approximately 0.02 g, while the operational vibration amplitude is less than 0.004 g. It is observed that 

smartphone measurements agree well with the reference measurements in terms of amplitude 

characteristics. Figure 5 shows the power spectral densities of the vibration responses measured by the 

reference and smartphone sensors, demonstrating frequency characteristics of the measured responses are 

significantly close to each other. In other words, Figure 5 reflects the spectra of the response to the initial 

impact followed by operational vibrations. 

 

Figure 4. Time history of impact and operational vibration response measurements. 
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Figure 5. Power spectral density of impact and operational vibration response measurements. 

4.2. White-Noise Excitation Tests 

The seismic shaking table is excited by white-noise ground motion input and the smartphone and 

reference sensors measure the response of the column model. Figure 6 compares the time history 

responses obtained from the reference and smartphone sensors. Figure 7 shows the power spectral 

densities of reference and smartphone measurements. Significant agreement is observed in both the time 

and frequency domains. 

 

Figure 6. Time history of white noise excitation response measurements. 
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Figure 7. Spectral density of white noise excitation response measurements. 

4.3. Earthquake Excitation Tests 

Finally, seismic input ground motion and response measurements are made in order to evaluate the 

smartphone performance in measuring seismic strong motion and structural response. Figure 8 show the 

input ground motion time histories targeted by shaking table controller (Reference), and the ones measured 

by Smartphone 2 and Smartphone 3. The bottom three plots in the figure are the enlarged portions 

(between 15 s and 20 s) to show more details. It is noted that the shaking table acceleration (the input) 

was not measured by the reference sensor. The “Reference” in Figure 8 refers to the input seismic 

acceleration generated by the controller of the seismic shaking table. The reference sensor was used for 

measuring the structural response in this seismic excitation experiment. An excellent agreement is 

observed between the measurements made by the two different smartphones. A considerable difference 

is observed between the target time history and the measurements by the smartphone sensors, due to the 

fact that a seismic shaking table has physical limitations of generating targeted motion [31]. Figure 9 

shows the acceleration response time histories measured at the top of the model by the reference sensor 

and Smartphone 2. Similarly, portions of the top two plots are enlarged in the bottom two plots to show 

more details. An excellent agreement is observed between the responses measured by the smartphone 

and the reference sensor. 

Power spectral densities are obtained from the targeted input, measured input and response 

acceleration time histories and plotted in Figure 10, based on which the transfer function is developed 

and plotted in the same figure. Again, the spectral densities of the responses measured by the reference 

and the smartphone sensors agree well. Although the ground motions of two different smartphones have 

significant difference with the target input motion applied to the shaking table, they agree very well in 

the frequency domain as well. 
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Figure 8. Time history of targeted and achieved earthquake input ground motion measurements. 

 

Figure 9. Time history of earthquake response measurements. 
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Figure 10. Spectral density of earthquake excitation measurements. 

4.4. Comparison of Identified Natural Frequencies of the Structural Model 

Natural frequencies of the masonry column model are identified based on the measurements made in 

the seismic shaking table tests involving the different types of excitations. The peak picking method is 

applied to extract the natural frequencies from the power spectral densities of the response acceleration 

under the operational and white-noise excitations shown in Figures 5 and 7. For the seismic excitation, 

the natural frequencies are identified from the spectral density function plot in Figure 10. The identified 

fundamental frequency values are summarized in Table 3. From the measurements made by the reference 

sensor, the fundamental frequency of the column model is identified as 18.2, 17.4, and 17.1 Hz respectively 

under the operational, white noise, and earthquake excitations. Their counterparts measured by the 

smartphone sensor are 18.4, 17.2, and 17.5 Hz. The frequency values measured by the smartphone sensor 

and the reference sensors are highly comparable, demonstrating the capability of the smartphone sensor in 

measuring a structure’s natural frequencies. 

Furthermore, it is observed that the fundamental frequency of the structural model decreases as its 

vibration amplitude increases. This phenomenon has been confirmed by many other studies [32–34] and 

further analysis is beyond the scope of this paper.  



Sensors 2015, 15 2991 

 

 

Table 3. Comparison of structure’s natural frequencies identified from different measurements. 

