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Abstract: Conducting polymers (CPs) are a group of polymeric materials that have attracted 

considerable attention because of their unique electronic, chemical, and biochemical properties. 

This is reflected in their use in a wide range of potential applications, including light-emitting 

diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, 

and drug-release systems. Electrochemical DNA sensors based on CPs can be used in 

numerous areas related to human health. This review summarizes the recent progress made in 

the development and use of CP-based electrochemical DNA hybridization sensors. We discuss 

the distinct properties of CPs with respect to their use in the immobilization of probe DNA on 

electrode surfaces, and we describe the immobilization techniques used for developing DNA 

hybridization sensors together with the various transduction methods employed. In the 

concluding part of this review, we present some of the challenges faced in the use of CP-based 

DNA hybridization sensors, as well as a future perspective. 
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1. Introduction 

Deoxyribonucleic acid (DNA) detection plays a prominent role in myriad disciplines related to 

human health, including the diagnosis of infectious diseases, identification of genetic mutations, drug 

discovery, forensics, and food technology [1–3]. For analyzing specific DNA sequences, reliable 

techniques based on either direct sequencing or DNA hybridization have been developed [2,3]. DNA 

sequencing is the process of determining the precise order of four nucleotides bases (adenine, guanine, 

cytosine, and thiamine) in a strand of DNA. DNA sequencing technology based on 2-D thin-layer 

chromatography was invented by Maxam and Gilbert and Sanger et al. in the 1970s [4,5]. The  

Maxam–Gilbert sequencing method rapidly became popular owing to the short sequence-reading times 

involved and because purified DNA could be directly used in this method. However, the requirement 

of using large amounts of purified DNA and complicated purification steps, combined with a shortage 

of available sequencers, limited the use of this method. Other major challenges associated with the 

Maxam–Gilbert method have been the extensive use of hazardous chemicals and difficulties with 

sample scale-up. By contrast, the chain-termination method developed by Sanger and coworkers made 

DNA sequencing comparatively more practical, because it required lesser amounts of purified DNA 

than the Maxam–Gilbert method did and it also provided multiple options for labeling the sequencing 

template. Of the two methods, the Sanger method is more efficient, uses fewer toxic chemicals, and 

requires the use of lower amounts of radioactivity. Furthermore, radioactive phosphorus labeling or the 

use of a primer labeled at the 5' end with a fluorescent dye allows an optical set-up to be employed in 

the sequencing performed using the Sanger method; this facilitates easy analysis and the use of 

inexpensive automation. In order to enhance the sensitivity of this method, dye-terminator sequencing 

chemistry has been introduced [6–8]. However, dye-terminator sequencing has limited practical utility 

owing to the “dye effect” that arises from the difference in the incorporation of the dye-labeled chain 

terminators into the DNA fragment, which generates unequal peak heights and shapes in the DNA 

sequencing chromatogram. DNA sequencing by hybridization onto a solid support (e.g., nitrocellulose, 

nylon membrane, or lysine-coated glass slide) performed using fluorescently or radioactively tagged 

DNA became a common method for DNA analysis in the early 1990s [9,10]. This detection method 

appeared to be a promising tool for the real-time analysis of multiple DNA sequences, and it depended 

on the anchoring of multiple DNA-specific probes onto solid surfaces [11–13]. Such an array system 

might be useful in genome-wide genetic mapping, physical mapping, proteomics, and gene expression 

studies. However, the main challenges involved in using solid supports are the lack of commonly used 

DNA probes in “user-friendly” assays and an immobilization method that is fully compatible with the 

hybridization process, and low sensitivity and reproducibility [14]. To enable rapid, sensitive, and  

label-free DNA detection, numerous approaches have been suggested based on optical [15–17], 

acoustic [18], and electrochemical techniques [19–21]. 

Electrochemical methods are typically inexpensive and rapid methods that allow distinct analytes to 

be detected in a highly sensitive and selective manner [22–25]. Although electrochemical DNA sensors 

exploit a range of distinct chemistries, they all take advantage of the nanoscale interactions among the 

target present in solution, the recognition layer, and the solid electrode surface. This has led to the 

development of simple signal transducers for the electrochemical detection of DNA hybridization by 

using an inexpensive analyzer. DNA hybridization can be detected electrochemically by using various 
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strategies that exploit the electrochemistry of the redox reaction of reporters [26] and enzymes 

immobilized onto an electrode surface [27], direct or catalytic oxidation of DNA bases [28–31], 

electrochemistry of nanoparticles [32–35], conducting polymers (CPs) [35–37], and quantum dots [38]. 

CPs are organic conjugated polymers that feature an extended π-orbital system through which 

electrons can move from one end of the polymer to the other. In 2000, H. Shirakawa, A. MacDiarmid, 

and A. Heeger were awarded the Nobel Prize in chemistry for their revolutionary research on the 

conductive behavior of polymers and provocative research based on CPs. Unlike saturated polymers, 

CPs exhibit several distinctive properties such as excellent electrical conductivity, low ionization 

potentials, and high electron affinity. The electrical conductivity of CPs is responsible for the 

excitation of polarons, bipolarons, and solitons during the doping processes. The ground state p-bonds 