Excitation Type Ambient White Noise Earthquake 

Natural frequency (Hz) 
Reference 18.2 17.4 17.1 

Smartphone 18.4 17.2 17.5 

Error (%) 1.10 1.15 2.34 

5. Field Tests of a Bridge 

In order to investigate the performance of smartphone sensors on actual structures, a series of field 

tests are conducted on a pre-stressed reinforced concrete pedestrian bridge located in Princeton (NJ, 

USA) shown in Figure 11. Smartphone 2 and the reference sensor are fixed by double-sided adhesive 

tapes in the mid span of the bridge deck to measure its ambient vibration and response to dynamic 

loading. Two sets of dynamic loading tests are carried out. First, a group of participants runs randomly 

on the bridge with different speeds, rhythms and directions to generate dynamic loads of broader 

frequency content. Second the same group jumps synchronically at 3 Hz, which is close to the estimated 

natural frequency of the bridge, to excite the first mode of vibration. Similar to the previous tests, in 

ambient vibration, random dynamic, and synchronized dynamic test time histories, zero-padding is 

applied. Therefore, actual spectral resolutions, 0.0142, 0.0067, and 0.0033 Hz, respectively, are converted 

into 0.0015 Hz as a result. 

 

Figure 11. Pedestrian bridge in Princeton (NJ, USA). 

5.1. Ambient Vibration Test 

Ambient vibration of the bridge, resulting from the environmental vibration caused by pedestrians 

and vehicles passing under the bridge, are measured using the smartphone and reference accelerometers 

located at the mid span. Figure 12 compares the time histories obtained from the reference and smartphone 

accelerometers. The bottom two plots are enlarged portions to show more details. First, the amplitude of 

the vibration is less than 0.005 g. At this low amplitude, the smartphone sensor is not as sensitive as the 

high-quality reference sensor, and as a result some differences between the two measurements are 

observed in the time histories. However, the frequency domain characteristics measured the two sensors 

match quite well, as shown in the power spectral density plots in Figure 13. For example, the fundamental 

frequency of the bridge identified from the reference sensor measurement is 3.13 Hz compared with 3.16 Hz 

by the smartphone measurement. The error is less than 1%. The higher modes by the two measurements 

also agree well. Moreover, measurements include smartphone sensors positioned without fixing, which 
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also resulted in the same accuracy. In other words, the smartphone sensors are free to move on the 

structure, yet coupled by the friction between the phone surface and the bridge surface. This implies the 

practicality of smartphone sensors for vibration measurement. A detailed study, considering different 

coupling conditions and targeting the effect of fixity on smartphone sensors as seismic instruments is 

conducted in [15,17]. 

 

Figure 12. Time history of ambient vibration response measurements. 

 

Figure 13. Spectral density of ambient vibration measurements. 

5.2. Random Dynamic Test  

In order to apply dynamic loads with broadband frequency content to the bridge, a group of 

pedestrians run on the bridge deck randomly with different, varying speeds, rhythms and directions 

without any particular pattern. Figure 14 shows that the smartphone measurement agrees much better 

with the reference sensor measurement than it does in the ambient vibration case (shown in Figure 13). 

This is because of the increased vibration amplitude; in fact the random running-induced vibration is ten 

times higher than the ambient vibration. From the power spectral density plots in Figure 15, natural 
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frequency of bridge is estimated as 3.08 Hz and 3.11 Hz respectively from reference and smartphone 

sensor measurements, resulting in an error less than 1%. 

 

Figure 14. Time history of random dynamic test measurements. 

 

Figure 15. Spectral density of random dynamic test measurements. 

5.3. Synchronized Dynamic Test 

Finally, in order to maximize the dynamic load effect, the pedestrian participants jump on the mid 

span of the bridge deck synchronically at a frequency of 3 Hz, which is close to the estimated natural 

frequency of the bridge. Figure 16 plots the time histories obtained from the reference and smartphone 

accelerometers. Due to the dynamic amplification, the bridge response acceleration exceeds 0.1 g. As the 

vibration amplitude increases, the measurement error of smartphone sensor (with respect to the reference 

sensor) becomes insignificant. The power spectral densities based on the smartphone and reference 

measurements, as plotted shown in Figure 17, show their excellent agreement. This synchronized jumping 
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excited only the first mode, which is 3.00 Hz (by the reference sensor) and 3.03 Hz (by the smartphone 

sensor). Likewise, the error is less than 1%. 