(p − p*) of CPs are partially localized as a result of Peierls distortion [39]. However, depending on the 

doping concentration, the formation of polarons, bipolarons, and solitons creates distinct band gaps 

between the self-localized excitations and the localized electronic sates. CPs also exhibit very high 

flexibility, which can be modulated together with their electrical properties by using appropriate 

chemical modeling and synthesis [40–42]. These distinctive properties of CPs have broadened their 

application in various technological fields, such as in the design of light-emitting diodes [43],  

anti-static coating [44], electrochromic devices [45], solar cells [46], anti-corrosion coatings [47], 

chemical sensors and biosensors [48], and drug-release systems [49,50]. To date, diverse CPs have 

been developed and used in sensing applications, such as poly(acetylene), polypyrrole (PPy), 

polythiophene (PTh), poly(terthiophene), polyaniline (PANI), poly(fluorine), poly(3-alkylthiophene), 

poly(tetrathiafulvalene), poly(naphthalene), poly(p-phenylene sulfide), poly(para-phenylene vinylene), 

and poly(thionine) (PTH); these CPs are reviewed elsewhere [51]. Previous studies have also examined 

the growth and stabilities of PANI [52,53], PPy [54,55], poly(azulene) [56], and PTh [57,58]. Apart 

from these commonly used CPs, various reversibly doped and undoped CPs, which exhibit 

considerable changes in conductivity, have been studied using electrochemical methods [59]. The 

electrical conductivity of CPs depends substantially on the pH and the applied potentials, which can vary 

over several orders of magnitude [60]. Moreover, the grafting of organometallic compounds can aid in 

the tuning of the physical properties of CPs [61–64]. The electronic structure, chain conformation, and 

orientation of CPs can cause extremely sensitive changes in the polymeric chain environment of CPs. 

For example, a change in the delocalized electronic structure of CPs during DNA hybridization alters 

their optical and electrical properties [65]. These advantages offered by CPs make them suitable for 

developing sensitive electrochemical DNA hybridization sensors. In this article, we comprehensively 

review recent works on various CPs, as well as their application and implementation  

for electrochemical DNA sensing. Furthermore, we discuss the most commonly used methods  

of immobilizing DNA probes for developing DNA biosensors along with the transduction  

mechanism employed. 

2. Immobilization Techniques Used for Developing DNA Biosensors 

To enhance the sensitivity of DNA biosensors, the DNA probe used must be sufficiently 

immobilized [66]. Nonspecific adsorption and stabilization of the immobilized DNA probe are crucial 

for achieving high sensitivity and specificity. Moreover, minimizing nonspecific adsorption is essential for 
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ensuring the high reactivity, accessibility, orientation, and stability of surface-confined DNA probes [66]. 

DNA probes immobilized on sensor surfaces can be used in a manner similar to enzyme-based biosensors; 

these probes are immobilized by means of adsorption, covalent immobilization, or avidin  

(or streptavidin)-biotin interaction [67,68]. Figure 1 shows the unique design of a CP-based DNA sensor. 

In this sensor, single-stranded DNA (ss-DNA) probes are immobilized on or within a CP layer, and target 

DNA base-pairing to the probe generates a recognition signal that can be recorded using an electrode (e.g., 

an electrode made of gold, platinum, or glassy carbon). Identification occurs at the CP/electrolyte edge, and 

the generated recognition signal reaches the transducer through the CP layer. In this section, we discuss the 

various methods used for immobilizing a DNA probe in order to develop a DNA hybridization sensor. 

 

Figure 1. Schematic representation of a general electrochemical DNA sensor based on 

conducting polymers. 

2.1. Adsorption 

Adsorption is the simplest immobilization method in which a DNA probe can be immobilized 

without any modification of the probe [69]. Hirayama et al. developed an enhanced and simplified  

dry-adsorption protocol for DNA probe immobilization that increased hybridization sensitivity [70]. 

The efficiencies of DNA adsorption and retention were increased 1.4–6.5 and 4.2–19.6 times, 

respectively, compared with the efficiencies achieved using conventional methods such as incubation 

and decantation. Moreover, the use of this simple protocol reduces the consumption of DNA and 

increases the hybridization efficiency substantially. Another method involves the use of the amino group 

of the natural cationic chitosan polymer that can readily form a strong complex with the negatively 

charged phosphate backbone of DNA [71]. Xu et al. successfully immobilized a DNA probe labeled  
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with aminoferrocene (AFC) on a chitosan-modified glassy carbon electrode (GCE) by means of 

adsorption [72]. The AFC-labeled DNA probe formed a duplex only with the complementary target 

DNA, and the detection limit was 2.0 nM. DNA that is either physically or chemically adsorbed onto a 

solid electrode surface can also be used for studying the electrochemical behavior of DNA and its 

interaction with other molecules [73–76]. For example, Azek et al. developed a disposable DNA sensor 

by physically adsorbing amplified human cytomegalovirus DNA onto a screen-printed electrode  

(SPE) [77]. The extent of hybridization of the target DNA was determined using horseradish  

peroxidase-conjugated streptavidin, and the detection limit was measured to be 6 × 10−7 nM. 

DNA probes and DNA composites can also be immobilized on electrodes by applying an electric 

potential [78,79]. Wang et al. electrochemically adsorbed a DNA probe on an electrochemically 

pretreated carbon-paste electrode (CPE) at an applied potential of −0.5 V (vs. Ag/AgCl) [80]. This 

DNA sensor requires only nanogram quantities of DNA owing to the low background response of the 

potentiometric-stripping mode. Recently, Wu et al. electrodeposited silver nanoparticle-DNA 

composites at a controlled dimension on a GCE by reducing silver in the presence of DNA [81]. The 

inclusion of DNA with the silver nanoparticles prevents nanoparticle aggregation and enhances the 

catalytic activity. Lahiji et al. electrochemically deposited a uniform DNA-carbon nanotube (CNT) 

composite on an Au substrate by maintaining a +0.5 V potential [82]. This immobilization technique 

does not require prior DNA or substrate functionalization, and this is combined with a new method of 

generating a modified DNA electrode that offers the advantage of the high electron-transporting 

capacity of CNTs for sensing. 

2.2. Covalent Immobilization 

DNA probes have frequently been immobilized through covalent binding to various solids [83–88]. 

Ligaj et al. developed a stearic acid-modified conventional CPE in order to covalently immobilize 

DNA probes through an ethylenediamine linker [86]. This process does not alter the structural 

flexibility of the DNA probe, and it enhances DNA hybridization. Raymond et al. developed a simple 

and specific method that does not require the labeling of the target before hybridization [87]. The 

amino-linker of the probe DNA allows it to be covalently attached to a functionalized glass surface. 

Functionalized CP films, such as poly(3-pyrrolylacrylic acid) (Py-co-PAA), poly(5-(3-pyrrolyl)  

2,4-pentadienoic acid) (Py-co-PPDA), and poly(3-pyrrolylpentanoic acid) (PPA), were previously used 

for covalently immobilizing a DNA probe [88]. Based on the principle of chemisorption, thiol-metal 

interactions have also been frequently employed to covalently bind thiol-functionalized DNA probes 

onto gold surfaces [89–92]. 

The distinctive electrical, thermal, chemical, mechanical, and 3-D spatial characteristics of CNTs 

suggest that it is possible to construct DNA biosensors with high sensitivity, selectivity, and 

multiplexing by exploiting Watson–Crick base-pairing [93]. Rodriguez et al. covalently attached 

single-walled CNTs (SWNTs) to a gold surface modified with 11-amino-1-undecanethiol (AUT) and 

subsequently immobilized a DNA probe on the Au/AUT/SWNTs through covalent linkage [94]. The 

interaction and covalent immobilization of DNA probes on functionalized CNTs and  

CNT/CP-composite-modified electrodes have been widely studied [95,96]. Yang et al. developed a 

sensitive electrochemical DNA sensor based on the synergistic effects of a PANI nanofiber and a 
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multiwall CNT (MWNT) composite on a chitosan film [97]. The covalent immobilization of the DNA 

probe on the PANI-MWNT-composite film enhanced DNA hybridization, which was highly 

reproducible and stable. 

2.3. Avidin/Streptavidin-Biotin Interaction 

Avidin and streptavidin are large tetrameric proteins containing four identical biotin-binding sites 

that can be used for forming tetravalent avidin/streptavidin-biotin bonds in order to develop  

DNA-coated electrodes; in these electrodes, surface-confined avidin/streptavidin reacts with 

biotinylated DNA [98]. Because of the innate aqueous immobility of the avidin-biotin complex, this 

system is easy to use. Pan et al. generated a mixture of self-assembled monolayers (SAMs) by using  

2-mercaptoethanol (ME) and 11-mercaptoundecanoic acid (MUA) on an Au electrode and attached a 

DNA probe to the activated MUA through streptavidin-biotin chemistry, as shown in Figure 2 [99]. 

Caruso et al. employed the quartz crystal microbalance (QCM) technique in order to immobilize 

biotin-DNA on an avidin-modified QCM electrode [100]. Several strategies have been developed for 

attaching biotin to modified CP electrodes, including the biotin-sandwich technique for immobilizing 

DNA [101–106]. Guillerez et al. designed a DNA sensor by using an electropolymerized  

biotinylated-PPy film [101]. Biotinylated DNA probes were immobilized onto PPy-biotin films 

through an intercalated layer of avidin (PPy-biotin/avidin/DNA probe). Furthermore, to detect DNA 

hybridization, fluorescently labeled or non-labeled avidin and biotinylated DNA probes have also been 

immobilized on a biotin derivative (photobiotin)-modified poly(dimethylsiloxane) (PDMS) chip by 

using biotin/avidin/biotin chemistry [106]. 

 

Figure 2. Schematic illustration of DNA probe immobilization through avidin-biotin 

chemistry and the hybridization of target DNA on a self-assembled monolayer  

(SAM)-modified Au electrode. (Reproduced with permission from [99]. Copyright 2014, 

American Chemical Society.) 
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3. Transduction Methods 

Sensing and/or transduction must occur in order to convert a recognition event into a readable 

signal. Depending on the type of measurement, transduction can occur by electrochemical, optical,  

mass-based, or thermal means [107–109]. Among these, electrochemical transduction has been shown to 

be appropriate for DNA sensing, wherein a biorecognition event directly gives rise to an electrical signal, 

and this allows the sensing system to be miniaturized [110]. Recently, various convenient systems for 

analysis and on-site monitoring have been developed using distinct solid contact materials such as gold, 

ferrocene-labeled PNAs (peptide nucleic acids), CNTs, and CPs [111–113]. CPs have been widely 

used because they can create a high redox capacitance that makes the recorded signal highly  

stable [114–116]. The transduction mechanism of poly(3,4-ethylenedioxythiophene) (PEDOT) was 

comprehensively studied using various electrochemical techniques, including electrochemical 

impedance spectroscopy (EIS) [117,118]. Although CPs clearly offer advantages over other transducing 

materials, a few drawbacks are also associated with CPs depending on their type. For example, PPy 

exhibits slight chemical instability in the presence of certain components of ambient media, such as 

oxygen, acids, bases, redox reactants, nonreactive ions, and surfactants [119,120]. The possible 

formation of a water layer at the boundary between CPs and polymeric ion-selective membranes is also a 

hurdle that must be addressed [121]. In the case of CP-based electrochemical DNA sensors, the polymers 

not only serve as an immobilization template, but also actively participate in signal transduction. When 

using electrochemical methodologies, reversible doping and dedoping of CPs markedly alter the 

electrochemical responses. Doping and dedoping modulate the interaction of the probe-target complex 

and can regulate the sensitivity and stability of DNA detection [122,123]. The change in the signal after 

probe-DNA immobilization and target-DNA hybridization can also be quantified using diverse 

approaches, such as by measuring the change in current as a function of the applied potential 

(voltammetry), the change in current at a fixed applied potential (amperometry), or the change in 

conductivity (conductometry), impedance (impedimetry), or potential (potentiometry). Among these 

transduction methods, voltammetric methods (e.g., cyclic voltammetry (CV), differential pulse 

voltammetry (DPV), and square wave voltammetry (SWV)) are most widely used for the detection of 

DNA hybridization. Voltammetric measurement requires the use of two- or three-electrode electrochemical 

cell systems together with a potentiostat, which allows the application of the potential and the 

measurement of the resultant current. Voltammetry such as CV, DPV, and SWV depend on the pattern of 

the applied potential, which also potently controls the sensitivity of the current response. 