 

Figure 16. Time history of synchronized dynamic test measurements. 

 

Figure 17. Spectral density of synchronized dynamic test measurements. 

5.4. Comparison of Identified Natural Frequencies of the Bridge 

Natural frequencies of the bridge are identified based on the measurements made in the field tests. The 

peak picking method is applied to extract the natural frequencies from the power spectral densities of 

the response acceleration under the ambient, random and synchronized excitations shown in Figures 13, 

15 and 17. Table 4 compares the identified fundamental frequency values. From the measurements made 

by the reference sensor, the fundamental frequency of the bridge is identified as 3.13, 3.08, and 3.00 Hz 

respectively under the ambient vibration, and the random and synchronized dynamic loading tests, while 

their counterparts made by the smartphone sensor are 3.16, 3.11, and 3.03 Hz. Again, frequency values 

measured by the smartphone sensor and the reference sensors are highly comparable, demonstrating the 

capability of the smartphone sensor in measuring a structure’s natural frequencies. Like the observation 

made in the seismic shaking table tests, the fundamental frequency of the bridge decreases as its vibration 

amplitude increases. 
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Table 4. Comparison of bridge’s natural frequencies identified from different measurements. 

Excitation Type Ambient Random Synch 

Natural frequencies (Hz) 
Reference 3.13 3.08 3.00 

Smartphone 3.16 3.11 3.03 

Error (%) 0.96 0.97 1.00 

6. Conclusions 

A comprehensive experimental study, involving seismic shaking table tests and bridge field tests, was 

carried out to investigate the performance of smartphone accelerometers in measuring structural 

response to dynamic loading ranging from low-amplitude ambient to high-amplitude seismic excitations, 

as well as sinusoidal excitations. Three widely-used smartphones embedded with different 

accelerometers and a high-quality reference sensor are tested on a small shaking table, a structural model 

on a large seismic shaking table, and an actual bridge. All the measurement results are compared in both 

time and frequency domains. The following conclusions can be drawn from this study: 

(1) The small-scale shaking table tests confirm that the smartphone sensors are capable of accurately 

measuring sinusoidal vibration of 0.5 Hz through 20 Hz, a frequency range relevant to most civil 

engineering structures. The measurement error in terms of the vibration amplitude, when 

compared with the high-quality reference sensor, is less than 5% for vibration higher than  

1 Hz, but increases as the peak horizontal acceleration decreases. The measurement error in  

terms of vibration frequency is 1% and 5% respectively for the new and the old generation 

smartphone sensors. 

(2) The large-scale seismic shaking table tests of the structural model and the field dynamic tests of 

the bridge demonstrate the capabilities of smartphone sensors in measuring structural responses 

to a variety of dynamic loads of different amplitude as well as frequency characteristics. Despite 

the measurement error of the structural response in the time domain under the low-amplitude  

(less than 0.005 g) ambient vibration, it is possible to extract the structures’ fundamental 

frequencies with remarkably small error of less than 1%. 

(3) The two types of the widely-used smartphones with different operating systems and different 

accelerometers show comparable performance. The accelerometer in the newer generation 

smartphone is significantly more accurate than that in the old generation smartphone. The quality 

of the sensors embedded in smartphones is expected to continue to improve in the future. 

(4) The laboratory and field tests show advantages of the smartphone sensors over the conventional 

sensor, such as the ease of installation and data acquisition as well as wireless transmission. 

It is noted that many issues are yet to be solved such as the on-phone signal pre-processing,  

power-efficient signal transmission and practical phone-structure couplings. Nevertheless, this study 

demonstrates the feasibility of using smartphone accelerometers for measurement of structural vibration 

characteristics, from which structural health can be diagnosed as shown in prior research. Encouraged by 

the results of this study, the authors are exploring the potential of forming a smartphone-based low-cost 

Citizen Sensor network for structural health monitoring and post-event damage assessment in structure- 
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and city-scales, by developing frameworks of citizen engagement, online database and crowdsourcing 

data analytics. 
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