4. Development of DNA Sensors Based on Distinct CPs 

4.1. DNA Sensors Based on Polypyrrole and Its Derivatives 

PPy is formed from a number of connected pyrrole ring systems and is highly biocompatible. PPy 

synthesized at neutral pH is extensively used as a versatile immobilization matrix in the design of 

biosensors, such as catalytic biosensors, immunosensors, and DNA sensors and in molecular-imprinting 

technologies [124]. When deposited on the electrode surface, PPy provides an effective DNA-sensing 

platform, in which PPy itself acts as an interface for the attachment of the DNA probe. Notably,  

PPy-modified electrodes have also facilitated the development of indicator- and label-free detection of 
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DNA [125]. Livache et al. developed a novel method for electro-synthesizing a PPy-DNA composite 

through co-polymerization [126]. To synthesize a PPy film harboring covalently linked DNA, a 

mixture of pyrrole and a pyrrole bearing a specific DNA probe was electrooxidized. This was the first 

study to detect DNA hybridization on the surface of modified macroelectrodes. Soon after this study, 

the same group also generated a DNA chip constructed of three components: silicon chips bearing a 

matrix of 50-μm or 4-μm microelectrodes for genotyping hepatitis C virus (HCV), a QCM, and a  

non-patterned gold/glass slide featuring 500-μm spots [127]. Wang et al. described the incorporation 

of DNA dopants into a PPy network by using an electrochemical QCM (EQCM) and showed that it 

exhibited a strong affinity for target DNA [128,129]. Youssoufi et al. developed a new type of 

electrochemical DNA hybridization sensor based on DNA-functionalized PPy [130]. The prepared PPy 

precursor contained a loosely bound ester group that was directly substituted with an amino-labeled 

DNA probe of various sequence lengths. The electrochemical response of this sensor was analyzed in 

aqueous media containing distinct target DNA sequences. The voltammetric signals obtained for 

DNA-PPy remained unchanged in the presence of a noncomplementary target DNA sequence; however, 

the signal changed considerably when a complementary target DNA was added. This was quantified 

using amperometry, and the detection limit of the biosensor was determined to be approximately  

1 × 10−2 nmol in the absence of any signal processing. Other researchers also developed a similar type of 

DNA hybridization sensor by functionalizing PPy; these researchers introduced PPy nanotubes in which 

PPy was functionalized with, for example, poly[pyrrole-co-4-(3-pyrrolyl) butanoic acid] or carboxylic  

acid [131–133]. The acid-functionalized PPy is a favorable alternative for fabricating label-free  

sensors because it enables versatile immobilization of DNA, proteins, and enzymes by using various 

pendant groups: –SH, –NH2, and –COOH. Peng et al. prepared a poly[pyrrole-co-4-(3-pyrrolyl)  

butanoic acid]-modified platinum electrode for DNA hybridization, which exhibited high electroactivity 

in aqueous medium [131]. An NH2-substituted DNA probe was covalently grafted onto the surfaces of 

this polymer in a one-step procedure. Komarova et al. developed a prototype amperometric sensor for 

the detection of a biowarfare pathogen, the virus Variola major, based on DNA-doped ultrathin PPy  

films [134]; the investigators determined that thinner films harboring smaller or more highly 

concentrated dopant ions produced stronger amperometric signals than did thicker films bearing larger or 

less concentrated dopant ions. After the film surface was blocked with fragmented calf-thymus DNA, 

the nonspecific signal disappeared completely when ultrathin (Langmuir–Blodgett) films were tested; 

however, the specific signal from the complementary DNA remained unaffected. Under optimal 

conditions, the detection limit for the target DNA was 16 × 10−3 nM. Ease of use and rapid detection are 

the primary advantages of this sensor; however, steric hindrance and poor accessibility of the probe to 

the analyte in the film can reduce hybridization efficiency and substantially limit sensitivity and 

selectivity [68]. 

Several groups have developed DNA sensors based on PPy and PPy derivatives by using a modified 

fluorine-doped tin oxide (FTO) electrode [135–137]. Eguiluz et al. developed a PPy/FTO electrode 

and used Ag/Au-nanoparticle labels to detect Alicyclobacillus acidoterrestris in pure cultures by 

means of reverse-transcription polymerase chain reaction (RT-PCR) [136]. The sensor sensitivity 

could also be enhanced by performing asymmetric nested RT-PCR of the amplicon and using  

Ag/Au-based electrochemical detection, which was able to detect 2 colony-forming units/mL of spores. 

In this electrochemical bioassay, the detection and quantification limits for the target A. acidoterrestris 
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were 7.07 and 23.6 nM, respectively. Riccardi et al. developed a new type of label-free PPy-based DNA 

sensor for identifying HCV [137]; in this approach, HCV is detected through the electrostatic modulation 

of the ion-exchange kinetics of PPy films. Here, the PPy layer was electropolymerized in order to 

immobilize a synthetic, single-stranded, 18-mer HCV genotype-1-specific probe DNA on a 2,5-bis  

(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film. HCV DNA sequences (244-mer) obtained through  

RT-PCR amplification of the original viral RNA were examined based on the disruption of the  

ion-exchange properties of the PPy film. However, with this sensor, the selectivity, sensitivity, and 

reproducibility of DNA detection were poor. 

In order to overcome the poor selectivity, sensitivity, and detection limit of DNA sensors, researchers 

have introduced PPy composites, such as PPy-CNTs, PPy-nanoparticles, PPy-nanoengineered materials, 

and pyrrole-derivative bilayers [138–140]. Xu et al. developed an impedimetric DNA biosensor based on 

a GCE modified with a PPy-MWNT composite [138]. COOH-MWNTs and PPy were electrodeposited 

on the GCE to facilitate the immobilization of the NH2-DNA probe. The hybridization reaction of this 

DNA/PPy/MWNT-COOH/GCE results in a decrease in impedance, which is attributed to the  

electron-transfer resistance through double-stranded DNA (ds-DNA) being lower than that through  

ss-DNA. The PPy/MWNT-COOH-modified electrode exhibited high electron-transport capacity and 

also featured an increased specific surface area. Consequently, the sensitivity and selectivity of DNA 

hybridization were increased and the detection limit was 5.0 × 10−3 nM. Table 1 summarizes the 

characteristics of some of the reported electrochemical DNA sensors based on PPy and PPy derivatives, 

together with their immobilization methods, detection method, detection limit, and sensitivity. 
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Table 1. DNA sensors based on Polypyrrole (PPy), PPy derivatives, and PPy composites and their performance in the detection of DNA hybridization. 

Matrix Immobilization Method Detection Method Detection Limit Sensitivity Ref. 

Copolymerizations of 5' pyrrole-labeled DNA  

and pyrrole 
DNA entrapment Fluorescence microscopy  - >10−11 M [127] 

Copolymerizations of DNA probe within PPy DNA entrapment CV/amperometry >6 µg 1.08 nA/µg [129] 

Poly[3-acetic acid pyrrole,  

3-N hydroxyphthalimide pyrrole]] 
Covalent CV 1 × 10−2 nmol - [130] 

Poly[pyrrole-co-4-(3-pyrrolyl) butanoic acid] Covalent CV/ EIS - 

10.5, 3.0 and 1.7 μA/cm2/nM of 

complementary DNA for 23, 57,  

and 114 nm film thicknesses, respectively. 

[131] 

Carboxylic acid-functionalized PPy nanotubes 

(CPPy NTs) 
Covalent Photoluminescence - 

High sensitivity (∆R/R0 = 1.7) even at low 

concentration (1 nmol) of target DNA 
[132] 

Poly [3-acetic acid pyrrole,  

3-N-hydroxyphthalimide pyrrole] 
Covalent EIS 1 × 10−3 nmol 21.6 Ω cm−2/µM [133] 

PPy doped with an DNA DNA entrapment Chronoamperometry 16 × 10−3 nM - [134] 

poly(Py-co-PAA) Covalent QCM/EIS 0.98 nM - [135] 

PPy-DNA DNA entrapment 
CV/Linear Sweep 

Voltammetry (LSV) 
- - [136] 

2,5-bis(2-thienyl)-N-(3-phosphorylpropyl)pyrrole DNA entrapment, Mg2+ ion serve as a linker CV/LSV 1.82 × 10−12 nM - [137] 

PPy/MWNTs 
Carbodiimide cross linking between amine 

and carboxyl group 
CV/EIS 5.0 × 10−3 nM - [138] 

PPy–polyaniline–Au HS-DNA bind on Au via Au-thiol chemistry EIS 1.0 × 10−4 nM - [141] 

PPy–poly(3,4-ethylenedioxythiophene)–Ag HS-DNA bind on Ag via Ag-thiol chemistry EIS 5.4 × 10−6 nM - [142] 

Copolymer of PPy and 3-pyrrolylacrylic acid (PAA) Covalent EIS - - [143] 
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4.2. DNA Sensors Based on Polythiophene and Its Derivatives 

PTh and functionalized PTh demonstrate a variety of remarkable solid-state properties  

and hold tremendous potential for use in molecular electronic devices, solid-state batteries,  

and sensors [144,145]. Carboxylic acid- and ester group-functionalized PTh polymers (e.g.,  

3'-carboxyl-5,2',5',2''-terthiophene, poly(thiophen-3-yl-acetic acid 1,3-dioxo-1,3-dihydro-isoindol-2-yl 

ester) (PTAE), and 3-((2':2'',5'':2'''-terthiophene)-3''-yl) acrylic acid (TAA)) have been widely  

used for developing electrochemical DNA sensors [146–149]. Lee et al. used a  

poly(3'-carboxyl-5,2',5',2''-terthiophene)-modified GCE and reported that only a short hybridization time 

(1 h) was required [146]. The amine group linked to the 5' end of the DNA probe (a 19-mer) was 

covalently attached with the carboxyl (-COOH) group-terminated polymer, which corroborated the 

hybridization of the target DNA (Figure 3I). The hybridization of fully complementary target DNA 

induced a significant decrease of the impedance values (Figure 3II). The difference in impedance 

values before and after hybridization of target DNA can be ascribed by the change in conductivity and 

capacitive current. This method is more advantageous than other methods because of its selectivity, short 

response time, and minimal use of intercalators and fluorescent tags. Cha et al. described a synthetic 

route for thiophen-3-yl-acetic acid 1,3-dioxo-1,3-dihydro-isoindol-2-yl ester (TAE), which can be 

readily electropolymerized on a Pt chip electrode and allow for the direct substitution of its exiting 

group with a prosthetic group that contains a terminal amino group on the DNA probe [149]. The 

sensitivity of this sensor was 0.62 μA/nmol and the detection limit was 1 nmol. 

 

Figure 3. Schematic representation of the immobilization of probe DNA and the 

hybridization of a target sequence (I), and plots of (A) impedance and (B) admittance 

before and after hybridization in a phosphate buffer solution (II). (Redrawn and 

reproduced with permission from [146]. Copyright 2014, American Chemical Society.) 

Peng et al. fabricated a poly(TAA)-modified DNA sensor that exhibited a qualitatively unique 

response when compared to functionalized PPy sensors [148,149]. The applicability of these two 

polymers as active substrates for DNA sensors was confirmed by covalently attaching NH2-DNA probes 

to the –COOH group of both polymers. Here, the hybridization of complementary DNA can be detected 

by an increase in the admittance without the requirement for an indicator or any sample modification. 
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Experimental results suggested that PPy functionalized with long unsaturated carbon side chains 

exhibited more favorable DNA-sensing properties and a larger difference in the impedance signal. This 

difference was due to the disparities in the movement of the dominant ions (CF3SO3
− and ClO4

−) at the 

interface of the polymer film and the electrolyte, which was confirmed using an EQCM.  

Considerable emphasis has been placed on producing portable and inexpensive devices for  

DNA detection because of their importance in forensics, medical diagnostics, and evolutionary  

studies [150–153]. Shiddiky et al. developed an ultrasensitive technique for detecting DNA and 

proteins based on poly-5,2':5',2''-terthiophene-3'-carboxylic acid (pTTCA) (Figure 4) [154]. Dendrimer 

(DEN) and hydrazine were covalently linked to the pTTCA film and the signal was amplified by the 

pTTCA/DEN assembly loaded with Au nanoparticles (AuNPs). The target DNA- or protein-linked 

hydrazine labels (avidin-hydrazine) adsorbed onto the pTTCA/DEN film, and DPV measurements 

revealed a linear dynamic range for the electrocatalytic detection of DNA and protein. The simplicity, 

low detection limit, and reproducibility (RSD < 4.3% for n = 10) of the sensor make this a promising 

tool that can be developed in the future for practical applications. 

 

Figure 4. Schematic illustration of the poly-5,2':5',2''-terthiophene-3'-carboxylic acid 

(pTTCA)/ dendrimer (DEN)/ Au nanoparticles (AuNP)/biomolecule-linked avidin-hydrazine 

assembly developed for (A) DNA and (B) protein sensors, based on the electrocatalytic 

activity of hydrazine. (Reproduced with permission from [154]. Copyright 2014, American 

Chemical Society.) 

Functionalized PTh was also used for developing a DNA sensor. Fang et al. developed a novel 

methodology for detecting DNA by using ferrocene-functionalized PTh deposited on a  

nanogold-modified electrode [155]. Nanogold-modified electrodes substantially increase the quantity 

of immobilized PNA probes and thus cause an increase in the electrical signal. Positively charged 

ferrocene-functionalized PTh does not bind electrostatically with the PNA probes because of the absence 
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of anionic phosphate groups. This limitation can be resolved by performing an initial DNA–PNA 

hybridization. Adsorption of cationic PTh onto the DNA backbone results in the generation of a 

detectable hybridization-recognition signal in DPV. Thus, PNA could be used as a highly sensitive, 

selective, and reversible coupling substrate for DNA immobilization. Table 2 summarizes the 

characteristics of electrochemical DNA sensors based on PTh and PTh derivatives, together with their 

immobilization techniques, detection method, detection limit, and sensitivity. 

Table 2. Polythiophene (PTh)- and PTh-derivative-based DNA sensors and their 

performance in the detection of DNA hybridization. 

Matrix Immobilization Method Detection Method Detection Limit Sensitivity Ref. 

PTh Covalent Fluorescence - - [144] 

Poly(3'-carboxyl-5,2',5',2''-terthiophene) Covalent EIS - 5.608 (ng/cm2)/Hz [146] 

Poly(thiophen-3-yl-acetic acid  

1,3-dioxo-1,3-dihydro-isoindol-2-yl ester 
Covalent CV 1 nmol 0.62 μA/nmol [149] 

Poly (3-[(S)-5-amino-5-carboxyl-3-oxapentyl]-

2,5-thiophenylene hydrochloride) 
Hydrogen bond Fluorometric 1 × 10−2 nmol - [151] 

Cationinc PTh Covalent Fluorometric 3.6 × 10−13 nM - [152] 

Poly(5,2':5,2''-terthiophene-3'-carboxylic Acid) Covalent Electrophoresis 1.14 × 10−4 nM 0.20 nA (fg/μL)−1 [153] 

PTh functionalized- methylene blue 
HS-DNA bind on Au via 

Au-thiol chemistry 
DPV - - [156] 

4.3. DNA Sensors Based on Polyaniline and Its Derivatives 

The environmental stability of PANI and its easy synthesis (either chemically or electrochemically) 

have broadened the application of PANI as a chemical sensor [157,158] and biosensor [159–161]. 

PANI is the best-recognized semi-flexible rod-like CP with chemically and structurally flexible –NH2 

linkage on its surrounding molecules, thus making it suitable for binding biomolecules [159]. PANI 

undergoes two redox reactions and can be functionalized, and this makes it a favorable material for 

DNA sensing. The electrical conductivity of PANI has been established to strongly depend on pH, and 

most previous studies on PANI were performed at a pH below 4.0. However, using a neutral pH 

solution is critical for developing biosensors because most biocatalytic and immunological reactions 

occur at neutral pH [162]. Therefore, a challenge is to incorporate biological molecules in the 

conventional pH-dependent PANI. Research has shown that N-substituted aniline does not exhibit pH 

sensitivity because an alkyl chain is covalently bound to the nitrogen atom in order to prevent the 

formation of an emeraldine base (the deprotonated form). Moreover, self-doped PANI, commonly 

referred to as sulfonated PANI, exhibits redox activity even at neutral pH [163]. 

Wu et al. synthesized PANI-intercalated graphite-oxide nanocomposites (PANI/GO) enveloped in 

CPE [164]. This PANI/GO-modified CPE displayed electrochemical activity and two sharp peaks at 

668 and 207 mV in SWV measurements. These results indicated that ss- and ds-DNA transformed the 

redox characteristics of PANI/GO, and this could be used to monitor probe immobilization and the 

hybridization of complementary DNA, with the hybridization peak occurring at −270 mV. DNA detection 

performed using the PANI/GO-modified CPE was highly stability and reproducible. Gu et al. developed  

an impedimetric DNA hybridization sensor based on a PANI/polyacrylate (PANI/PAA)-modified  
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boron-doped diamond (BDD) electrode [165]. An ultrathin film of the PANI-PAA copolymer was 

electropolymerized onto BDD surfaces in order to enhance the availability of the –COOH for binding 

the DNA probe. The hybridization event was sensed based on the direct oxidation of guanine and 

adenine in the DNA double helix. 

Immobilization of probe DNA on a polymer matrix revealed the limitations in the selectivity and 

specificity of hybridization [166]. In this context, PNA is recognized to provide enhanced stability and 

specificity in the detection of targets containing a single mismatch [167]. Gao et al. developed a novel 

signal-amplification method for ultrasensitive detection of DNA, which involved enzymatically 

catalyzed PANI formation and template-guided deposition for enhancing DNA hybridization [168]. The 

hybridization was quantified by examining the electroactivity of the deposited PANI by using SWV. 

This DNA sensor was extremely sensitive—it had a femtomolar detection limit—and it was highly 

selective for sequences mismatched by one, two, and three bases. The biosensor was used for detecting 

His4, RCA1, and GAPDH, and the results obtained were similar to those obtained from northern-blotting 

analysis of the same samples. 

An ultrasensitive technique for detecting DNA hybridization has also been developed by using 

PANI nanowires or nanotubes or methylene blue (MB) as an indicator [169,170]. MB was used to 

distinguish between ss- and ds-DNA by using various electrochemical techniques [171,172]. MB 

specifically binds to unpaired bases of DNA/PNA. The redox reaction of MB was used for monitoring 

the native and denatured states of DNA [173]. Prabhakar et al. covalently immobilized 20-base-long  

NH2-DNA and PNA probes on a PANI/Au electrode in order to detect DNA hybridization and used MB as 

an indicator (Figure 5) [174]. PNA-PANI/Au and DNA-PANI/Au electrodes were used for detecting the 

presence of complementary target Mycobacterium tuberculosis by using SWV, and the response time 

was short (30 s). The study revealed that the PNA electrode exhibits a higher affinity for 

complementary DNA sequence and an improved detection limit and higher specificity than do 

electrodes used in other methods. Table 3 lists the characteristics of electrochemical DNA sensors 

based on PANI and PANI derivatives, together with their immobilization techniques, detection 

method, detection limit, and sensitivity. 

Table 3. Polyaniline (PANI)- and PANI-derivative-based DNA sensors and their 

performance in the detection of DNA hybridization. 

Matrix Immobilization Method Detection Method Detection Limit Sensitivity Ref. 

PANI-intercalated graphite 

oxide nanocomposite 
Covalent SWV - 0.77 µA/µg/mL [164] 

PANI/PAA-modified 

borondoped diamond (BDD) 
Covalent EIS 20 nM - [165] 

Avidin modified-PANI Avidin interaction DPV 5 × 10−10 nmole - [166] 

Polyaniline nanowire Covalent immobilization DPV 1 × 10−3 nM - [169] 

PANI nanotube Covalent CV/DPV 1 × 10−6 nM 1 pM [170] 

Graphene/PANI Non-covalent binding DPV 3.2 × 10−5 nM - [175] 

PANI-Au 
HS-DNA bind on Au via 

Au-thiol chemistry 
DPV 0.1 nM - [176] 
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Figure 5. NH2-DNA and peptide nucleic acid (PNA) immobilization on polyaniline-coated 

gold film. (Redrawn with permission from [174]. Copyright 2014, American Chemical Society.) 

4.4. DNA Sensors Based on Quinone and Its Derivatives 

Quinone is an electronically conductive redox polymer that has attracted substantial interest as a 

chemical sensor [177] and biosensor [178,179] because of its capacity to transport charges inside films 

and the nature of the ionic flux at the interface of the polymer and the solution (anionic and cationic, 

respectively). The characteristics of quinone-based polymers differ from those of conventional  

p-doped electronically conducting polymers (ECPs). The sensitivity of ECP-based biosensors depends 

on the amplification of the interaction between the electrochemical transducer and biomolecules [180]. 

Piro et al. constructed a new electroactive film, poly(JUG-co-JUGA), by co-electrooxidizing  

5-hydroxy-1,4-naphthoquinone and 5-hydroxy-3-thioacetic acid-1,4-naphthoquinone [180]. This 

poly(JUG-co-JUGA) copolymer presents both electroactive and chemically reactive groups for sensing 

DNA and L-lactate [181]. An NH2-DNA probe was covalently immobilized on poly(JUG-co-JUGA) 

and the electroactivity of the quinone group was used for detecting hybridization. The main feature of 

this DNA hybridization sensor is the transformation between ss- and ds-DNA at the solution/polymer 

interface. Therefore, the rate of charge (ion) diffusion from the solution to the polymer/solution 

interface is primarily affected by hybridization. After hybridization, the current increases in SWV 

measurements because of electrostatic and/or steric effects. Piro and coworkers also examined PNA 

probe-based DNA hybridization sensors (Figure 6) [182]. The PNA probe was covalently attached to 

poly(JUG-co-JUGA), and upon hybridization with the target complementary DNA, the flexibility of the 

PNA probe was altered, which caused changes in the electrochemical signal at the polymer/solution 

interface. This simple and reagent-free DNA hybridization sensor can discriminate single mismatches 

and can be regenerated after a simple dehybridization step. The main drawback of this sensor is its 
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detection limit, 10 nM, which does not constitute the theoretical limit. In order to improve the detection 

limit, Acevedo et al. fabricated a sequential multilayer CNT that featured an increased area for the 

oxidation of soluble redox couples [183]. The electropolymerization of quinine and quinone 

derivatives onto the MWNT-modified electrode produced an interpenetrated CP/CNT network that is 

electroactive in both aqueous and nonaqueous media. The effective current response was enhanced up 

to 19 times, which increased the sensitivity and lowered the detection limit. 

 

Figure 6. (1) Immobilization of the peptide nucleic acid (PNA) probe; and (2) hybridization 

of the target DNA onto poly(JUG-co-JUGA)-modified glassy carbon electrode (GCE) 

together with the corresponding square wave voltammetry (SWV) signals for (1) PNA 

probe immobilization, and (2) target DNA hybridization. (Reproduced with permission 

from [182]. Copyright 2014, Elsevier.) 

4.5. DNA Sensors Based on Miscellaneous Conducting Polymers and Their Derivatives 

Poly(triamine) (PTyr) contains one primary aliphatic amine per triamine moiety, which represents 

an extremely high concentration of surface reactive sites for biomolecule immobilization [184]. Tran et al. 

first prepared a PTyr film by electrooxidizing 4-hydroxiphenylethylamine in perchloric acid, which  

left one reactive amine group per moiety [185]. DNA was immobilized on the polymer film through  

a phosphoramidate covalent bond [186], and this yielded a high surface concentration of DNA  

(~500 pmol/cm2). DNA can also readily bind to PTyr through nonspecific adsorption, and thus 

differentiating between adsorbed and covalently bonded DNA could be challenging. However, DNA 

probes that were weakly adsorbed were removed by washing with SL salmon-testis DNA. The 

remaining covalently bonded DNA probes were used for the hybridization of GEM DNA, a 

complementary DNA sequence derived from HIV gag protein. For detecting DNA hybridization,  

Li et al. prepared a new type of conjugated CP, poly(indole-5-carboxylic acid) (PICA), on GCE by 

means of anodic oxidation (Figure 7) [187]. PICA exhibited optimal electrochemical behavior and 

thermal stability, with a conductivity of 10−2 S/cm and high redox activity compatible with the concept 

of molecular-wire transduction. The PICA-modified sensor showed comparable sensitivity and its 

detection limit was 1.0 nM, which can be further improved by increasing the side chain length because 

longer side chains permit greater freedom of movement and more enhanced hybridization [35]. 
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Certain other CPs have been synthesized and employed in DNA sensing applications in  

which fluorescence techniques are used. These CPs include poly({2,5-bis[3-(N,N-diethylamino)-1-

oxapropyl]-para-phenylenevinylene}-alt-para-phenylenevinylene)dibromide [188], poly(9,9-bis(6'-N,N,N-

trimethylammonium)-hexyl)-fluorene phenylene) [189], and poly(fluorene-co-phenylene) [190]. The 

potential application of these CPs for the development of an electrochemical DNA sensor is in  

high demand. 

 

Figure 7. Schematic representation of the preparation of an electrochemical DNA sensor 

based on a poly(indole-5-carboxylic acid) (PICA) conducting polymer. (Redrawn from [187]. 

Copyright 2014, Elsevier.) 

5. Conclusions and Outlook  

This review has summarized the diverse strategies used for developing DNA biosensors by using 

electroactive CPs. CPs have been extensively used for developing electrochemical label-free methods 

of DNA detection. This is because CPs exhibit highly favorable electrical conductivity or  

charge-transport properties. Over the last decade, researchers have developed numerous types of CPs 

and their derivatives for highly sensitive and selective electrochemical detection of DNA. Adsorption, 

covalent immobilization, and avidin-biotin interactions have been used for developing DNA 

biosensors by modifying the electrode surface with CPs and their derivatives. To develop CP-based 

DNA sensors, regeneration of a surface-immobilized probe and the reuse of DNA biosensors must be 

addressed. The key factors that must be considered for probe immobilization are the following: the 

immobilization chemistry must be stable, the probes must retain their functionality after attachment, 

and immobilized biomolecules must maintain proper orientation and configuration [191]. CP films 

must be deposited on inert substrates because hydrophobic interactions and the consequential 

electrochemical oxidation and reduction accompanied by the movement of ions in and out of the CP 

film can result in the delamination of CP films. With regard to the immobilization of DNA probes, 

most detection methods that are used for developing DNA biosensors and microarrays are open to 

criticism [192]. CP-based DNA sensors are expected to be highly sensitive, selective, and reproducible 

and to enable multi-analyte determination. 

Although we have focused on CPs and various CP-CNT composites, other materials could also be 

used for developing electrochemical DNA hybridization sensors. For example, graphene, a new 
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allotrope of carbon composed of sp2-hybridized carbon atoms arranged in a honeycomb lattice, is an 

ideal 2-D material for developing DNA sensors. Graphene can be readily functionalized and doped 

with various functional groups (e.g., –COOH, –OH) and atoms, which might facilitate the 

immobilization of DNA probes in a biocompatible manner. 
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